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1. Introduction. This paper describes a topic that is of some in-
terest in Lie groups and in differential and algebraic geometry. The
topic shows good promise of being the “correct” context for explicit
realization of those series of irreducible unitary representations of
semisimple Lie groups that come into the Plancherel formula, so it
probably is also of interest in harmonic analysis. We start with
an example.

Let X be the Riemann sphere, viewed as C\U { » } via stereographic
projection. Then the group G of all holomorphic automorphisms of X
consists of the linear fractional transformations

a ¢ az+ b e ¢
i( ):z—) ’ det( >=1;
b d cz+ d b d
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that expresses G as a complex matrix group SL(2, C)/{+I}. Let
Go=SL(2, R)/ { +7 } , subgroup of elements represented by real
matrices, so G is the complexification of Go. The complex group G is
transitive on X but the real group Gy is not. In fact X is the union of
two open Gy-orbits

Go(v1) = {z &€C:Imz> 0} and Go(—+/—1) = {z EC:Imz< 0}
and the closed Ge-orbit
Go(0) = {sE€C:Imz =0} U {}.

The Cayley transform

1/ 1 =1
c_i7§(\/:1 1)EG

of X relates these orbits, so they are
Go(%o) and Go(c’xo) open,  Go(cxo) closed,  x = +/—1.

The series of irreducible unitary representations of Gy are the “dis-
crete series,” the “principal series” and the “complementary series.”
Discrete series representations are the square integrable ones; they
can be realized on the spaces of L2-holomorphic sections of G-
homogeneous holomorphic line bundles over the open orbits. Principal
series representation can be realized on L? (relative to invariant mea-
sure for the rotation subgroup of G,) sections of certain Gy-homogene-
ous complex line bundles over the closed orbit. The complementary
series does not contribute to Plancherel measure.

In general we start with a complex manifold X =G/P, where G
is a complex semisimple Lie group and P is a complex subgroup of
the sort called parabolic. The latter means any of the following condi-
tions, which are equivalent:

X =G/P is compact,

X is a compact simply connected kaehler manifold,

the complex manifold X is a projective variety,

X is a closed G-orbit in a projective representation.

Then X is a complex flag manifold. Let G, be a real form of G, i.e. a
real Lie group whose complexification is G. Then Gy acts on X as a
subgroup of G. It turns out that there are only a finite number of
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Go-orbits on X and that there is just one closed orbit. The decomposi-
tion of X into Go-orbits, and especially the structure of the open
orbits, is studied in some detail in Chapter I.

We then take an arbitrary orbit Go(x) CX and partition it into
“maximal complex analytic pieces” that we call its holomorphic arc
components. If zEGy(x) then Sy, denotes the holomorphic arc com-
ponent of Go(x) through z and N;,0 denotes the identity component
of the Lie subgroup {gEGo: 251 =Su } ; then Sp;=Np;,0(2) so it is
a real submanifold of X. The best situation is that in which some
(hence every) S CGo(x) carries a positive Ny, o-invariant Radon
measure; then we say that Go(x) is measurable. If Go(x) is measurable
and zE€Go(x) then Sy, is a complex submanifold of X, in fact is an
open Np,,e-orbit on the complex flag submanifold N§,(z) of X,
and its invariant measure is the volume element of an N, ¢-invariant,
possibly indefinite signature, kaehler metric. For example, the closed
Go-orbit on X is always measurable, and we have a method for decid-
ing measurability of the open Go-orbits. Holomorphic arc components
and global conditions on them such as measurability of the orbit,
are studied in Chapter II.

In Chapter III we work out the hermitian symmetric case in com-
plete detail, extending earlier work of Korinyi-Wolf [2], Wolf-
Kor4nyi [18] and Takeuchi [9]. This works well because every orbit
is measurable. The Riemann sphere, described above, is the simplest
of the hermitian symmetric cases; in fact its extreme simplicity can
be misleading, so we look at the example of a general complex Grass-
mann manifold.

Let X be the complex Grassmann manifold consisting of the k-
planes through the origin in C*. If {v, - - -, 5.} CC~ is linearly inde-
pendent then s, A\ - - - A9 EX denotes its span. The complex general
linear group acts on X by giniA - - An—g@)A - -+ Aglw);
there the scalars act trivially so the resulting group of transformations
is the complex Lie group

G = GL(n, C)/{al: a;ﬁo} = SL(n, C)/{e2rirln1’}
of complex dimension #2—1. Let {ey, - - -, €.} be a fixed basis of C*

and xo=e&aA - - - Aee&EX our base point. Then the isotropy sub-
group of G at x, is the complex subgroup

P = {g e SL(”, C)Z g% = xo}/{eh:'r/n[}
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of complex dimension k%4 (n—£k)2+nk—1. That exhibits X as a
complex flag manifold? G/P of complex dimension k(n—£k).

Consider the hermitian form (D ?a%e;, D 7 wie;y=— 3 & gim'
+ D%, #%° of signature (k, n—k) on C». The subgroup of GL(%, C)
preserving it is the indefinite unitary group U¥(n). The latter acts
on X as the real group

Go = Uk(n)/{e***I: 6 real} = SUk(n)/{e**irin]}

whose complexification is G. If x&X we associate a triple (a, b, ¢)
where {( , )hasrank a5 on x, with a negative squares and b positive
ones, and a+b-+c==k. The only restrictions are

a+b+c=%k 0=a=k 0=b=n—%k O0=c=min(kn — k).

If yEGo(x) it gives the same triple; if y& X gives the same triple then
Witt's Theorem says y&Go(x). Thus there are precisely 3(I+1)(1+2)
Ge-orbits on X, I=min(k, n—£k), given by

Go(cice - - Cacf+16:+z T cfx(,), 0=s=t=1l=min(k n— k),
where ¢; are the partial Cayley transforms defined by
1 R 1 _
ci(e)) = 3 (e + vV —lerss), cilenss) = 7 (V—1e; + erys),
C.'(ej)= €5 ifi;éj?ék'i"i.

For (Hls.-s. ) (I e<ise &)x0 has “signature” (k—t, t—s, s). A glance
at determinants shows that there are

1 + 1 open orbits Go(cics - - - crx)), O <1<},

just one closed orbit Go(cics - - « ci%o).
More precisely, the closure of Go(cics * - * CaCoyiCors * + * Ci%o) is the
union of all Go(cics + + * CuCZi1C2ys + - + C2%o) such that vy—u <t—s and

t<v. Thus, for example, in the case 1=k <n of complex projective
(n—1)-space (of which the Riemann sphere is the case » =2) there are

* Alternatively one can embed X in complex projective space of dimension (;) —1
by Pliicker coordinates as follows. If xE€X has basis {v;, - - - , e}, say v=D_;alej,
then x goes to the point with homogeneous coordinates given by the determinants of
the () matrices (a1, a2, - -+, a®), 15j1< -+ - <ja<n, where ai=*(g, - - -, q}).
The same embedding is achieved as the closed orbit of the projective representation
of SL(n, C) associated to the kth alternation A*(a) of the usual (vector) representa-
tion « of degree n.
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k=1,n=2

—: open: negative definite lines in C*

+: open: positive definite lines in C*
0: closed: isotropic lines in C»

3 orbits, and in the case 2 =k =n/2 there are 6 orbits, whose boundary
structure is illustrated in the figures.?

k=2,n=4
oo — —: Go(xo) open: negative definite
planes
+ —: Go(c?x0) open: indefinite nonde-
generate planes
+ 4 Go(c3ckxo) open: positive definite
planes
+0: Go(cicixo) intermediate: degen-
erate positive semidefinite planes
—0: Go(eixo) intermediate: degenerate
negative semidefinite planes
00: Go(cicaxo) closed: totally isotropic
planes

Back with the generai complex grassmannian, we note that the
open orbit Go(cic; - - - o) consisting of the k-planes of signature
(k—t, t) has coset space representation U*(n)/Ut(k) X Uk—t(n—F));
so it has a Ge-invariant indefinite-kaehler metric of signature
(t(n—2k), k(n—k) —t(n—2k)) whose volume element will prove use-
ful. Indefiniteness of the metric is related to the existence of compact
subvarieties. Go has maximal compact subgroup

K = {U(k) X U(n — k)}/{e**I:  real}
from the maximal compact subgroup U(k) X U(n—k) CU*(n). Now
K(cios - - - cwo) = {UR)/T@) X% — )} X {U®n — £)/UE — 1)
X U(n — 2k + 1)}

which is the direct product of the complex grassmannians of {-planes
in C* and (k2 —?)-planes in C*—*, Moreover the maximal compact sub-

3 The figure for k=2 is due to A. Kor4nyi.
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varieties of the open orbits are the
g K(cics - - - cmo) C Go(cacs - - - cexe), g € Go.
Furthermore there exist holomorphic fibrations
Ba: Golces - - - ciwo) = K(caes - - - cro)

given as follows. First notice that the intended base space of §8; con-
sists of all mA - - - An: AWt - - - Aw, where u1/\ - - - Atr; is

a subspace of et A + - - Aer and wy A\ - - - Aw; is a subspace of
er1/\ - -+ Aeq. If xEX has signature (k—t, £), its orthogonal projec-
tion toei/\ - - - /\exis a subspace ;A\  + + Ay, and its orthogonal
projection to ex41/\ ¢ - - /\en is some w1 /\ - - - Aw;; by definition

Bi(x) =N - -+ Av—e Awr/\ ¢ ¢ - Aw;: It is not too hard to check

that this defines a holomorphic fibre bundle with total space and base

as mentioned, whose fibre over k(¢ - - - ?xo), k€K, is naturally

isomorphic to the product of open orbits in smaller grassmannians,
negative definite ¢{-planes in a C?¢ of signature (¢, ) and

negative definite (¢ —¢)-planesina C*—?! of signature (¢ —¢,n —k —1t).

One can use the maximal compact subvarieties to check directly
that the complex manifold Go(cic - - - ¢?xo) has nonconstant holo-
morphic functions if, and only if, either =0 or t=k=mn/2. Thus the
closest “approximation” to holomorphic functions on Go(cicj - - - ¢Zxo)
is that of holomorphic sections of holomorphic line bundles B¥*¢
where £—K (3¢ - - - c2xo) is a holomorphic line bundle with nonzero
positive semidefinite Chern class. Look back to the case k=1 of com-
plex projective (n—1)-space. There Go(xo) is the unit ball in C»—1
which carries holomorphic functions, and B, is fibration over the
single point xo. The other open orbit Go(cixo) is the exterior of that
unit ball with a complex projective (n—2)-space K(c3x,) attached;
if n>2 it carries no nonconstant holomorphic functions; 8; projects it
to the polar hyperplane K(cix,) of %o, and eligible bundles 3# £ are the
B#3c9, g=1, where 3¢—K(cxo) is the hyperplane bundle over that
projective space.

We now cut an arbitrary Ge-orbit on X into complex submanifolds
of X. If gEG (resp. gEGo) then g&SL(n, C) (resp. g&SU*(n))
denotes a representing linear transformation of C*». Now define, for
0=<s=<!=min(k, n—k),

G = {gEG:ge.-=e.- and  gerys = s for 1 §i§s},

Gis1,0 = {g E Go: ges =¢; and  Feryi = €y for1 =7 = s}.
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Then
2 2 2
G['](CICZ R G:xo) = G[:](Clcz * ot Cslet1Cay2 * Ctxo)

for s £¢=1, and that manifold is the sub-grassmannian of X consisting of
all (£ —s)-planesin the C*—% with basis {e._,_l, T €kiChpar1, t t c ).
Furthermore

2 2 2 . .
Gia1,0(C162 * * * €aCat1Carz =+~ Ce%o) isopenin Grylecics » - - ¢,x),

and thus is a complex submanifold of X with an invariant indefinite-
kaehler metric of signature

((t — )(n — 25 — 2k), k(n — 25 — k) — (t — 5)(n — 25 — 2k)).

Now the point is that Go(cics - « - CsCopi6oys - + * €i%0) is a union of
submanifolds &+ Ga1,0(c162 * + * CoCoy1Coya * * * Gi%o) With BE K, thatany
two such submanifolds are equal or disjoint, and that any holo-
morphic map of the unit disc into X with image in

2 2 2
Go(c162 * * * CsCat1Capa * * * Ce%o)

must have image in one of those submanifolds. Thus every Ge-orbit
is decomposed into a disjoint union of indefinite-kaehler submanifolds
of X that are maximal among complex submanifolds of X contained
in the orbit. They are the holomorphic arc components of the orbit.
It now follows that every Go-orbit on X is measurable.

Let y=cics - - - CaCoyiCar2 - - - Gi%o. Now every holomorphic arc
component of the arbitrary Go-orbit Go(y)CX is an open orbit
kG a0k~ (ky), REK, on the smaller grassmannian kG (y). Thus it
has a holomorphic fibration

Bay: kG 1e1,0(3) = E(K M Gia1,0)(¥)

over its maximal compact subvariety. It turns out that the B, fit
together in the sense that

if kiGro(y) = k:Grao(y) then Bu)) = Ba,).

The result is a K-equivariant fibration
B: Go(y) — K()

whose fibres coincide with those of its restrictions Bg), and which thus
projects every holomorphic arc component holomorphically to its
maximal compact subvariety. Thus one obtains “generalized Siegel
domain” realizations of Go(y) by fitting together the standard Siegel
domain realizations of the S-fibres.
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Finally, let me describe the expected relation to representation
theory. Let Go(x) CX be a measurable orbit. Consider Go-homogene-
ous complex vector bundles §—Gy(x) that are holomorphic over every
holomorphic arc component of Go(x). Given & we form the cohomol-
ogy groups H?(8) consisting of the §-valued p-forms w on Go(x) such
that w is harmonic and of type (0, ) on every holomorphic arc com-

ponent and
f f ||eo||2dmedt < oo.
KV k-8[z]

Here dus is the (normalized suitably) invariant Radon measure on the
arbitrary holomorphic arc component &S, and dk is Haar measure
on a maximal compact subgroup K of Go. Now the point is to choose
& so that the action of Gy on H?(8) is unitary. The evidence is good
that measurable open orbits give the discrete series of Gy, and the
(necessarily measurable) closed orbit gives the principal series. The
process can be viewed as a specialization of Kostant’s theory of
symplectic manifolds and polarizations ([4]; see [5] for details) that
is set up for semisimple groups. I will go into it in fair detail in [12].

The first third (Chapter I) of this paper represents part of some
joint work I did with Bertram Kostant, and that work influenced the
second third (Chapter II). Also, a result of Masaru Takeuchi [9] is
included in Chapter III for expository reasons. Thus only about 4/5
of this paper is my own work. For that reason there are chapter notes
distributing credit in detail at the ends of the introductions to each of
the three chapters.

CHAPTER 1. DECOMPOSITION OF A COMPLEX FLAG MANIFOLD
INTO REAL GROUP ORBITS

We establish the basic notions for Ge-orbits on a complex flag mani-
fold X =G/P, Goareal form of G, in §2; there the root decompositions
are set up, the number of Ge-orbits is bounded, open orbits are shown
to exist, and dimensions and codimensions of orbits are computed in
such a manner that open orbits are easy to manage. In §3 it is shown
that there is a unique closed Ge-orbit on X, and various properties are
explored for that closed orbit. §4 is the initial assault on open orbits;
the structure of open orbits is worked out in detail sufficient to supply
an enumeration procedure. Open orbits are studied as homogeneous
spaces in §5, where their maximal compact subvarieties are described,
where they are proved to be simply connected, and where their
holomorphic functions are explicitly described. In §6 we study the
existence problem for invariant Radon measures on open orbits and
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find a complete solution. Finally, in §7, the notion of integrable orbit
(which is important for Chapter II and application to group repre-
sentations) is worked out in detail sufficient for an enumeration.

NoTEs FOR CHAPTER l. The results of §2, §3 and §4 were proved in
some conversations between Bertram Kostant and this author. The-
orem 2.6 is essentially the work of Kostant while Theorem 2.12 is due
to this author. The material surrounding Theorem 3.3 is primarily
the work of Kostant; Theorem 3.6 and its corollaries are essentially
due to this author. Theorem 4.5 is due more to Kostant than to this
author, and Theorem 4.9 slightly more to this author than to Kostant.

The results of §5 were worked out by this author. Lemma 5.1 and
Theorem 5.4 are easy in the case where Go/N\P; is compact and our
proof may be viewed as a reduction to that case. Theorem 5.7 had
been suspected by P. A. Griffiths in the case where GoM\P, is compact
and G is simple; he felt that one should be able to join points of Go(x)
by a chain of compact subvarieties under appropriate circumstances;
our proof uses a Lie algebra maximality criterion instead.

Theorem 6.3 and its corollaries were worked out jointly in conversa-
tions between the author and Bertram Kostant. Then Kostant sug-
gested an examination of the case where Gy is complex; that case is
described at the end of §6; it led to this author working out Theorem
6.7 and its corollary.

The notion of integrable orbit was suggested by Bertram Kostant's
work on symplectic homogeneous spaces. Equivalence of (i), (ii) and
(iii) in Theorem 7.2 was worked out jointly in conversations between
the author and Kostant, and perhaps is due mostly to Kostant. The
rest of §7 is due to this author.

The conversations between Bertram Kostant and the author that
resulted in material in Chapter I took place between August 1965
and February 1967.

2. Basic facts on the orbit structure. Let G be a complex semisimple
connected Lie group. G is its Lie algebra. Choose a Cartan subalgebra
3¢ CgG and a system II of simple roots. If ¢ is a root we denote its coeffi-
cients by

o= ;I neo(m) - .
Suppose ® CII. Then the root system A is a disjoint union,
(2.1a) A=dU\J —3s = o*\U — o
where we define ®* =$"Ud* and
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(2.1b) & ={pEArng(r) =0 forall = €Il — &},
(2.1¢) 3¢ = {o € A: ny(x) >0 for some 7r€II—<I>}.
That defines subalgebras

(2.2) @;=5c+§g¢, P =G, Cs=0Cs+ s

Y

of G. ®} is reductive, ®% is unipotent, ®s is their semidirect sum; ®s
is the normalizer of ®3 in G. 3Cs = {hEGC :®(h)=0 } is the center of @%.

2.3. DEFINITION. ®s 7s the parabolic subalgebra of G defined by 3¢,
I and ®. If ® is empty, so ®a=3C~+ D >0 Ge, then ®s is the Borel
subalgebra of G defined by 3C and 11.

It is standard that

(i) the Borel subalgebras of G are just the maximal solvable sub-
algebras,

(ii) the parabolic subalgebras of G are just the subalgebras which
contain Borel subalgebras of G, and

(iii) given 3¢, IT and a conjugacy class (inner automorphisms) {(P}
of parabolic subalgebras of G, there is a unique subset ®CII such
that @: € {@}.

2.4. DEFINITION. A Borel subgroup of G is a maximal complex solv-
able Lie subgroup. A parabolic subgroup of G is a complex Lie subgroup
which contains a Borel subgroup.

It is standard that the following conditions are equivalent for a
complex Lie subgroup LCG:

(i) L is a parabolic subgroup,

(ii) the Lie algebra of L is a parabolic subalgebra of G,

(iii) L is the analytic subgroup of G for a parabolic subalgebra
of G, and

(iv) G/L is compact.

The Borel subgroups are the parabolic subgroups whose Lie algebras
are Borel subalgebras of §. A parabolic subgroup is connected and
equal to its own normalizer in G.

Let PCG be a parabolic subgroup with Lie algebra ®. Then G has
a Cartan subalgebra 3¢C®, and there is a system II of simple roots
and a subset ® CII, such that ® = ®s. Let P and P* denote the respec-
tive analytic subgroups of P for ® =®% and ®*=¢%. Then PrN\ P+
= {1}, so P=Pr. P* semidirect product, and P is the normalizer of
P+ in G.

2.5. DEFINITION. A complex flag manifold is a coset space X =G/ P,
where G is a complex semisimple connected Lie group and P is a para-
bolic subgroup; X is viewed as a complex manifold and G is viewed as a
group of holomorphic transformations of X.
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Let X=G/P be a complex flag manifold. If xEX, say x=gP,
then ad(g) P =gPg'is the isotropy subgroup of G at x. As P is its own
normalizer in G we may identify x with ad(g)P, viewing X as the
space of parabolic subgroups of G conjugate to P. Whether we do that
or not, we often write P, for the parabolic ad(g) P, x =gP, correspond-
ing to x.

Let Go be a real form of G. In other words, G, is the analytic sub-
group for a real form G, of G. 7 denotes complex conjugation of G over
Go, of G over Go; so Gy is the identity component of the fixed point
set of 7 on G.

2.6. THEOREM. Let X =G/P be a complex flag manifold. Let G, be a
real form of G and let T be conjugation of G over G,.

1. If xEX then the isotropy subalgebra Go\®. is a real form of
®,NT®, and contains a Cartan subalgebra of Go. Conversely if 3o is a
Cartan subalgebra of Qo then 3CoCGo M@, for some xEX.

2. Let m be the number of conjugacy classes of Cartan subalgebras of
Go. Let W g denote the Weyl group of G. Then Gy has éml We| orbits
on X.

3. Go has an open orbit on X, and the union of the open Go-orbits is
dense in X.

PRrROOF. GoN@®; is the isotropy subalgebra of G, at x, and G\ @,
= (QuN®)NT(GoN®P2) =GN PNT®2; s0 GNP, is a real form of
®.N7C..

Choose a Borel subalgebra ® C®. of G. Then 8 MN\7® is 7-stable
and contains a Cartan subalgebra of G, so it contains a 7-stable Cartan
subalgebra 3C of G. Now 3¢MGy is a Cartan subalgebra of G, contained
in gof\(]’,.

Let 3¢, be a Cartan subalgebra of G, and let 3¢ =3¢§, Cartan sub-
algebra of . Choose a system II of simple roots and a subset & CII
such that ®s is conjugate to ® in G. Then ®s=®, for some xEX,

and GCOCQOH(P,.
This completes the proof of (1).
Let {5(:1, cee, :;c,,.} represent the conjugacy classes of Cartan

subalgebras of Go. Given 3¢; we have lef systems II of simple
3¢S -roots of G. Given II we have a unique subset ®CII such that
®s =@, for some xE X, and that specifies an orbit Go(x). We have
just described m - I ng orbits of Go on X ; they need not be distinct,
but we must check that every Ge-orbit is one of them. Let zEX.
Then G has a Cartan subalgebra 3¢ CGoMN\®,. We have 1 £4<m and
gEG such that ad(g)3C, = 3¢;; now 3¢;CGo MNPy so we have a IT and
a subset ® CII such that @) = ®Ps; thus Go(2) =Go(x) where @ = ;.
This proves (2).
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Now Gy has only a finite number of orbits on X. Thus some Go-orbit
has full dimension; hence is open, and the union of the lower dimen-
sional Ge-orbits is a closed lower dimensional subset of X. This
proves (3). Q.E.D.

Now the case of compact Gy, which is not new, becomes rather easy:

2.7. COROLLARY. Let X =G/ P be a complex flag manifold. Let G, be a
compact real form of G. Then G, 1s transitive on X, so X =G,/(G,NP),
and the isotropy subgroup G,MNP is the centralizer of a torus. In particu-
lar X is simply connecied, the integral cohomology H*(X ; Z) 1is torsion
free, and HY(X ; Z) =0 for q odd.

ProoF. Let G,(x) be an open orbit. It is closed because G, is com-
pact. Thus G,(x) =X.

Let 3¢, CG.N\® be a Cartan subalgebra of G,, 3¢ =3¢, II a simple
root system, and ® CII, such that ® =®s. 73C, contains the roots so
To=—¢ for every root ¢. Thus 7®N\®=¢", centralizer in § of
3o ={hE3: ®(h)=0}; now ®,=G.N® is a real form of @, cen-
tralizer in G4 of §= {AE3C,: ®(k)=0}. Let .S be the toral subgroup
of G, with Lie algebra 8. Now the centralizer of S in G, is connected
and contains G,MNP, and is the identity component of G,N\P. Thus
G.NP is the centralizer of S; in particular X is simply connected and
it follows from results of Bott-Samelson [1] that H*(X, Z) is torsion
free, nonzero only in even degrees. Q.E.D.

2.8. COROLLARY. Let P1C P, be parabolic subgroups of G so
X:=G/P; are complex flag manifolds. Let w:X1—X, be the natural
G-equivariant fibration. Then the fibre of m is a complex flag manifold
Y=(Py)/Pi\N\(P3)’, and, relative to any coefficient ring, Poincaré
polynomials satisfy

p(Xl’ t) = p(X2, t)p(y’ t)'

PRrOOF. 7 has fibre F=P,/P;. Choose a Cartan subalgebra 3¢C @,
of G, a system II of simple roots, and subsets ®;C®; of II, such that
@®i=@Ps;. Then ®]C®; and @D, so P3 acts trivially and Pj acts
transitively on F. As ®@; contains the center of ®;, the semisimple part
(P3)’ acts transitively on F, and its isotropy subgroup PiN\(P3)’ is a
parabolic subgroup. This realizes F as the complex flag manifold Y.
All three of X;, X, and ¥ now have no integral cohomology in odd
degrees and no torsion in even degrees, so the spectral sequence of 7
is trivial. Q.E.D.

We take a closer look at the Ge-orbits on X =G/P. Let xEX,
choose a Cartan subalgebra 3¢0CGoN®; of G, let 3¢ = 3§, and choose
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a simple root system II and a subset ® such that ®,=®s. Now we
define

(2.9a) ! =rank G, ie. I = dim¢ 3¢ = dimg 3C,,
(2.9b) r = number of positive roots of G,
(2.9¢) rs = number of positive roots of (P;.

Then dim¢ G=14+2r, dim¢ ®" =1+27rs, dim¢ P*=r—rs, dimg @ =1
+7+4+rs and dime X =7 —7s.

2.10. LEMMA. ®@,N\7®, is the semidirect sum of the reductive algebra
(@.NT®,)" given by

(2.11a) PeN1P: =3+ 2 Go

"nrd"

with the nilpotent ideal (®,N7®,)* given by

(@3 N 703) + (®s N 7@3) + (P8 N 703)

(2.11b) ={ S+ Y +X }(9.).

[ oVl 2 ¥Are” [ 2ot 2
In particular
dimz(Go N @) = dime(®, N 7@,) = dime ®s + | @ N 7@ .

PRrOOF. ®@,MN7®, is the sum of JC and certain Gy, with Gy in the reduc-
tive part (resp. nilpotent ideal) if and only if G_, also occurs (resp.
does not occur) in ®,N\7®,. Thus (®.MN7®;)" is the sum of 3¢ and

Ge: both ¢ and —¢ are in <I>*f\f<1>*}, i.e. the sum of 3¢ and

Ge: oED" N7}, as asserted, and (®,N7®,)* is the sum of all G,
for o&EP*N7®* but eGP NP, ie. @& (@ NrdP*)U(@*N7rd")
U (@*MrdP*) as asserted.

Now dime(®: N 7®,) =1+ | & N7d7| + |@r N 7d¥| + [+ N 70|
+|®*Nr®+|. But dime @p=I+|®"| =14|®Nrdr| +|BrNrdy|
+|®' N —7®¥|, and ®*Nrdr= —7(@ N —7d*) implies | N —rd|
=|®*Nr®r|. Thus dime(®,N7@,) —dime ®p=|®*Nrd*|. Q.E.D.

2.12. THEOREM. Let X =G/P be a complex flag manifold, x&X and
P,=Ps as above. Then

(1) dlma X=7—'T<p,

(ii) |<I’“f\1<1>"| s the real codimension of the orbit Go(x) in X, and

(iii) Go(x) is open in X if and only if D*MNrdP* is empty.
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Proor. (i) was noted as an immediate consequence of the defini-
tions of 7 and 7s.
For (ii) we calculate

codimg Go(x) = dimg X — dimg Go(x)
= 2 dim¢ X — {dimg G, — dimz Go N P,}
= (2r—2r8) — {1+ 2r) — (0 + 2ra + | D* N 7d¥| )}
= | e N 7d|.

For (ii) we note that Go(x) is open in X if and only if codimz Go(x)
=0. Q.E.D.

Now the orbit Go(x) has real dimension 2(r—rs)— I o«NP|,
maximized as 2(r —rs) for the open orbits, minimized for a closed orbit.

3. The closed orbit. Let x& X. Then either Go(x) is closed in X
or its topological boundary is a nonempty union of lower dimensional
orbits. Thus any Gg-orbit of minimal dimension is closed.

Let Go(x) be a closed orbit. In other words Go/(Go/N\P;) is compact.
Thus there is a maximal compact subgroup K CG, and an Iwasawa
decomposition Go=KA N, such that AN is contained in the isotropy
subgroup (P;N7P.)o=GoNP;, of Gy at x. Extend 4 to a Cartan sub-
group Hy=TXA of Gy, where TCK is a maximal torus of the cen-
tralizer M of A in K. Then M AN is a minimal parabolic subgroup of
Go and (P.N7P,), contains TAN. We have proved

3.1. LEMMA. Go(x) s a closed Go-orbit in X if and only if there is an
Twasawa decomposition Go=KAN, the corresponding minimal para-
bolic subgroup MAN of Go, and a maximal torus T of M, such that
TANCGNP,.

Now suppose that P is a Borel subgroup of Gq, so ®,MN\7®; is solv-
able. Let 3¢=3c5 and let ¢ be an 3C-root. First suppose ¢(@) 0.
1If G, 9° then G_o C N, s0 Go . ®.MN7®, because the latter is solvable.
Now suppose ¢(@) =0 so G, CIM°®. If G C®.N7®, then §_oCC,NTE®,
because M is compact, contradicting solvability of ®@.MN\7®,. We have
proved

3.2. LEMMA. Let X =G/B where B is a Borel subgroup. Let Go(x) be
a closed orbit. Then there is an Iwasawa decomposition Go=KAN,
the corresponding minimal parabolic subgroup MAN of Go, and a maxi-
mal torus T of M, such that GoN\®, =3+ @+ IN.

Now we can prove uniqueness.
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3.3. THEOREM. Let X =G/P be a complex flag manifold, Gy a real
form of G. Then there is a unique closed Go-orbit on X.

ProoF. Let BCP be a Borel subgroup of G and let Y=G/B be the
corresponding complex flag manifold. We have the natural projection
w: Y—X with compact fibres. Let x € X. Then #~!Go(x) is a union of
Go-orbits on Y. If Go(x) is closed, hence compact, then #~'Go(x) is
closed, so 7~'Go(x) contains a closed Ge-orbit in Y. If Go(x;) and
Go(xs) are distinct closed Go-orbits on X, now their respective inverse
images contain distinct closed Go-orbits on Y. Thus we need only
prove our uniqueness assertion on Y. In other words the proof is re-
duced to the case where P is a Borel subgroup of G.

Now P is a Borel subgroup of G. Fix an Iwasawa decomposition
Go=KAN, the corresponding minimal parabolic subgroup MAN of
Gy, and a maximal torus T of M. If Go(x) is closed then we have other
choices Go=K'A’'N’', M'A'N’ and T'CM’, such that gN\@.,=3
+ @'+ 9. Any two Iwasawa decompositions of G, are conjugate.
So we have g&Go such that ad(g) sends K’ to K, 4’ to A and N’ to N.
Automatically ad(g) M’ = M. Any two maximal tori of M are conju-
gate, and M normalizes both 4 and N; thus we may also assume
ad(g)T’=T. Replacing x by g(x), the orbit Go(x)=Go(gx) is not
changed, and we may assume Gy \®,=3+ @+9. Now the Borel
subalgebra ®,= £+ @°+ 9N where, for some ordering, £ is the sum
of 3° with the positive 3%-root spaces of 9. Conjugating further by
an element g& M C Gy we may assume that ordering to be a given one.

Let Go(x1) and Go(x2) be closed orbits on X. We have just seen that
x; can be replaced within Go(x:) so that @,,=£+G°+%N° in the
notation above, i.e. so that @, = ®,, i.e. so that x;=x.. Thus Go(x1)
=Go(x2). Q.E.D.

An immediate consequence is

3.4. COROLLARY. Let X =G/P be a complex flag manifold, xEX,
and G a real form of G. Then the following conditions are equivalent:

(i) Go(x) is the unique closed Go-orbit.

(ii) Go(x) is contained in the closure of every Go-orbit on X.

(iii) Go(x) s contained in every Go-stable closed subset of X.

(iv) Some maximal compact subgroup of G is transitive on Go(x).

(v) Every maximal compact subgroup of Gy is transitive on Go(x).

(vi) Go(x) is the lowest-dimensional Go-orbit on X.

Proor. Equivalence of (i), (ii), (iii) and (vi) follows from unique-
ness of the closed orbit and the fact that it is on the boundary of every
nonclosed orbit. Trivially (v) implies (iv) and (iv) implies (i), so we
need only check that (i) implies (v). Choose a Borel subgroup BCP
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of G,let Y=G/B and let 7: Y—X be the projection. Go(x) is closed, so
7-1Go(x) is closed, so m~'Go(x) contains a closed orbit Go(y). In the
notation of the lemmas, ®,MNGy=3+G+ N where Go=KAN. Let
K’ be any maximal compact subgroup of Go. Then K’'MAN = {1 }, so

dim Go(y) = dim K'(y) = dim K’ — dim(K' YT AN)
2dmK —dm 7T =dmK —dim T
= dim K(y) = dim K/T = dim Go/TAN
= dim Go(y),

proving K'(y) =Go(y). Now Go(x) =7Go(y) =7 K'(y) =K'(x). Q.E.D.
We just made implicit use of the obvious consequence of uniqueness
of the closed orbit:

3.5. COROLLARY. Let PyC P, be parabolic subgroups of G, X;=G/P;
the resulting complex flag manifolds, and w: X1— X, the natural projec-
tion. Let Go be a real form of G, x;EX; such that Go(x;) is the closed
orbit on X;. Then

1rGo(x1) = Go(xz) and Go(xl) C W‘lGo(xz).
Now we count dimensions, proving

3.6. THEOREM. Let X =G/ P be a complex flag manifold, xEX, Go a
real form of G, and ®,= ®s relative to a simple root system on a 7-stable
Cartan subalgebra 3 C @, of G.

1. dimg Go(x) =dime X { =% dimg X}.

2. The following conditions are equivalent:

(2a) dimg Go(x) =dim¢ X.

(2b) 7P+ =P~

(2c) 7@, =@, t.e. TP,=P,, i.e. viewing G as a linear algebraic
group defined/R such that Gy is the topological identity component of the
subgroup G of real points, the algebraic subgroup P, of G is def/R.

(2d) Go(x) is the closed orbit; with G def/R as in (2c), some conju-
gate of P is def/R.

(2e) X is a complex projective variety def/R in such a manner that
Go(x) 1is the set X of real points.

PROOF. dimz Go(x) =2(r —rs) — | ®*MN1d¥| Z2(r—rs) — |®"| =7 —1s
=dime X, with equality if and only if ®*=7®*, This proves (1) and
gives equivalence of (2a) and (2b). 7®*=®* if and only if 76; =%
because 73¢=3C, 7®% =% if and only if 7®s = ®s because ®s (resp.
7®3) is the normalizer of ®% (resp. 7®%) in G; this gives equivalence
of (2b) and (2c¢).
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(1), the characterization of the closed orbit as the orbit of lowest
dimension, and equivalence of (2a) and (2c), show that (2c) implies
(2d). Conversely let Go(x) be closed and some P, def/R; then
dimg Go(2) =dime X, so Go(2) is a lowest dimensional orbit, so Go(x)
=Go(2) and we have (2a). Thus (2c) and (2d) are equivalent.

(2e) implies (2a), thus (2c). Conversely assume (2c). Then the
projective variety X is def/R and Go(x) is a topological component
of Xg. But Xg is a finite union of topological components X, G is
transitive on each X, each X§ is closed in X, and there is just one
closed Go-orbit. Now there is just one X2, so Go(x) = X and we have
(2e). Thus (2c) and (2e) are equivalent. Q.E.D.

We reformulate condition (2c) of Theorem 3.6 in terms of the action
of the Galois group of C over R on a simple root system.

3.7. COROLLARY. Let X =G/P be a complex flag manifold, xEX,
Go a real form of G, 3C®; a 7-stable Cartan subalgebra of G, and Il a
simple root system such that ®,=®s for some ®CIL. Define v=w-r
where w is an element of the Weyl group which sends v(II) back to II.
Then dimg Go(x) =dime(X) if and only if

@) = and

(ii) there is a minimal parabolic subgroup MAN CGy such that
M+ @°+ 9 = Py with ¥ CO.

PROOF. {1, v} is the action of the Galois group of C over R on the
simple root system II, and (ii) is the statement that ®,/N\G, contains
a minimal parabolic subalgebra of Go. Now (i) and (ii) just say that
T0.=0,. Q.E.D.

We reformulate condition (2e) of Theorem 3.6 in terms of linear
representations. To do that we order the weights by I and say that a
positive weight \ belongs to the subset ® CILif &= {oEIL: (\, 0)=0 }.
If N\ is a positive weight then m\ is the corresponding irreducible
C-linear representation of G, V? is the representation space, and o
denotes an arbitrary nonzero highest weight vector. We have the
usual map p: V*—proj(V*) onto the complex projective space deter-
mined by V?, and #\, denotes the projective representation of G on
proj(V*) determined by these data. If A belongs to ® we note that
P = {hEg: (k) (») is a multiple of 9}, so X =G/Ps is realized asa
subvariety of proj(V?*) which is an orbit, X = % (G)(pv))-

3.8. COROLLARY. Let X =G/P be a complex flag manifold, xEX,
Go a real form of G, 3C @, a 7-stable Cartan subalgebra of G, and I a
simple root system such that ®,= ®q for some ® CIl. Then dimg Go(x)
=dime X if and only if there is a positive weight N which belongs to ®,
such that
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(i) V* has a m\(So)-stable real form Vx and

(i) Vk contains a nonzero highest weight vector v,.

In that case, identifying X = \(G)(pvy), the set of real points of X
is given by

Xg = X N p(VR) = #(Go)(pm).
We specialize Theorem 3.6 to hermitian symmetric spaces.

3.9. CorROLLARY. Let X=G/P=G,/K be a hermitian symmetric
space of compact type, let Xo=Go/K be the dual bounded symmetric
domain, take the Borel embedding XoC X given by Xo=Go(xo) where
P=P, and K=Goy\P=G,NP. Let S be the Bergman-Silov boundary
of Xoin X. Then S is the unique closed Go-orbit on X and is contained
in the closure of every Go-orbit. Let xS and let cEG, be the Cayley
transform (Kordnyi-Wolf [2]) carrying x, to x. Then the following condi-
tions are equivalent.

(i) dimg S=dime X.

(ii) Xo is a tube domain.

(iii) Viewing G def/R with Gy as the identity component of Gr we
have ad(c) P defined over R.

(iv) X is a complex projective variety defined over R in such a manner
that $=Xg.

ProoF. It is known [2] that  is the unique closed Go-orbit on the
topological boundary of X, in X. Thus § is the unique closed G-
orbit on X.

Equivalence of (i), (iii) and (iv) is given by Theorem 3.6; equiva-
lence of (i) and (ii) is given in [2]. Q.E.D.

In view of Corollary 3.9 one might hope to prove that the closed
orbit is always the Bergman-Silov boundary of an open orbit. But
this is far from the case; Theorem 5.7 will show us that most open
orbits do not have any nonconstant holomorphic functions.

In order to specialize Theorem 3.6 to the case where P is a Borel
subgroup of G we have to be able to recognize the cases in which g
has a Borel subalgebra ® stable under 7. That is the case in which G
(resp. Go) is a “Steinberg normal real form” of G (resp. of G).

Recall that G, (resp. Go) is called the Cartan normal real form or
normal real form of G (resp. G) when the following equivalent condi-
tions hold.

(3.10a) G has a Cartan subgroup H, that is split/R, i.e. that is a real
vector group, i.e. such that the 3C5-roots of G take real values on 3C,.

(3.10b) If K is a maximal compact subgroup of G then the symmelric
space rank of Go/K is equal to the Lie group rank of G,.
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(3.10c) Qo is a direct sum of simple algebras from the list:

type A,: Lie algebra of SL(» 4+ 1, R)

type B,: Lie algebra of SO*(2n + 1) = SO(n, » + 1)

type Cn: Lie algebra of Sp(», R)

type D,: Lie algebra of SO*(21n) = SO(%, n)

type G:: maximal compactly embedded subalgebra 4, @ 4,
type Fs: maximal compactly embedded subalgebra 4, & C;
type E¢: maximal compactly embedded subalgebra Cy

type E;: maximal compactly embedded subalgebra 4,

type Eg: maximal compactly embedded subalgebra Ds

The Cartan normal real form of G is a Steinberg normal real form. For
if H§ is an R-split Cartan subgroup of G, and A+ is a positive 3C§-root
system of G, then r¢=¢ for every root, so =35+ >, s+G is a
7-stable Borel subalgebra of g.

Let ¢ be a Cartan involution of Gy and Gp= X+ 9 the Cartan de-
composition. Let 3Co=3Cr+ 3y be a g-stable Cartan subalgebra of
Go, let 3¢ =3c5, choose a system A+ of positive 3C-roots of G, and let
® =3+ X s+ Gy. If 78 =@ then we have hEi3er+3Cy such that

{o € A: o(B) > 0} = A+ = {p € A: o(vh) > 0}.
Then h=hr+hy, 7(h) = —hr+hy, such that
A+ = {p € A*: o(hy) > 0}.

In other words 3Cy contains a regular element of G, and thus 3¢ is a
maximally split Cartan subalgebra of G,. Conversely, if 3¢y contains
a regular element of G, that element defines a 7-stable positive root
system At for which 7® =@®.

Now we can say that Gy (resp. Go) is a Steinberg normal real form
of G (resp. of G) if and only if the following equivalent conditions
hold. There 3¢y =34 @ is a maximally split Cartan subalgebra of G,.

(3.11a) G has a Borel subalgebra ® with 7® =®.

(3.11b) @ contains a regular element of G.

(3.11c) Every 3C5-root has nonzero restriction to Q.

(3.11d) Let K be a maximal compact subgroup of Go and let $ be the
Satake diagram of the symmetric space Go/K. Then $ has mo black
vertices and X contains no simple ideal of Go.

(3.11e) Go 7s a direct sum of simple algebras from the list:
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any type:  complex simple Lie algebra

any type:  Cartan normal real form

type Asn_y: Lie algebra of SU(2n) = SU(n, n)

type D,:  Lie algebra of SO 1(2n) = SO(n — 1, n 4 1)
type E¢:  maximal compactly embedded subalgebra A4, @ As

Summarizing, we have the following special case of Theorem 3.6.

3.12. CoROLLARY. Let X =G/B, complex flag manifold where B is a
Borel subgroup of G. Let xS X and Gy a real form of G, such that Go(x)
15 the closed orbit on X. Then the following conditions are equivalent:

(i) dimg Go(x) =dim¢ X.

(ii) G s a Steinberg mormal real form of G.

(iii) Go satisfies (3.11e) above.

4. Open orbits: construction, covering and counting. We work
with a complex flag manifold X =G/P, a point xEX, a real form G,
of G, conjugation 7 of G over Gy, a 7-stable Cartan subalgebra 3 C®,
of G, and a system II of simple roots such that @, =®s for some & CII.
Theorem 2.12 says that Go(x) is an open Ge-orbit on X if and only if
®*MNrP* is empty.

4.1. LEMMA. Let 3¢ be a Cartan subalgebra of Go. Choose a maximal
compact subgroup K of Go, and take the Cartan decomposition G
=X+, such that

(4.2) 3¢y = 3Cr + v, Lr =38, NK, Iy = 3o M I,

decomposition of 3Co into toral and vector parts. Then the following condi-
tions are equivalent:

(i) 3Cr is a Cartan subalgebra of XK.

(ii) 3Cr comtains a regular element of G.

(iii) 7 sends some Weyl chamber of 3C to its negative.

(iv) There is a system At of positive 3C5-roots, A== —A+, such that
TAT=A",

ProoF. (i) implies (ii) because & contains a regular element of G.
Let hoE3Cr be a regular element of G. Then 3¢, is the centralizer of &,
in Gy, so 3Cr is its own centralizer in &; this shows that (ii) implies (i).

(iii) and (iv) are equivalent; for if DC73Cr+ 3y is a Weyl chamber
and A+= {¢EA: ¢>0 on D} is the corresponding positive root sys-
tem, then 7(D) = — D if and only if 7(A+) =A—.

(i) implies (iv); for if k& 3y is a regular element we have 7(zh,)
= —1iho and {¢€A: ©(iho) >0} is a positive root system. Conversely
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if 3¢y contains no regular element we have a root ¢ such that ¢(3Cr)
=0. Then ¢E Xy, so 7(p) =¢, and TAt*=A" is impossible for every
positive root system. Thus (iv) implies (i). Q.E.D.

4.3. DEFINITION. A Cartan subalgebra 3o CGo ts maximally compact
if it satisfies the conditions of Lemma 4.1, is compact if moreover
J3Co=3Cr in Lemma 4.1, i.e. if rank K =rank G,.

4.4. LEMMA. Any two maximally compact Cartan subalgebras of Go
are conjugate.

ProoF. Let 3o and 3¢y be maximally compact Cartan subalgebras
of Go. We have maximal compact subgroups K, K'CG,, Cartan
decompositions X+ IM=Gp= XK'+ IM’, and expressions 3¢y =Jr+3y
and 3¢, = 3Cr+3Cy as in (4.2). By hypothesis 3¢r is a Cartan subalgebra
of X and 3¢7 is a Cartan subalgebra of &'.

Gy has an element g such that ad(g) X’ = &, so we may replace 3¢¢
by its conjugate ad(g)3¢/ and assume X =X’. K has an element &
such that ad(k)3Cr = 3Cr, so we may further replace 3¢/ by its conju-
gate ad(k)3¢{ and assume ICr=3C7r. Now ICo=3Cr+ 3y and 3¢
= JCr+3C%. Let ho&E 3y be a regular element of G. Then 3Co= £ =3C¢
where £ is the centralizer of & in Go. Q.E.D.

4.5. THEOREM. Let X =G/P be a complex flag manifold, xS X and
Gy a real form of G. Then the orbit Go(x) is open in X if and only if
there exist

(1) a maximally compact Cartan subalgebra 3¢oCGo NP, of Go, and

(ii) a system I1 of simple 3CS-roots such that TA*=A~ and @,=Cs
for some ®CII.

If PyC P, are parabolic subgroups of G, X;=G/P; the resulting com-
plex flag manifolds, x;&EX; and w: X1—X, the natural projection, then

(1) of Go(x1) s an open orbit on X1 then w(Go(%1)) =Go(mwx1) s an
open orbit on X,, and

(2) if Go(x2) is an open orbit on X then w—1(Go(x2)) contains an open
Go-orbit on X,;.

Proor. We first prove the assertions on 7: X1—X,. If Go(x2) is
open in X, then 7#~!(Go(x2)) is open in X; because 7 is continuous.
As Gy commutes with m, 7~1(Go(x2)) is a (necessarily finite) union of
Goe-orbits, so it contains an orbit of full dimension in X;; that orbit
is necessarily open. This proves assertion (2). If Go(x;) is open in X;
then 7 (Go(x1)) = Go(mx,) is open in X, because 7 is an open map. This
proves assertion (1).

Suppose for the moment that P is a Borel subgroup of G and let
3 C ®, be a 7-stable Cartan subalgebra of G. There is just one simple
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root system II such that @,=®s with ®CII; ® is empty and II is
characterized by ®*=A*. If G¢(x) is open, so ®*MNrd* is empty by
Theorem 2.12, then we have 1A+ =A—, and 3Co=3CM\G, is a maximally
compact Cartan subalgebra of Gy by Lemma 4.1. Conversely, if
3o=3CMNGo is maximally compact and 7A+=A-, then ®*MN7P* is
empty, so Go(x) is open in X by Theorem 2.12. The first statement is
proved for the case where P is a Borel subgroup of G.

Now in general choose a Borel subgroup BCP of G, let Y=G/B
be the complex flag manifold, and let 7: Y—X be the natural projec-
tion. First suppose Go(x) open in X. Then assertion (2), which was
already proved, provides an element y&w—!(x) such that Go(y) is
open in Y. Note ®, C®,. Choose a 7-stable Cartan subalgebra 3¢ C®,
of G and the simple root system Il such that 8, = ®¢, ® empty. As was
seen, JC,=3CMG, is a maximally compact Cartan subalgebra of G,
and TA*=A-, because Go(y) is open in Y. Now ®,=®y for some
V¥ CII because ®, C®,. Thus we have (i) and (ii). Conversely suppose
that there is a maximally compact Cartan subalgebra 3¢, C®, of G,
a system II of simple 3Cg-roots such that 7A*=A-, and a subset
V¥ C1II such that @, =®¢. 7A* =A~ says that AtMrA+ is empty. ¥ CII
says that ¥*CA*, so now ¥* \r¥* is empty. Theorem 2.12 now
implies that Go(x) is open in X. Q.E.D.

Now we set out to construct and count the open Ge-orbits on
X =G/P. To do this we choose a Borel subgroup BCP and let
7w: Y—X be the projection, ¥ =G/B. First we construct and count the
open Ge-orbits on Y, and then we carry the result down to X.

4.6. THEOREM. Let Y=G/B, complex flag manifold where B is a
Borel subgroup of G. Let Gy be a real form of G and choose a maximally
compact Cartan subalgebra 3Co=3Cr+3Cy of Go. Let {5)1, e, :D,,,} be
the chambers in i3Cp cut out* by the 3¢5-roots of G, and let Wk denote the
Weyl group of K for the Cartan subalgebra 3Cr of XK.

1. Let 1 Sa=m, choose ho© D, let I, be the system of simple 3CG-
roots of G for the positive root system AF={pCA: o(hy)>0 }, let
Be =35+ ZA: Go be the corresponding Borel subalgebra of G and let
¥« E Y be the element such that ®,, = ®.. Then the open Go-orbits on ¥
are just the Go(¥a), and Go(¥.) =Go(ys) if and only if some element of
Wk sends D. to Dg.

2. Wk acts simply on {3)1, ce e, Dal.

4 Given a root ¢, {hEi3Cr:p(h) =0} is a subspace of codimension =1 in #3Cr. The
union of these subspaces, as ¢ ranges over the root system 4, is the intersection of
13Cr with the “diagram” in 23Cr+JCy. The D, are the components of the complement
of this intersection in #3Cr, i.e. of the set of regular elements of G contained in #3Cz.
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3. There are precisely m/ | Wx[ distinct open Go-orbits on Y.

Proor. Let Go(y) be an open orbit on Y. Theorem 4.5(i) gives us
a maximally compact Cartan subalgebra 3¢y C®, of G and Lemma
4.4 gives us an element g&EG, such that ad(g)3¢J =3Co. Replacing y
by g(y), Go(y) is not changed but we may assume 3¢ C®,. Theorem
4.5(i1) provides a simple root system II, and the corresponding system
A+ of positive roots, such that 7A+=A— and ®, =35+ D _a* Ge. Let
hE13r+3Cy be a regular element such that A+= {¢EA: ga(h)>0}.
Decompose & =hr+hy, hrEi3Cr and by E 3y, so p(h) = (hr) +o(hy)
and (r@)(h) =¢(th) = —p(hr) +¢(hy) for ¢ EA. Now let ¢ &SA+ and
use TAt=A"; so o(hr)+o(hv) >0> —¢(hr)+¢(hy), which implies
@(hr) >0. Thus At=AF, s0 ®y=®.,, SO ¥ =9, 50 Go(¥) =Go(¥a), for
the index & with kr & D,. This proves that every open Ge-orbit on ¥
is one of the Go(y.). Conversely, 7(ha) = — ha, which implies 7AF =4,
s0 Go(¥.) is an open orbit.

Let wE Wk send D, to Dg. Represent w=ad(k)| 5§, kK. Now
ad(k)B.=@®p, i.e. k(ya) =, 50 Go(¥s) =Go(kya) = (Gok) (¥a) = Go(¥a).
Conversely suppose Go(¥o) =Go(¥8), so g(¥.) =ys for some g&G,.
3¢y is both the centralizer of y, in Gy and the centralizer of y5 in Go;
now ad(g)3Co=3Co and ad(g)®. = ®s. Thus g represents an element w
of the Weyl group Wy, of G, relative to 3Co, such that w(D.) = Dp.
The analytic subgroup for 3¢, in G, has finite index in its normalizer,
for the latter is algebraic and thus has only finitely many components.
It follows that g=F%v where REK represents w and vEexp(3Cy). In
other words w& Wx. We have proved that Go(y.) = Go(s) if and only
if an element of Wk sends D, to Ds.

Let w& Wk such that w(D,) = Da. As WgCWg, we have we& W.
Da=DMN3r for some Weyl chamber DC:3r+3Cy; as D, is non-
empty now w(D)=9D. That says w=1. Now Wx acts simply on
{Dy, -+ -, Dm}.

Now we can count the open Gop-orbits. They are the Go(y.),
1<a<m, and the action of Wx partitions them into sets of | Wx]|
elements under the relation of Wk-equivalence. Thus there are
m/| le distinct open orbits. Q.E.D.

If rank K =rank G,, i.e. if 3Cy is a compact Cartan subalgebra of G,
in the notation of Theorem 4.6, then 3¢, = 3Cr and the D, are the Weyl
chambers. Then the number m of D, is the order | Wg| of the Weyl
group of G, so part 3 of Theorem 4.6 reduces to

4.7. COROLLARY. Let Y=G/B, complex flag manifold where B is a
Borel subgroup of G. Let G be a real form of G whose maximal compact
subgroup K satisfies rank K =rank G, Then there are precisely
| Wa| /| Wk| distinct open Go-orbits on Y.
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On the other hand, if rank K <rank G,, there may be Weyl cham-
bers in 23Cr+3Cy which do not meet 723Cr, so the number of D, may
be less than | ng . For example, if G=SL(3, C) and Go,=SL(3, R),
then | Wg| =6, so there are 6 Weyl chambers, but 4 of them are not
sent to their negatives by 7; thus m=2, ] Wx[ = | Wso<s)| =2, and
so there is just one open Go-orbit on G/B. This trick for finding m
works in general:

4.8. COROLLARY. Let Y=G/B, complex flag manifold where B is a
Borel subgroup of G. Let Gy be a real form of G, let K be a maximal com-
pact subgroup of G, let o denote the involutive automorphism of Go with
fixed point set K, and let 3¢y =3Cr-+3Cy be a maximally compact Cartan
subalgebra of Go such that 3¢rC XK. Define

Weaq: Weyl group of G for the Cartan subalgebra GCs,
Wk: Weyl group of K for the Cartan subalgebra 3Cr,

%
We' {w € We: w(3Co) = 3Co}, subgroup of We.

Then W& is simply transitive on the set of Weyl chambers which meet
i3 (i.e. which are sent to their negatives by v), W& is the centralizer of
o| seryser in W, and Go has precisely | W /| Wx| distinct open orbits
onY.

Proor. Let D be a Weyl chamber which meets 73y, i.e. such that
7D = —9D. Note that ¢ = —7 on the ambient space 73¢r+3Cy of the
Weyl chambers. Let w& Wge and notice —w(D) =w(TD), so 7(wD)
= —w® if and only if wD =7"wrD, i.e. if and only if wr =7w, i.e. if
and only if wo =0w, i.e. if and only if w preserves 73¢r and 3Cy, i.e. if
and only if wEW¥. Now our assertions follow from part 3 of The-
orem 4.6. Q.E.D.

Now we push Theorem 4.6 down to a general complex flag manifold.

4.9. THEOREM. Let X =G/P be a complex flag manifold, let BC P
be a Borel subgroup of G, let Y=G/B, and let m: Y—X be the natural
projection. Let G, be a real form of G, let x&X such that Go(x) is open
in X, and let 38, C GNP, be a maximally compact Cartan subalgebra of
Go. Decompose ®, = @+ 0% relative to 3¢ = 3¢5 and define @7 = E..q," Go.

1. Let yEn~Y(x). Then Go(y) is open in Y if and only if B,=®’
+ (@ NT®;%)+ 0% where ®' 1is a Borel subalgebra of C,N\TE®
= (®,Nr®,)" such that B’ Nr®' =3C.

2. The open Go-orbits in Y which lie over Go(x) are in one to one cor-
respondence with the open (PyM\rPy)-orbits on (PyM\rPy)/(Borel).

3. The open Go-orbits on X are enumerated by the elements of the
double coset space We\Wg&°/ W,‘!c;g,p;.
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ProoF. Let yEnr—1(x) with Go(y) open in Y. We may assume
3 C®,. Then ®, =®"+CL =35+ D_as Go where A+ is a positive root
system such that ®*CA+ and 7A+t=A—, and where ®'’ is a Borel sub-
algebra of @;. Decompose @ as the sum of (®;N\7®;), (PN7@;) and
@:Nre; ). $*CA+ and 7A+=A- imply 7P*CA-, so ®"'=@®’
+(®;N\7®; %) where ®" is a Borel subalgebra of ®;N\7¢,. Now
7A+=A- implies ®'N7®’' = 3C.

Conversely let yEr—1(x) with ®, =®'+ (€. N\r®; %)+ @; where &’
is a Borel subalgebra of ®;N\7®; such that ®’Nr®'=3C. Then
®,Nr®, =13C, so Go(y) is open in ¥. This completes the proof of (1).

The number of distinct Borel subalgebras ®'+ (®;N\7®; %)+ @2,
®' CP,N\r@; Borel subalgebra, 8’ Nr®’ =3¢, is the number of cham-
bers cut out on 3¢y by the 3C-roots of N7, = (®.N7®,)". Now, as
in Theorem 4.6(3), the number of open Gg-orbits on ¥ over Go(x) is
the number of open (P, P;)-orbits on (P P,)/(Borel).

Finally we count the open Gy-orbits on X. Corollary 4.8 identifies
the coset space Wx\W " with the open Gg-orbits on Y as follows.
Choose a Weyl chamber DC23Cr+3Cy such that 71D = —D. Then all
other such Weyl chambers are given by the w(D), wE W§*; and the
Borel subalgebras specified by w;(D) and ws(D), w;E W, give the
same open Gye-orbit if and only if w;, =wgw; for some wxg & Wk. On the
other hand, if D specifies one of the &'+ (*"N7®;*)+@; of (1), all
other such D are given by the w(D), w& Wp:,pr; this follows from
(1) and Corollary 4.8. Now (3) follows. Q.E.D.

5. Open orbits: coset space structure and holomorphic functions.
In order to study open orbits as coset spaces of the real group, and
in order to study holomorphic functions on open orbits, we need a
remark on compact subvarieties:

5.1. LEMMA. Let X =G/P be a complex flag manifold, Go a real form
of G, xEX, such that Go(x) is open in X, and K a maximal compact
subgroup of Go such that GoN\®, contains a maximally compact Cartan
subalgebra 3Co=3Cr=+3Cy of Go with 3rCX. Then K(x) is a compact
complex submanifold of Go(x).

Proor. Let BCP be a Borel subgroup of G, let Y=G/B and
m: Y—X the natural projection, and choose y&#—(x) such that Go(y)
is open in Y and 3Co=®,N7®,. Now 7 (K (y)) =K (x), and both K(y)
and K(x) are compact real submanifolds. If K(y) is a complex sub-
manifold of Go(y), then its every tangent space K (¥)x(, is stable under
the almost complex structure operator on Y, so K(x)r) is also stable
for all k€K, proving that K(x) is a complex submanifold of X. Now
the lemma is reduced to the case where P is a Borel subgroup of G.
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Let P be a Borel subgroup. Then ®,N\7®,=3C; because Go(x) is
open in X. At x the (/—1)-eigenspace of the almost complex struc-
ture is the holomorphic tangent space Y a* G_s, and the (—+/=1)-
eigenspace is the antiholomorphic tangent space Y a* Gy, where @,
=305+ ZA*' Ge. Now choose o E43Fsuch that A+ = {¢€A 2o(ho) >0 } .
Decompose X =3Cr+F where § is the orthocomplement under the
Killing form of %. Now ° is the sum of the 3¢®r-root spaces on %,
§° gives the complexified tangent space to K(x) at x, and ° is the sum
of its intersections with the holomorphic and antiholomorphic tangent
spaces. It follows (look at &) that the real tangent space to K(x) at x,
represented by &, is stable under the almost complex structure. Thus
K (x) is a complex submanifold. Q.E.D.

To describe open orbits as coset spaces we need some notation. Let
X =G/P be a complex flag manifold, Gy a real form of G, x€X, and
3¢ C ®, a 7-stable Cartan subalgebra of G. For a subset ® of a simple
3C-root system II we have ®,=®s. Write @, for ®3 and @} for @®%.
Recall, from Lemma 2.10, that ®,N\r®, is the semidirect sum
(@M@ + (®NTPY)* where (®,NTC,)" =, N\7®; and (®.N7®,)%
= (®N7e%) + (CoNT0L) +(CeNT@Y). We define real forms of
(@.N7®;), (®.N1®,)" and (®.N7®,)* in the obvious manner, by

(5.2a) (®: N\ 7®)e = (P N 7®z) M Gy, real form of @, N 7@,;
(5.2b) (®, N T(Pz); = (0): N T(P;) MG, real formof (®,N T(P,)';
(@M 10)s = {(@ N 762 + (@2 N @)} NG

+ (@ N\ 7®2) N Gy, real form of (@, N 7¢,)".

Thus (®.N7®;)e= (®.NT®,)5+ (®NT®;)) semidirect sum of reduc-
tive and nilpotent parts. Rather than proliferate notation, we denote

(5.33) (PN 7P,)o: analytic subgroup of Gy for (@, M 7®%)o,

(5.2¢)

(5.3b)  (P.N 7P.)o: analytic subgroup of G, for (®, M 'r(P,):,,
(5.3¢c) (PN 7P,)s: analytic subgroup of Gy for (®; M 7@

These are all closed connected subgroups of Go, and (P,MN7P.)e
= (P,N71P.)y (P.N7P,)s semidirect product of reductive and unipo-
tent parts. By definition, (P,MN\7P,), is the identity component of the
isotropy subgroup GoMN\P;, of Gy at .

5.4. THEOREM. Let X =G/P be a complex flag manifold, Go a real
form of G, xEX, such that Go(x) is open in X. Then the open orbit
Go(x) is simply comnected and G, has conmected isotropy subgroup
(P:MN1P.)o at x.
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Proor. We work with a 7-stable Cartan subalgebra 3¢C®, of
such that 3Co=3CMNG, is a maximally compact Cartan subalgebra of
Go. Now ®,=®s as usual. Let 3¢o=3Cr+3Cy, HrC X, where K is a
maximal compact subgroup of Go. For the moment let L denote the
isotropy subgroup of Gy at x, so LMK is the isotropy subgroup of K.
Lemma 5.1 gives K-invariant complex structure on K/(LNK) via
its realization as K(x). As rank(LNK) =rank K because 37 C &£, it
follows [14] that LNK is connected and K/(LNK) is simply con-
nected. But Go(x)=2Go/L has a deformation retraction back onto
K/(LNK); thus Go(x) is simply connected and it follows that L is
connected. Q.E.D.

Let X =G/P be a complex flag manifold and G, a real form of G.
Then Go=8P® - - - ®GY, direct sum of simple ideals, and we have

g = g“) e - 9“) where 9(') = gf,”e,
e=0"® .- 06" where ¥ =0ng®,
X=X;X -+ XX, where X;=G"/P".
Letx&X, x=(x1, + - -, x;) with x;€X;. Then
Go(#) = Go () X - - X Go (x), G () C X
Of course Go(x) is open in X if and only if G§(x;) is open in X; for
1 =<7=t. Now consider the conditions

(5.5a) (Pf,? f\‘rPg.’)o is compact; hence contained in a maximal
compact subgroup K of G?,

(5.5b) G®/K® is a hermitian symmetric coset space,

(5.5¢) GP/(PENTPY)—GP/K® is holomorphic for one of the
two invariant complex structures on G®/K®,

5.6. DEFINITION. Let Go(x) be open in X. Then the bounded sym-
metric domain subordinate to the orbit Go(x) is the coset space

D(Go, ) = Go /LY X - - - X Gy /L

where

() if the conditions (5.5) all hold, then LW =K® and GP/L®
carries the invariant complex structure such that GP/(PENTP),
—GP /LY is holomorphic,

(i) of the conditions (5.5) do not all hold then L =GP.

We justify the terminology by observing that

(@) if G®/L® is not a point, then it is an irreducible hermitian
symmetric space of noncompact type, so D(Go, x) is a hermitian
symmetric space of noncompact type (and possibly of dimension 0),
and
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(b) D(G, %) is the “largest” hermitian symmetric space of non-
compact type such that the natural map Go(x)—>D(Go, %) is Go-
equivariant and holomorphic.

5.7. THEOREM. Let X =G/P be a complex flag manifold, G, a real
form of G, and xE X such that Go(x) is open in X. Let

¥: Go(x) = D(Go, x)

denote the natural projection onto the bounded symmetric domain sub-
ordinate to Go(x). Then the holomorphic functions on Go(x) are just the
functions f=f-y where f is a holomorphic function on D(Go, x).

Proor. We first consider the case where G, is simple. Let 3¢, = 3Cp
+3y CGoN@®, be a maximally compact Cartan subalgebra of Go;
we have @), specified by 3¢ =3c§. Let K be a maximal compact sub-
group of Go such that 3&rCX. If $CG, 2EX and % is a smooth func-
tion on a neighborhood of 2, then $(k), denotes the set of values of
derivatives of & at z by vector fields induced from elements of 8.

Suppose that % is a nonconstant holomorphic function on Go(x).
As K(x) is a compact complex submanifold of G¢(x) by Lemma 5.1,
k must be constant on K(x), so X(k).=0. The vector fields induced
by (®.MN\7®)e vanish at x, so also (®.N7®.)e(h), =0. If (P.N7P,)e K
then X and (®,MN7®;)o generate Go, for Go is simple, so Gy(h).=0;
then the same argument shows Go(%), =0 for every zEGo(x), so all
first derivatives of & vanish, whence % is constant contrary to hy-
pothesis. Thus (P,MN7P;), is compact and contained in K.

The compactness just proved shows 3Co=3rCX. Now the root
system A =Ax\UAy where Ag is the root system of X° (compact roots)
and Ay consists of the remaining roots (noncompact roots). If o EA
then 7(¢) = —¢ because 3Co is compact. Thus 7®"=®" and 7% = —Fu
where @, = ®s. In other words ®,N\7®, = @, and X°+ @, = X+ D% Go.
Define @ = X°+®,. We have X°(%).=0 because % is holomorphic and
K (k). =0; we have ®;(h), =0 because the vector fields induced by @,
vanish at x; now §(k). =0. If @ generates G, then G(%).=0, s0 Go(%), =0
and we contradict nonconstancy of % as above. Thus Q=X+ EA; Se
does not generate G. As G, is simple it follows that Go/K is hermitian
symmetric, @ is a parabolic subalgebra of G containing ®., and (Borel
embedding) gK—gQ embeds Go/K as an open Go-orbit on the complex
flag mainfold Z=G/Q. Let w: X—Z be the projection, w(gP,) =gQ.
Then 7 is holomorphic and its restriction to Go(x) is the projection
g(x)—gK of Go(x) to Go/K. Note that k is the lift of a function on
Go/K because it must be constant on the compact complex submani-
folds gK (x), gEG,, of Go(x).
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Now we consider the general case, using the notation preceding
Definition 5.6. Let % be a holomorphic function on Go(x). Let 1 S7<¢;
fix 2,EGP (x,) for s#i, so h(z1, - - -, 2:) =hi(2;) is a holomorphic
function on G{(x;). We have just proved that %; is constant if the
conditions (5.5) do not all hold, and that 4; is the lift of a function on
G® /K if the conditions (5.5) do all hold. This proves that k=f-y
where ¢: Go(x)—D(G,, %) is the natural projection and f is a function
D(G,, x). If f is not holomorphic, 8f %0, so 9k =¢*3f0 and % is not
holomorphic; thus A=f-¢ where f is a holomorphic function on
D(G,, x). Conversely, if f is a holomorphic function on D(G,, x), then
its lift f-¢ is holomorphic because ¥ is holomorphic. Q.E.D.

Two immediate consequences are:

5.8. COROLLARY. Let X =G/P be a complex flag manifold, Gy a real
form of G, and xEX such that Go(x) is open in X.

1. The holomorphic functions separate points on Go(x), if and only
if (P:MN1P.)o1is a maximal compact subgroup of Go and Go/(P.NTP.),
15 a hermitian symmetric coset space.

2. The following conditions are equivalent:

(2a) Go(x) carries a nonconstant holomorphic function.

(2b) dim D(G,, x) >0.

(2c) Let 30CGoN®, be a maximally compact Cartan subalgebra
of Go. Then Go has a simple ideal G¢ , and G¢ has a maximal compactly
embedded subalgebra X', such that

(1) 3¢ =3CoN\XK’ is a Cartan subalgebra of G,

(i) G °*NC. =@/ is given as ®% where ®'\J{py, - - -, 0.} isa
system of simple 3¢{ ®-roots of G{ €, and
(iii) X'®=0y where V' =®"U{¢py, - -+, 0.1} and ¢, has

coefficient 1 in the highest root.

Now we have seen that an extremely special situation is required in
order that an open orbit Go(x) CX carry a nonconstant holomorphic
function. In particular we cannot expect the closed Go-orbit to be the
Bergman-Silov boundary of an open orbit except in the usual [2]
hermitian symmetric case.

6. Open orbits: invariant measure. In this section we develop the
notion of measurable orbit for the case of an open orbit.

6.1. DEFINITION. Let X =G/P be a complex flag manifold, xS X,
and Go a real form of G. Then we say that Go(x) is a measurable open
orbit if it is open in X and carries a Go-tnvariant volume element.

The elementary tool required is
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6.2. LEMMA. Let HyCLCGy be connected Lie groups where Gy s
reductive and 3Co is a Cartan subalgebra of Go. Then Go/L carries an
tnvariant volume element if and only if L is reductive.

PROOF. £°=3C+ D 1 Go and §=3C+ D 4 Gy where Je =3¢, g=5
and the root systems A CA. The representation x of L on the tangent
space of Go/L complexifies to the restriction of adg(L) to D_a—_a Ge.
Now Go/L has an invariant volume element if and only if det x =1,
and det x =1 if and only if adg(£) acts on ZA-A Ge with trace 0. As
adg(L) acts on § with trace 0, because § is reductive, now Go/L
carries a Go-invariant volume element if and only if ade(£) has
trace 0, i.e. if and only if ZA¢=O, i.e. if and only if ¢ €A implies
—@&A, i.e. if and only if L is reductive. Q.E.D.

Now we have a quick characterization

6.3. THEOREM. Let X =G/ P be a complex flag manifold, xEX, and
Go a real form of G. Then the following conditions are equivalent, and
each implies that Go(x) is open in X.

(1a) Go(x) is a measurable open orbit.

(1b) Go(x) has a Ge-invariant volume element.

(1c) Go(x) has a Go-invariant, possibly indefinite, kaehler metric.

(1d) The isotropy subgroup Go\P, is the centralizer in Go of a
(compact) toral subgroup T CGo.

(2a) ®.N7T®, is reductive, i.e. @ @, =P, N7,

(2b) C.NT®,=¢7.

(2c) 70;=C:;%, 1.e. G=C,+7C;.

(2d) @, =@ with T®"=3" and %= —d*,

ProOF. Let 3¢ C®, be a r-stable Cartan subalgebra of G and let I
be a simple root system such that ®, = ®s for a subset ®CII. Lemma
2.10 says (®.N7®,)" = ®,N\7®;, root system & MNr®", and (@.N7®,)*
= (PN @)+ (N7 @) +(P;MN7®;), root  system  (PrMrdw)
U @*N7d)\U (@*Nrd¥).

(2d) implies (2b) by summing root spaces and (2b) visibly implies
(2a). If ®,N7®, is reductive then r®*M\ (@' UP*) is empty, so 7d¥
= —®%; thus (2a) implies (2c¢). If 7®*= —&%* then 7 preserves
{oEA: oG®*U —&+}, which is @7; thus (2c) implies (2d). Now (2a),
(2b), (2c) and (2d) are equivalent and each implies that ®*MNrd* is
empty, i.e. that Go(x) is open in X. It follows from Lemma 6.2 that
(1a), (1b), (2a), (2b), (2¢c) and (2d) are equivalent.

Let Go(x) be a measurable open orbit, i.e. 7®" =& and rP¥= —Pu,
T preserves 0, hence its center JCs = {hesc: (k) =0} ; thus GoMN\3Cs
= §Cp-+3Cf sum of toral and vector parts. We define
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A={pE®": o(3cr) =0} and a= 2 o
q)ﬂ

T7Pv= —®* says 7(a) = —a, s0 aE&13Cr. If p&P* then ¢ =¢;+¢. with
©1(3Cs) =0 and ¢, E13Cr+ 3Cy. Projection to the trivial representation
space of the Weyl group of @} on 737+ 3Cy annihilates ¢4, and that
Weyl groups preserves ®*, so ac:i3r+3Cy. Now aE23Cr. If o&d*
then (¢, a)>0. Thus 4 is empty. Now {(pEA: o(3CT) =0}, which
contains @7, contains no element of ®¥\UJ —&*, In other words @} is the
centralizer of 3¢T in G, so GoN\P, = (P}), is the centralizer in G, of the
(compact) torus T =exp(3Cr). We have proved that (1a) implies (1d).

Let GoN\ P, be the centralizer of a torus T CGe. Choose tE3 such
that G\ @, is the centralizer of ¢ in Gy, and let 5 denote the left invari-
ant 1-form on G, whose value at the identity is given by n(k) ={¢, k).
Then @=dn is a left invariant 2-form on Gy, right invariant by
Gy P,, inducing a nondegenerate Go-invariant 2-form w on Go(x)
=Go/(GoNP.). Now the invariant almost complex structure J on
Go(x), together with w, defines an invariant hermitian metric with
kaehler form w. As dw=d(dn) =0 is the lift of dw to G, it follows that
dw=0 and the metric is kaehler. Thus (1d) implies (1c). And obvi-
ously (1c) implies (1b) because a kaehler metric (of any signature)
has a volume element. Q.E.D.

6.4. COROLLARY. Let X =G/ P be a complex flag manifold, Gy a real
form of G, and xEX such that Go(x) s open in X. If Go has its maximal
compact subgroups K such that rank K = rank G, then Go(x) is a mea-
surable open orbit.

PRrOOF. Let 3¢ C®, be a 7-stable Cartan subalgebra of G, such that
3Co=3CMNGy is a maximally compact Cartan subalgebra of G, If
rank K =rank G,, then 3¢ is compact, so 7¢ = —¢ for every 3C-root ¢;
then & =% and ®%= —®* where P,=C>. Q.E.D.

The condition rank K =rank Gy is not necessary for an open orbit
to be measurable. For example

6.5. COROLLARY. Let X =G/B be a complex flag manifold where B is
a Borel subgroup of G. Let Go be a real form of G. Then every open
Go-orbit on X is measurable.

PROOF. 8 =®s where ® is empty. Thus 7®"=®", empty set, and
Puv=7At=A-=—-%». Q.E.D.

The main point of Corollaries 6.4 and 6.5 is that measurability does
not depend on the choice of open orbit. In order to prove that in gen-
eral we need the notion of opposed parabolic subgroups.
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6.6. DEFINITIONS. The opposition automorphism of a reductive
complex Lie algebra G relative to a Cartan subalgebra 3C is the auto-
morphism

v:8—>G by v(k)=—h forhk C3 and v(es) = ey

where {h.; eo} is a Weyl basis of G. Note that any two opposition auto-
morphisms are conjugate by an inner automorphism. Two subsets 8,
8'CG are opposed if $ is conjugate to v(8') by an inner automorphism,
for some (hence any) opposition automorphism of G.

Let @ be a parabolic subalgebra of a reductive or semisimple com-
plex Lie algebra G. Choose a Cartan subalgebra 3¢C® of § and a
simple root system II such that ® = ®s for a subset ® CII. Let » be the
opposition automorphism for this data and let w be the Weyl group
element such that w(II)=II. Then of course the parabolic »(®)
opposed to @ is conjugate to P,s. We can see the action of wy on II
via the Dynkin diagram. It preserves each component, for v preserves
each simple ideal of G; if a simple ideal has —I in the Weyl group,
i.e. if it is not of type 4; (I>1), Dyuyy (n>0) or Eg, then w=p=p—1
on that ideal, so wr acts trivially on the corresponding component of
the Dynkin diagram; if a simple ideal does not have —I in the Weyl
group, then wy acts on its Dynkin diagram by:

Ay 1> 1: §>’ or i ,
Dony1, 7> 0:  Om—mme— - - - 4
Ee: 3

6.7. THEOREM. Let X =G/P be a complex flag manifold and Gy a
real form of G. Then the following conditions are equivalent:

(i) ® and 7® are opposed parabolic subalgebras of G.

(ii) Some open Go-orbit on X is measurable.

(iii) Every open Go-orbit on X is measurable.



1969) ACTION OF A REAL SEMISIMPLE GROUP 1153

Proor. (iii) implies (ii) because Gy has an open orbit.

Assume (ii) and let Go(x) be a measurable open orbit. 3C®; is a
7-stable Cartan subalgebra of G such that 3¢, =3CM\Gy is a maximally
compact Cartan subalgebra of Go. Now @, = ®s where ® is contained
in a simple root system II. We take the opposition automorphism »
for 3¢ and II. Using Theorem 6.3, 7®*= —®*=p®* so 7@, and v@®,
each is the normalizer of ®;*in G, whence 7@, =v®,. Thus 7® is conju-
gate to »@®, i.e. @ is opposed to 7®. That shows that (ii) implies (i).

Let ® and 7® be opposed, let Go(x) be an open orbit, and let 3¢, CG,
N@. be a maximally compact Cartan subalgebra of Go. Now @, =@
where ® is contained in a simple root system II such that 7(II) = —II.
7@, and »®, are conjugate parabolic subalgebras of § with a common
Borel subalgebra 3§+ Y s+ G—p; thus 7@, =v®,. Now @.N\r®, =@,
My®, = @}, so Go(x) is measurable by Theorem 6.3. Thus (i) implies
(iii). Q.E.D.

We recover Corollary 6.4 from Theorem 6.7 because 79 = —¢p =vp
relative to a compact Cartan subalgebra 3, CGo, and we recover
Corollary 6.5 because ®, ® and »® are all conjugate. But, in addi-
tion, we have

6.8. COROLLARY. Let X =G/P be a complex flag manifold. Let G, be

a real form of G such that Go is a direct sum of absolutely simple ideals
D each of which has one or more of the properties

(i) ¥ is not of type Ay (1>1), Dant1 (n>0) nor Eg; or

(ii) the maximal compactly embedded subalgebras of GY have maxi-
mal rank; or

(iii) ®NG® is a Borel subalgebra of G =gy C.
Then every open Go-orbit on X is measurable.

The key proviso of Corollary 6.8 is that the simple ideals of g,
are absolutely simple, i.e. that 7 preserves every simple ideal of G.
But it is interesting to consider the other extreme.

Let G, be a complex semisimple connected Lie group viewed as a
real Lie group. Then G=Gg is GoX G, and the embedding G, CG is
given by g—8(g) = (g, g). 7 acts on G by 7(g1, g2) = (g2, g1). P=P, X P,
where P; are parabolic subgroups of G,. In particular 7(P) = P, X P,
where P = P; X P,. The opposition automorphism acts by »(P) =»(P,)
Xv(P;) where P =Py XP;. Thus ® and 7® are opposed if and only if @,
and ®, are opposed. In other words, the open Go-orbits on G/P are mea-
surable if and only if P=P1XPs, ®1 and ®; opposed, i.e. if and only if
P =P;XvP:. If Go has rank r as a complex group, then G has rank 27,
so G has 2% conjugacy classes of parabolic subgroups P =P; X P; and
just 2r of them are of the form P, XvP;. Thus “most” parabolic sub-
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groups PCG have the property that the open Gp-orbits on G/P are
not measurable.

7. Integrable orbits. Let X=G/P be a complex flag manifold,
xEX and Gy a real form of G. We observe @,+7®,=g=0;*Cr@®
SCNTe =020 70, =0Go(x) is open in X. This leads us to
some definitions whose mystery will evaporate in §9.

7.1. DEFINITIONS. Let X =G/P be a complex flag manifold, xEX
and Go a real form of G. If ®.+7®, is a subalgebra of G, then we say that

®. is an integrable parabolic subalgebra of G,

P, is an integrable parabolic subgroup of G,

x 15 an integrable point of X, and

Go(x) is an integrable Go-orbit on X.

These notions are, of course, dependent on choice of the real form G.

The basic facts are given by

7.2. THEOREM. Let G be a complex semisimple Lie algebra, ® a para-
bolic subalgebra, and Go a real form of G. Denote

U= CN\70* and N is the normalizer of U in G.

Then the following conditions are equivalent:
(i) @ isintegrable, i.e. ®+7® is a subalgebra of G.
(ii) @+ =9t
(iii) ®@+7@® is an algebra and U is its nilpotent radical.
(iv) U s the nilpotent radical of M.
(v) @ mormalizes U, i.e. ® CN.

ProOF. Relative to a 7-stable Cartan subalgebra 3¢C® of § and a
subset ® of a simple root system such that ® =®s, we have ®+7¢
=3¢+ D 1 G where I'=3"Urd Ud*Urd*. If oC€T and —odT it
follows that @ E®*\Urd%, oEP*MN7P" and oGP MN1d*; then o &P
N7®* or PN\ —7®* or pE —PN1P%; if ¢ >0 and 7¢ >0 we con-
clude that o &EP*N7P*,

Let ®+47® be an algebra. The discussion above shows that it has
nilpotent radical U. Thus (i) implies (iii). A parabolic subalgebra is
the normalizer of its nilpotent radical; thus (iii) implies (ii). And
visibly (ii) implies (i). Now (i), (ii) and (iii) are equivalent.

If ®+7® =N then ®CN; thus (ii) implies (v). If ®C N then N is
parabolic; 7U = U implies 79 = I so @+7® C I ; now the discussion of
the first paragraph of the proof shows that U contains the nilpotent
radical of 9t; thus (v) implies (iv). Now we need only prove that (iv)
implies (ii).

Let U be the nilpotent radical of 3. If N is a parabolic subalgebra
of G, then 91 =@y with ® CV¥ such that ¥*=3*N\7P*. As A+ is the dis-
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joint union of ®MA+, d* N\ (1P —7P%) and $*»Nrd*, and also is the
disjoint union of ¥"NMA+ and ¥*=®*N\rd*, it follows that TrNA+
= (@"NAH)U@*NrP") U (@*N —7P%) so N=0"+C¢+70"+70%=0
+7@®. Thus (iv) implies (ii) provided that (iv) forces 9 to be para-
bolic. In other words, the theorem is reduced to

7.3. LEMMA. Let G be a complex semisimple Lie algebra, let U be a
nilpotents subalgebra, and let I be the normalizer of U in G. Suppose
that N contains a Cartan subalgebra 3 of G and that U is the nilpotent®
radical of M. Then N is a parabolic subalgebra of G.

PRrROOF. 9= L+U semidirect where 3CC £ and £ is reductive.
U= D 4 G for some set 4 of Fe-roots of G. £=L£'®S where $Ci
is the center of £ and £’=[&£, £] is the semisimple part. 3¢+ U is
contained in a Borel subalgebra of G, so we order the roots such that
>0 for every pEA4.

Let £ be semisimple, let W, be its Weyl group and definea= >_4 o.
Then a is a Wi-invariant positive sum of positive roots. The action
of Wi on 3C has no trivial subrepresentation. Thus =0 and 4 is
empty. It follows that U =0, so 9% =G, which is a parabolic sub-
algebra of G.

Now we may assume £ not semisimple, so its center $#0. Define
B= {¢€A :0(8) = 0} and B= X_p ¢. As above it follows that =0 so
B is empty. Let Z be the centralizer of § in G and order the weights
of 8§ so that positive weight spaces are sums of positive root spaces.
Then the corresponding parabolic subalgebra @ of § has Z=gr, and
UACQ* because ZNU=0. Let W=91NQ%; so UCWCQ* If u=g*
then U=W because a proper nilpotent subalgebra of a nilpotent Lie
algebra cannot be its own normalizer. But 91=£+4+U with £C¢Q"
and U is the nilpotent radical of 97; thus U =NNQ*=W; now U=Q¥
so N=0. Q.E.D.

Now we go on to construct all integrable Go-orbits on X =G/P.

Let G be a complex semisimple Lie algebra, 3¢ a Cartan subalgebra
and II a simple root system. We know that each conjugacy class of
parabolic subalgebras of G is represented by just one algebra ®s,
®CII; in particular, if ® and @ are parabolic subalgebras of G, then
the conditions

(i) @ contains a conjugate of @,

(ii) @ is contained in a conjugate of @, and

(iii) @ is conjugate to ®s, @ to Py, with @C YV II,
are equivalent.

& This means that U is represented by nilpotent matrices in the adjoint repre-
sentation of G.
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7.4. DEFINITION. We write ®<Q to denote the equivalent conditions
@), (ii) and (iii) above.

Now let Go be a real form of G and assume JC stable under the com-
plex conjugation 7 of G over Go. Let wE W¢ be the Weyl group ele-
ment which carries the simple root system 7(II) back to II. We have
a (wr)-stable subset ¥, CII determined by: (94 @+ 91)€ is conjugate
to @y, where M +@+ 9 is the minimal parabolic subalgebra of gG,.
Now the conjugacy classes of parabolic subalgebras, such that the
class contains an algebra defined/R (i.e. 7-stable), are represented by
the ®y such that

(7.5) (@) wrn)¥ =¥ and (b) ¥, C V¥ CIL

In order to apply the criterion (7.5), one uses the fact [15, p. 909]
that, if G is simple, then wr acts trivially on II except in the cases:

Go action of wr on I

~ | T (>-D

80*(4n + 2)
S0%(4n + 2) OO 000
802&"'1(4”)

Now suppose that we have a fixed parabolic subalgebra ®Cg. We
look for the 7-stable parabolic subalgebras @ CG such that ®<Q.
Given such an algebra @ we have a conjugate ®, of ® such that
@470, CQ. Suppose that @ is conjugate to ®s and g is conjugate to
@®y; then PC VY and V¥ satisfies (7.5). In other words

(7.6) (a) (wr)¥ =¥ and (b) {¥,U S (w)d} C¥ CIL
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Conversely, if ¥ satisfies (7.6), then ®¢ has a 7-stable conjugate §
because ¥ satisfies (7.5), and ®—<@Q because ® C V. This proves the
first statement of

7.7. THEOREM. Let X =G/P be a complex flag manifold, G, a real
form of G, 3C a T-stable Cartan subalgebra of G, 11 a simple 3C-root system,
and ® CII such that @ is conjugate to ®s. Let wE W g such that (wr)II =11
and define

(7.8) Yy =¥, U & (wr)d.
1. The G-conjugacy classes of parabolic subalgebras QCSG such that
®<Q and 7(Q) =@
are the classes represented by algebras ®y such that
(wr)¥ =¥ and ¥x C V¥ CIL

2. If QCG s a 7-stable parabolic subalgebra then the following condi-
tions are equivalent:
(2a) e<a@.
(2b) Q=@,+7®, for some (necessarily integrable) xE X.
(2¢c) Q is conjugate to @y with ¥x C ¥V CII.

Proor. Statement (1) was proved in the discussion preceding the
theorem.

If 7(@) =@ and ®—<@Q then (1) implies that @ is conjugate to Py
with ¥x C¥ CIL. If 7(@) =Q and Q is conjugate to Py with ¥x C¥ CII
then ®#C V¥ so ®#<Q. Now (2a) and (2c) are equivalent. As (2b) trivi-
ally implies (2a), we now need only check that (2a) implies (2b).

Let 7(9) =Q and ®<Q. If we have a Borel subalgebra ® CgQ of g
such that ® +7® =@, then we choose a conjugate ®, of ® such that
® C®.CQ; that gives Q=B+78C P, +70,CQ+79=9, and we con-
clude ®,+7®.=Q. Now the proof of Theorem 7.7 comes down to the
proof of

7.9 LEMMA. Let G be a complex semisimple Lie algebra, So a real form
of G, and Q a 7-stable parabolic subalgebra of G. Then there is a Borel
subalgebra ® CQ of G with 8+7B =0Q.

ProOF. @ =@ +Q* with each summand stable under 7. Now @;=G,
N@r is a real form of @" and is a reductive subalgebra of maximal rank
in Go. Let 3Co=3Cr+3Cy be a maximally compact Cartan subalgebra
of €. Apply Theorem 4.5 to the action of @, on Q7/(Borel subgroup);
it shows that @ has a Borel subalgebra ®; such that ®&;+7®;=0r.
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Now ® =®;-+9Q* is a Borel subalgebra of G, and 8 +78 =9"+Q*=@.

Q.E.D.

We extend the proof that (2a) implies (2b) in Theorem 7.7 to an
existence and enumeration theorem for integrable orbits.

7.10. THEOREM. Let X =G/P be a complex flag manifold, Gy a real
form of G, and 3 a 7-stable Cartan subalgebra of G. Let II be a simple
3C-root system, wE W g such that (wr)Il =11, ® CII such that @ is conju-
gate to ®s, and ¥x =B (wr)®\JY,, (wr)-stable subset of II. For every
set ¥ such that ¥Yx CY CII and (wr)¥ =V, choose a 7-stable parabolic
subalgebra Qv CG which is conjugate to ®w, and choose ¢ maximally
compact Cartan subalgebra 3Cy,o of the real form GoN\Qy of Q%.

1. If ®11s a Borel subalgebra of Q4 which contains 3y =305, and
such that ®1+7®1 = Q%, and if ® denotes the Borel subalgebra ®,4 Q% of
G, and if @, is the conjugate of ® such that ® C®,CQy, then

(1a) x is an integrable point of X,
(1b) Go(x) is an integrable Go-orbit on X, and
(1c) @470, =Qsq.

2. If 3€X s an integrable point, and if the parabolic subalgebra
@, +7®, is conjugate to ®w, then in (1) we can choose the Borel subalgebra
®1 of Q% in such a manner that 2EGo(x).

3. For each set ¥, YxCVCI and (wr)¥ =Y, choose one point
xvEX as constructed in (1). Let Qo denote the identity component of
GoNQy. Then Qu(xe) =Qu(xe) =0%/(QsMN\P.y) is a complex flag
manifold X«, and the open Qyg-orbits on Xy are in one to one cor-
respondence with the integrable orbits Go(x) such that ®,+1®, is conju-
gate to ®y.

4. Let K¢ be a maximal compact subgroup of Qo such that X con-
tains the compact part of 3w ,0 and is orthogonal to the noncompact part.
Then the integrable orbits Go(x) CX such that @,-+7®, is conjugate to
®g are enumerated by the double coset space

Cw,0 XKy,
Wee\Way /We, nrpl,
where superscript 3Cy,0 means the subgroup of the Weyl group which
preserves 3Cy,0 in Iy

PRrOOF. Statement (1) is the construction employed in proving that
(2a) implies (2b) in Theorem 7.7.

Let ®,+7@®. be conjugate to ®¢. Then Q¢ and ®@,+7®, are parabolic
subalgebras of G which are conjugate by an element of G and are de-
fined/R; so they are conjugate by an element of Go. Replacing z by
g(2) for some gEG, we may assume ®,+7®, =Qy. Further replacing z
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by g(z) for some gEG, we may also assume 3y, 0C®.. Let ®; be a
Borel subalgebra of @ \r@, containing 3C¢ such that ®,+7®;= ¢
M7®,; such ®; exist because 3Cy,o is maximally compact in GoMN@%,
hence in QN (®;N\7r¢;). Now ® =@+ (®;N\7®;*)+@; is a Borel
subalgebra of G such that 8 C®.CQ¢ and B+78 D ®,. As ®,+710,=Qy
now ®+7®=Q¢. Decompose @ =®;+Qy where ®; is a Borel sub-
algebra of @} containing 3C¢; now ®;+7®;=0%. Thus, having re-
placed z by g(2) for some gEG,, we end up with 2 as one of the points
xE X constructed in (1). In other words, we started with sEG(x).
Statement (2) is proved.

The choice available in the construction of statement (1) is the
choice of ®;. That choice is free, without changing Go(x), Qv or 3Cy,0,
up to conjugation by an element of Qyo which normalizes 3Cy, i.e.
up to conjugation by an element of G\, i.e. up to conjugation by
an element of Q. This proves (3), and (4) follows from Theorem
49. Q.E.D.

Theorems 7.7 and 7.10 give a complete description of the integrable
Go-orbits on X in terms of the isotropy subalgebras of G at integrable
points. But they do not “locate” the integrable orbits on X.

The complex flag manifold X =G/P always has some integrable
Go-orbits, for at the beginning of this §7 we observed that ®,+7®,=¢
if and only if Go(x) is open in X. But it can happen that the open
orbits are the only integrable Go-orbits:

7.11. PROPOSITION. Let X =G/P be a complex flag manifold where P
is a maximal parabolic subgroup’ of G. Let xEX and let G, be a real
form of G. Then the orbit Go(x) s integrable if and only if

(a) Go(x) s open in X, or

(b) Go(x) is the closed orbit and dimg Go(x) =dime X.

PRrOOF. Let Go(x) be integrable. If 7®,=®. we are in case (b). If
7@,5% ®, then ®,+7®,=G by maximality of P, so we are in case (a).
Q.E.D.

7.12. COROLLARY. Let Xo=Go/K be a hermitian symmetric space of
noncompact type, G=Gg, and X =G,/K =G/P the compact dual of X.
Decompose X as a product of irreducible factors X9 =G /K9, G as
a product of simple groups G® =GPC, and X as a product of irreducible
factors X O =GP /KD =G /P, so that the Go-orbits on X are just the
products of G“,"-orbits on the X, Let x=(%1, - + +, X)) EXDOX - . .

¢ This means that PG and there is no parabolic subgroup QCG with PZQSG.
In other words, if ® =P where & is in a simple root system II, then | II| = l ®| +1.
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XX® =X, Then the orbit Go(x) CX is integrable if, and only if, for
each 1,

either G (x:) is open in X ©®

or X is of tube type and G (x:) is its Bergman-Silov boundary
in X,

Proor. We may assume X irreducible. Then =1 and P is a maxi-
mal parabolic subgroup of G, and the two cases of Corollary 7.12 cor-

respond to the respective cases (a) and (b) of Proposition 7.11.
Q.E.D.

CHAPTER II. DECOMPOSITION OF A REAL GROUP ORBIT
INTO COMPLEX ANALYTIC PIECES

Let X =G/P be a complex flag manifold and let G, be a real form
of G. §8 and §9 are an analysis of the “amount” of complex structure
inherited from X by an arbitrary orbit Go(x) CX.

In §8 the orbit Go(x) is decomposed into “holomorphic arc com-
ponents” Sp;;. They are equivalence classes for the Go-invariant rela-
tion: y&.S, if and only if it can be joined to z by a chain of holo-
morphic (in X) arcs in Go(x). The holomorphic arc components are
real analytic submanifolds of Go(x). In fact,

Nis1.0 = identity component of { g€ Go: g5t =S m}

is a closed analytic subgroup of G, that is transitive on Sp;. We ap-
proach analysis of the holomorphic arc components by studying the
algebra gy = 9.

Theorem 8.5, Proposition 8.7 and Theorem 8.9 determine subspaces
QmemmC{m[.yf\((P,+'r(P,)} stable under 7, such that @y is a
parabolic subalgebra of G (so Ni.,0 is the identity component of a
parabolic subgroup of Go), Si. is a complex submanifold of X if and
only if My =N, and M, =Ny, if and only if My, is an algebra.
Thus one can decide whether the holomorphic arc components of
Go(x) are complex submanifolds of X, and in that case their structure
is determined in principle. If they are not complex then their sub-
manifolds Qpq,0(2) CSt;, where Qpj,0 is the analytic group for
Q1M G0, are acceptable substitutes which are complex submanifolds
of X; we call them the “algebraic arc components” of Go(x).

If P;C P, are parabolic subgroups of G, X;=G/P; and 7: X;—X,
the projection, x;&X; with w(x:) =x,, then Proposition 8.14 relates
the holomorphic and algebraic arc component structure of the Go(x;).

§8 ends with a description of the space of holomorphic arc com-
ponents of Go(x).
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In §9 we study certain global conditions on the holomorphic arc
components of Go(x). They are

(i) partially complex: Si,) is a complex manifold,

(ii) flag type: N (x) is a complex flag manifold,

(iii) measurable: Si; has an Ny, e-invariant measure,

(iv) polarized: we can arrange 3C so that 7@, =@,

(v) integrable: ®.+7®, is an algebra.

The important ones are “partially complex” and “measurable,” and
the others are useful in their study. Theorem 9.2 gives the basic
analysis of measurable orbits, describing 9, and proving them par-
tially complex and of flag type. Theorem 9.7 performs a similar task
for orbits of flag type. Then Theorem 9.9 shows that, if Gy(x) is
polarized, then the conditions “measurable,” “integrable,” and “par-
tially complex and of flag type” coincide. Various corollaries complete
the general part of §9.

The specific part of §9 starts with Theorem 9.12, which says that
the closed Go-orbit on X is automatically measurable. That result
is related [12] to the existence of principal series representations
of Go. Proposition 9.18 and Corollary 9.21 extend the method of
Theorem 9.12.

§9 ends with a description of the case where X is a hermitian sym-
metric space and Gy is an arbitrary real form of G. Proposition 9.24
gives measurability criteria for the open Ge-orbits, and one criterion is
that they be indefinite-kaehler symmetric spaces. The surprising
corollary is that if the maximal compact subgroups of G, are of rank
equal to that of Gy, then the open Ge-orbits on X are indefinite-
kaehler symmetric spaces.

Notes FOR CHAPTER II. From August 1965 to May 1968, this
author had a number of conversations with Bertram Kostant in
which we tried to find the structure of the holomorphic arc com-
ponents. We succeeded in the integrable case and saw that the nor-
malizer of @2 \7®% should play a role. Statement 1 of Theorem 8.5 is
due to Kostant, and the general case as worked out in §8 was un-
doubtedly guided by the background of discussions with him.

Lemma 9.22 and Corollary 9.25 are due to Kostant.

Except for the basic contribution of Kostant described above, the
material of §8 and §9 was worked out by this author.

8. Holomorphic arc components. Given a complex flag manifold
X =G/P and a real form G of G, the open Go-orbits on X are complex
submanifolds. If Go(x) CX is the Borel embedding of an Hermitian
symmetric space of noncompact type, then [15] one also knows that
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every Go-orbit on the boundary of Go(x) has a natural decomposition
into complex submanifolds of X. In this section we give an analogous
decomposition of an arbitrary Ge-orbit into “holomorphic arc com-
ponents,” including an explicit criterion and characterization of the
cases where those components are complex submanifolds of X.

Let D be a subset of a complex analytic space V. By holomorphic
arc in D we mean a holomorphic map

f:{s€cC: |z] <1} >V

of the unit disc into V such that D contains the image of f. By chain
of holomorphic arcs in D we mean a finite sequence {fi, - - -, fi} of
holomorphic arcs in D such that the image of f; meets the image of
f§+1 fOl‘ 1 §1«<k.

8.1. DEFINITION. Let D be a subset of a complex analytic space V.
Then the holomoprphic arc components of D in V are the equivalence
classes of elements of D under the relation: vi~wv, if there is a chain
{fi, -+, fi} of holomorphic arcs in D such that v, is in the image of fi
and v, is in the image of f.

We draw some simple consequences from this definition.

8.2. LEMMA. Let V be a complex analytic space, let A be a group of
holomorphic diffeomorphisms of V, and let D be an A-stable subset of V.
Let S be a holomorphic arc component of D in V and define N4(S)
={a€4:a(S) =5}.

1. If a€E A and a(S) meets S, then a(S) =S i.e. aEN4(S).

2. If D is an A-orbit then Na(S) is transitive on S.

3. If A is a Lie transformation group on V, and if D is an A-orbit,
then Na(S) is a Lie subgroup of A, and S and D are embedded real sub-
manifolds of V.

Proor. For (1) we have s1, $:ES with a(s1) =s.. If sES we have a
chain {fl, e, fk} of holomorphic arcs in D from s; to s; now

{afa, -+, a- fi} is a chain of holomorphic arcs in D from a(s;) =ss
to a(s); thus a(s)ES; that proves a(S)CS. Similarly a-1(S)CS.
Thus a(S)=S.

For (2) let s1, 52ES. As 5;&D we have a&E A with a(s;) =s;. Now
aEN4(S) by (1). Thus N4(S) has an element that sends s; to s..

For (3) we first note that .S is arcwise connected. Lifting arcs via
N4(S)—S we see that the identity component N4(S)° is arcwise con-
nected and is transitive on S; thus N4(S)? is an analytic subgroup of
A, so N4(S) is a Lie subgroup, and S is an embedded real submanifold
of the embedded submanifold D. Q.E.D.



1969] ACTION OF A REAL SEMISIMPLE GROUP 1163

8.3. NortATION. Let X =G/P be a complex flag manifold, Gy a real
form of G, and x&X. Denote

(8.3a) Sp;;: holomorphic arc component of Gy(x) in X that con-
tains x.

(8.3b) Np,0: identity component of {gEGo: 28121 =St }

(8.3¢c) 9,0 is the Lie algebra of Ni,0, and 9z = 97,0-

(8.3d) Ny is the complex analytic subgroup of G for ;.
Lemma 8.2 says that Sp,; is an embedded real submanifold of X,
Ni,0 is a Lie subgroup of Go, and Ni,,0 is transitive on Sp;. Note
TNz = Ny by construction.

8.4. LEMMA. Let X =G/P be a complex flag manifold, Go a real form
of G, xEX, 3 C®, a 7-stable Cartan subalgebra of G, and £ a complex
subalgebra of G such that

=8 [51,L]Ce amd £CC+ 7.
Let £o= £MGo, real form of £; let L and L, denote the analytic sub-
groups of G and Go for £ and £,.
1. Lo(x) and L(x) are complex submanifolds of X with Ly(x) open
in L(x).

2. Lo(x)CS[z]'
3. £0CNpy,0 and LoCNisy 03 LCNy and LC Ny

ProoF. Choice of 3¢ specifies ®, and ®I*. As £ is complexand nor-
malized by 3¢, it is £M3C plus certain root spaces; now £C(®,+7¢,)
shows

0 + - 0 + —u
=L 4+£&+e, L=enE@EN®), &£ =enNnt®, Ce
and (using 7€=4&)

£ =eNne."Cr®, withe =re".
L(x) is a complex submanifold of X because L is a complex Lie sub-
group of G. Now
dimR Lo(x) = dlmR 80 - dim;a £o N @,

= dimg £¢ — dimg LN @, N 7@,

= dime £ — dime £°

= dime £+ + dime £~ = 2 dime £~

= 2 dime L(x) = dimg L(x)

shows that Lo(x) is open in L(x). That proves (1).
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Covering by complex local coordinate neighborhoods one sees that
Ly(x) has just one holomorphic arc component. Thus Lo(x) CSp.,
proving (2), and (3) follows immediately. Q.E.D.

We use Lemma 8.4 to prove 9,; parabolic by constructing a para-
bolic subalgebra @, C 9, of G. That is the first step in the determina-
tion of Si;; in algebraic terms.

8.5. THEOREM. Let X =G /P be a complex flag manifold, Gy a real form
of G, xEX, 3 C®, a 7-stable Cartan subalgebra of G, and ® a subset of a
simple 3C-root system such that @, = Ps.

Define a 7-stable linear form 85 on 3C by

(8.6a) 0 =

*Nro%
Define T-stable sets of 3C-roots of G by

I'={oC A: (p, 8) =0}, T*={pEA: {0 8s)> 0},
8.6b
( ) T* =TrUrw
Define a 7-stable parabolic subalgebra Qi) CG by

(8.60) Qu =%+ > G, Q1= 28, Q=0+ Qu.

T T

1. The normalizer Mg(U;) of WU,=CiN\T®, satisfies Ng(U.)"CQL
and Ng(U)*CQp.

2. U, CANg(U:) CQ1 C { N1 NP2 +78%) } .

3. Ny 45 a parabolic subalgebra of G and Ny ,o s the identity com-
ponent of the parabolic subgroup NiM\Go of Go.

Proor. Note 3¢+ U, CNg(U,), so Ng(U,) is the sum of J with
certain root spaces. Let ¢ be a rootwith §,C 9g(U.), letG[¢ ] denote the
three dimensional simple algebra k,C+Go+G—¢, and let Z denote
the centralizer of G[¢] in . Then

zZ={hE3: o(h) =0} + 2 G
yike
where ¥ L ¢ denotes strong orthogonality, i.e. denotes that neither of
¢+ is a root. And further
§=2z+ 2 M, 9 =gl

where the 91; are the nontrivial irreducible §[¢]-modules under ads.
Thus for 7#1 we have 9; of the form
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8 2 y
M, = Z g'l‘+f¢’ A A, <‘,/ ‘p) =

r—s
Jm=—r <¢’ ‘P) ’

for the maximal string Sy = {¢+jgo}_,s,-s. of roots.

Suppose that S; meets ®*MN\7P¥, say Y+jopEP*M7r®%. Then
G, C Ig(U,) implies Y+joEP*MNrdP* for jo<j<s, so we have an
integer jy, —7<jy<s, such that Sy;N@*Nrd») = {Y+jo: jy<j<s}.
Note S,C®*MNr®* if and only if jy=—r. But j/>j" implies
(o, ¥+7'0)> (p, ¥+7"¢) because (¢, ¢)>0; and ad(k,) has trace 0
=(p, 2%, W+jp))on M, because ] is semisimple; thus

either S, C®*MNrd* and (p, X, s,ns"N,e%y)=0

or Sy ®*Nr®* and (¢, D s;ns¥nra™y)>0.

On the other hand, §_»,C91g(U,) if and only if §_, normalizes each
U,NN;, and, as above, that is equivalent to Sy CP*M7P* whenever
S, meets ®*N\7d%. Thus for o&EP*N7d*, we have (p, ds)=0 if
GeC g(U,)" and (o, 8¢)>0 if GoCNg(U)¥ And for ¢ in B*MNrdP+
we have GoCg(U,)* with (p, ds)>0. That proves 9g(U.)*CQfy
and MQ(%,)'CQL].

We have just proved U,Cg(U;) CQray- And U, CNg(U)*C Oy
proves Q) CCP+7®,. As I C Q) =79, Lemma 8.4 says Q) CNya.
That proves (2), and (3) follows because @, is parabolicing. Q.E.D.

The next step in the algebraic determination of S consists of ex-
panding Q) out toward N, as follows.

8.7. PROPOSITION. Let X =G/ P be a complex flag manifold, Gy a real
form of G,xEX, 3 C®, a T-stable Cartan subalgebra of G, and ® a subset
of a simple 3C-root system such that ®,= ®s. Retain the notation (8.6).
Define a t-stable subset T*C (@*Ur®*)\I'* by

(8.82) T0={op € A: —p & ®*N 73%, (¢, 82) < 0, 0 + o & A}.
Define a t-stable subspace Mz of Go by

(8.8b) My = Q1 + 2 Ger
0

r

1. Quz CMps CHmt NP2 +7C,).
2. If oET°, then —op =10 #¢, and either
(2a) oLlro, To—o €A, and hC +hC+Go+Go+GrotGre is @
T-stable subalgebra of type A1 ® Ay of G contained in Ny N\ (C+76%); or
(2b) (@, T0)=3%(0, @), T¢—@ €A, and hsC+h:eC+Go+G-o+Gre
+G_re+Gro—e+Go—re ts a T-stable subalgebra of type As in G contained
n m[z]n((Ps'l‘T(Pz)-
3. N CC+7C, if and only if Ny =Mg.
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Proor. Decompose the real form 3¢, = 3¢M\G, of 3C as 3o = 3Cr+ 3y
such that 73y 3Cy is the real span of the roots. If oA then p=¢r
+¢v where ¢or(3y) =0=¢v(3Cr), and then To= —pr+oy. Now sup-
pose (g, 6s) <0 with —p&EP*N7rdx. If 79 = then Go C ®,+7®, implies
G C®NT®, CNg(U), 50 {p, 8s)=0, contradicting (p, 8s)<0. If
T = —¢ then (79, 8s)= (10, 78s) = {p, 6s) = — (7@, ds), contradicting
{p, 85)<0. Thus —p#=T0 0, i.e. or%07py. In particular | (@, T0)|
<|{e, @)| so the integer 2(p, 7o)/ {0, ©)=2(p, TO)/ (10, T) is —1,
0or +1.

Suppose further that ¢+7¢ is not a root, i.e. that o €I, Then the
maximal chain {¢+7r¢}_rgiss of roots has s =0, so 2{p, 7¢)/ (r¢, T¢)
=720, proving that 2{p, T¢)/{e, ¢) is 0 (in which case ¢ L7¢ and
70— &A) or is 1 (in which case (o, T¢)=3%(p, ¢), To—@EA, and
To—2¢0&A). Let £ denote heC+5.eC+Go+G-o+Gre+Gre in the
first case, heC+h,0C+Go+Go+Gro+G—re+Go—re+Gre—e in the
second case. Then £ is a 7-stable subalgebra of type 4:®4,0r 4:in G,
[3¢, £]C &, and £C@,+7®;; the latter is obvious in the first case
and follows from (ro—¢, 8s)=0={(p—7¢, 8s) in the second case.
Lemma 8.4 says £C9y,;. That completes the proof of (2), and (1)
is an immediate consequence.

If Nz =M, then M) CP,+7@, implies Ny, CP,+7@,. Con-
versely suppose M) C®r+7F,. Then M,y C N,y implies that Iy,
=M+ ZA Gy where A4 is some 7-stable set of roots such that

fa€E A then —a & &N 7%, {a,05) <0 and a+ra € A.

If A is not empty, choose a €4 and observe that Geire C [Mpa1, Nia]
C Ny CP2+7®2, so T(a+7a) =a-+7a implies Gatra CPMNTR,; that
implies {¢-+7a, 6s) 2 0, contradicting

(@ + 7a, 8) = (@, 8s) + {ra, 10s) = 2a, ds) < 0.

Thus 4 is empty and N =M. Q.E.D.

We apply Theorem 8.5 and Proposition 8.7 to the question of
whether holomorphic arc components of Go(x) are complex submani-
folds of X. Note that, in Theorem 8.9, (5) is the algebraic criterion
for (1); it then specifies N by (4), thus specifying Sp) = Ni,0(x)
EN[:].O/(PzﬂTPz)m

8.9. THEOREM. Let X =G/P be a complex flag manifold, Gy a real
form of G,xEX, 3C®.a v-stable Cartan subalgebra of G, and ® a subset
of a simple 3C-root system such that ®;= ®s. Retain the notation (8.6)
and (8.8). Then the following conditions are equivalent:

1. Every holomorphic arc component of Go(x) in X is a complex sub-
manifold of X.
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Stz1 is a complex submanifold of X.
m[:] C(Pz +T(Pz-

. Nizy =Mz, given by (8.6) and (8.8).
Mz 2s an algebra.

R aEaES

Proor. (1) implies its special case (2). Conversely, if gEG,, then
25121 = Sigz1, 50 (2) implies (1).

Lemma 8.4 says that (3) implies (2). For the converse we define a
Go-invariant distribution T = {T ,,},,e Gomy on Go(x) as follows. If
&G then v* denotes the corresponding real tangent vector field on X,
and its value at y&X is denoted v,*. Now define, for every yEGo(x),

(8.10a) T,= {ov}*: vE(®y+70,)NGo}, real subspace of Go(x),.
We will prove that every holomorphic arc in Go(x) is tangent to T,
i.e. that

(8.10b) if f: D—X is a holomorphic arc in Go(x) then fuD,C Ty,

for every z&€D.
Assume (8.10b). As (2) says that each tangent space to Sy is filled
out by the tangent spaces of holomorphic arcs in Go(x), it follows that
{v,,*: vE E)'L[,,],o} CT, for every yEGo(x); it follows that 9,0
C(®z+7®@:)MNGo, 50 Ny C®+7®,. Thus (2) implies (3) modulo the
truth of (8.10b).

We prove (8.10b). Let zED, BED,. Let Jp and Jx be the almost
complex structures on D and X, so fx(JpB) = Jxf«B because f is holo-
morphic. f(D) CGo(x) implies that both fi8 and fxJpB are in Go(x)s ).
Thus we have 9&G, with fif8 =v}'zz), and feJpB=JxfsB=J xv,"(‘,)
=(iv)}'2,). That says wEGe+ sy, say w=u-+w where #EG, and
wWERs(»). Now t9=9 implies

20 =14 — 7(1v) = (u+ w) — (74 + ™w) = w — Tw.

Thus 299E ;) +7® (), S0 VEGI N (Prs)+7F%(»y), proving f*B=v,"E,)
E Ty (8.10b) is proved.

Proposition 8.7 contains the equivalence of (3) and (4). Summariz-
ing now, we have proved (8.10b) and have shown that (1), (2), (3)
and (4) are equivalent. (4) implies (5) because 9, is an algebra. Now
we only need to prove that (5) implies (4).

Suppose that M, is an algebra. Let 9M(,;,0 denote its real form
M 1MGo; let Mz and Mz ,0 denote the analytic subgroups of G and
Gy for M, and NMyg,0. Define My, =ad(g) My, then Migz,0, Mipn
and M,.,0 as above, for every g&G,; those algebras and groups are
well defined because My;,0D (P:N\7P.)o=GoN\P,. Now we have a
distribution M= {M,} on Go(x) given by

M, = {v,*: v ESIZ[,,],O}.
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The distribution is integrable because M, is the tangent space to
My,0(y) at y. We will prove that every holomorphic arc in Go(x) is
tangent to M. As M is integrable, and as its integral manifolds
My.0(y) are complex submanifolds of X by Lemma 8.4 and
Miyz1,0(gx) =g Mz,0(x) for gEG,, we will conclude that the holo-
morphic arc components of Go(x) are complex submanifolds of X.
Then (5) implies (4) and the theorem is proved.

Now we show that every holomorphic arc in Go(x) is tangent to M.
As M,qy =g« M, for yEGo(x) and g&G,, it suffices to consider holo-
morphic arcs f: D—X in Go(x) with f(0) =x, and to prove fxDoC M.,.
If f«Do =0 this is automatic. Now suppose f«Do7#0. The implicit func-
tion theorem says that f maps a neighborhood of 0 diffeomorphically
onto its image, so we cut D down and assume that f: D—f(D) is a
diffeomorphism. Let n be a real vector field on D, let Jp and Jx be
the almost complex structures on D and X, and let £=fu. Then
(8.10b) £ and JxE=fsxJpn are tangent to T’j(D), and so is [£, Jx£]
=f«[n, Jon].

Given v&G,, the vector field 9* induced on Go(x) is induced from
the 1-parameter group {exp #v} CGo acting on Go(x); it is the projec-
tion of a right invariant vector field on Go. Let o be a smooth local
section of Go—Go/(PMN7P;)o=Go(x) in a neighborhood W of x. If
vEG, and if 7 denotes the corresponding left invariant vector field
on Gy, then ivl «(W) Projects to a vector field v’ on W. Observe

T, = {v;: v E G (P, + 7@y} is {vz: P EG N (P + f(P,)},
My = {1);: vEEmM,o} is {7):: vem[,],o},
N, = {v;i v € Tpy0f is {v;i v € Npa oo}

from Gy-invariance of the corresponding distributions. Now cut W
down if necessary, so that the tangent vector field £ to f(D)CSi
= Nl1,0(x) has representation

& = g'(y): where {: f(D) N\ W — Nyz,0 is smooth.

As ¢ is tangent to T, ¢ takes values in (@, +7®z) NN y,0.

Let A’ denote the set of all 3C-roots ¢ such that GoC(®:+7®:)
NRNz; but G M. Then (®:+7@)N Nz =M+ @ direct sum
where @= D4’ Gy, and { takes values in M (,;,0+ @9 where @ = GMNGo.
Decompose { =u-+a where u takes values in 9,0 and « takes values
in @¢. That decomposes £=m-+a and Jxé=Jxm-+Jxa where

t
Mmy = n(y)z and gy = a(y),.
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Now
le, Jxa]. = [t — m, Jxt — Txm].
= [£, Jxt]. — [m, Txtls — [£, Txm]. + [m, Txm]..

We have already seen [£, Jx£].ET.. We have [m, Jx¢£].ET. and
[, Jxm].E T, because m and Jxm are tangent to M and My, pre-
serves the real span of the tangent spaces to holomorphic arcs. And
finally [m, Jxm],EM,CT, because My,0 is an algebra. Thus
[a, Jxa].ET,.

A’'=A4UrA disjoint where A =4'N7®*=A4'N —®%, If p€ 4 choose
05£e,EGp. Define po =eo+7€0EGo and go =10 +7(1€p) =160 —17T€o & Go.
As @ is the holomorphic tangent space to X at x, Jxp, =g} and
Jxgt=—p!, for p€ 4, at x. Invariance then gives Jxp!=g! and Jxg!
= —p! on Go(x) for o€ 4. Now express a(y) = D_4(s¢(¥) po+te(¥)ge),
so that a= D 4(s,p}+1,q%) and Jxa= D 4(—tp}+s5,g0). Then we
compute [a, Jxal= D oyea [stp,+2,0b, —tp)+s,4}] and

[sope + toge, —teph + 5003]
= — 5o pb(t) 24 + - Dil50) - P — sely[pes 4]
+ 5o ol(s9) @0 — 5-Gu(5%) 18 + sesy e, 4]
= to-qblt) 1y + - Do (te) g5 — tetylge, 23]’
+ to-an(se) a4 — su-qo(te) @b + tosilae, ]
As NE A implies p},, ¢f,E T, and as [a, Jxa],E Ty, it follows that
0 = [, Jxa]. mod. T,

= 3, {—se(®)ty(2) [po, Pw]l + so(2)5y (%) [ P W]I

P, YEL

— 1a(@)1y() [ger py) + te()59() e, qy]4} mod. T,
T {—se@ty(x) (e, 0] + 7lee, eg] + [ee, 7e4] + [ree, &)

PYEA

+ so(@)5p(2) ilew, eg] — irlees e5] — ilew, 7eg] + ilres, &)1

— to(@)ty(@) ilew, €] — irlees e5] + ilew, e4] — ilree, e

+ to(x)sy () (— [e¢, e.;] -7 [e¢, ew] + [ew: T ew] + [“’ €oy ew])l}
= =2 3 se(@)tyl5)([ee, reg] + [ree, es])s

P ¥EA

+ 2 {s¢(x)s¢,(x) + t¢(x)t¢(x)} {i([‘f ee, &y] + [rev, w])l}.

Y.VEA
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Let BEA. Then (B, 85)<0, —B&EP*N7®P* and (because Gsq M)
B+78 is a root. If GsisC®r+7®;, then 7Gs s =Gs4rs would imply
Gs1rs CPNT®,; that would say (8+78, 0s)=0, contradicting
B+718, 82)=2(B, 0s)<0. Thus GausCP;*N7®;* Define Eg, s
= {o}: vzegoﬂgﬂ#p}, 2-dimensional real subspace of the tangent
space to Go(x) at x. Then the projection of [a, Jxa]. to Egy.p is

0 = {5s(0) + ta(®)"} {23lres, es]} f
X {ise@su(®) + ite(@)ty(x) — 250(2)te(@)} [ree, 4]

¢y in A
P+r=f+18

+ X (fise(®)sy(®) + ite@)y(®) + 256(@)ty(@)]} [rev, eo)i.
Crrimpins

Suppose that the holomorphic arc f does not satisfy feDoC M,.
Then we can choose 7 such that §,€ M., i.e. such that a(x)#0, so
there is a root BE A for which sg(x)2+125(x)270. Recall that @ is dis-
joint from the parabolic subalgebra @, in fact that @ CQg". So there
is an ordering of the 3C-roots of G such that 4 consists of negative
roots. Now choose 8 to be the highest root in 4 such that sg(x)?2
+15(x)250, i.e. such that the real numbers sg(x) and #5(x) are not
both zero. Now suppose ¢, Yy €A with ¢ #¢ and ¢+r¢=8-+78. Then
either so(x) =0=1tp(x) or sy(x)=0=t,(x); for otherwise ¢<B and
Y <B, whence ¢p+1¢ <B+78. Thus

se(x)sy(2) = to(x)ty(x) = se(x)ty(x) = 0,
and our calculation above reduces to

2 2 . t
{s8(x) + ta(2) } {2i[res, e5]}. = 0.
As { i[Tep, ep] };?50 from 7Ga.rs = Gptrp, it follows that ss(x)2425(x)2 =0,
which contradicts our choice of 8. We conclude that fxDoC M,. That
completes the proof of the theorem. Q.E.D.

8.11. COROLLARY. Let X =G/P be a complex flag manifold, Go a real
form of G,xE X, 3C ®; a T-stable Cartan subalgebra of G, and P a subset
of a simple 3C-root system such that ®,= ®s. Then the following condi-
tions are equivalent:

(1) Nz =011, parabolic subalgebra defined by (8.6).

(1) Qo =M, parabolic subalgebra defined by (8.8).

(iii) If ¢ is an 3C-root such that {p, 62)<0 and —o ED*MNTD* then
©o+7¢ 1s a root.

If those conditions hold, the holomorphic arc components of Go(x) are
complex submanifolds of X.
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Proor. (iii) implies (ii) by (8.8). Given (ii), 9}z is an algebra, so
Nz =M by Theorem 8.9, whence (ii) says N =Qr. Given (i),
Q121 CM ) C Ny implies (ii), and (iii) follows by (8.8). Q.E.D.

8.12. ExaMpPLE. Let G=SL(2m, C) and either Go=SL(m, Q) with
maximal compact subgroup Sp(m), or Go=SL(2m, R) with maximal
compact subgroup SO(2m). Choose a 7-stable Cartan subalgebra
3¢ CG and a 7-stable simple root system ¥. Then 7 acts on ¥ by

1 2 Ym-1

™ $ > Ym (Vi = Yami).

Yom-1 Yom-2 Ymat
Let ® =®,=®s where &= {g{q, e, 11/2,,._2}. Then
X = G/P is complex projective (2m — 1)-space,

and we note

&= {Yit v+ -+ V¥ 1SS 2m— 1},

@ = {1+t - -+ 1552 2m— 1},
so

PN\ 7d* = { u} where p = y; 4+ * - - 4+ Y2my maximal root.
Thus
6s =p and Qp; = Cr, T = {Ys s, Yms}.

Now let B consist of all roots ¢ such that GoC ®.+7®, and G, Q5.
Then

B={—@Wi+ - +¢), —W+ -+ )
1Si<2m—1,1<j=2m—1}.
If o€ B, now ¢+7¢ is of the form
=@+ )+ Wami -+ Yam)]
which cannot be a root because we cannot have 2m —:=1¢+41. Thus
if o & B then ¢ + 7¢ is not a root.
In other words, B=1I", so now

M) = @, + 70, =3+ 3, Go, notan algebra.

Prl—p
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Thus the holomorphic arc components of Gy(x) are not complex sub-
manifolds of X. In fact, as @, is maximal among the 7-stable sub-
algebras of G, one expects that the Qp,0(y), YEGo(x), would be maxi-
mal among the connected complex submanifolds of X that are con-
tained in Go(x).

The example above is based on the situation that 7 preserves a
simple root system ¥ but acts nontrivially on ¥. The latter occurs if
and only if 7 induces an outer automorphism on the compact real
form of G, i.e. if and only if the maximal compact subgroups K of Go
have rank K<rank G, Later we will see, for the case where X is a
compact hermitian symmetric space and the inclusion Gy(xo) CX of
some open orbit is the Borel embedding of the noncompact dual of X,
that every holomorphic arc component of every Go-orbit on X is a
hermitian symmetric submanifold (the signature of metric can be
indefinite there). In particular, if X is complex projective space as in
the example, and if Go is not one of the real forms of G considered
above, then it will follow that every holomorphic arc component of
every Ge-orbit is a complex submanifold of X.

8.13. LEMMA/DEFINITION. Let X =G/ P be a complex flag manifold,
Go a real form of G, xE X, L C @, a T-stable Cartan subalgebra of G, and
® a subset of a simple 3-root system such that ®,= Ps. Let Qrz be the
7-stable parabolic subalgebra of G defined by (8.6), Q.0 the real form
Q121G of Qrz1, and Qixy,0 the analytic subgroup of Go for Qrzy,0. Then

(1) Qrz1,0(x) CSiyy ts a complex submanifold of X,

(ii) 9z, Q21,0 and Quuy,o(x) are independent of choices of 3¢ and P,

(iii) if yEQua1,0(x) then Quio(y) =Qa1,0(x), and

(iv) if gEGo then Qroz1,0(gx) = gQtz1,0(%)-

We will refer to the Qui,0(y), YEGo(x), as the algebraic arc com-
ponents of Go(x).

REMARK. Lemma 8.13 says that the algebraic arc components of
Go(x) enjoy the same formal properties as the holomorphic arc com-
ponents. Example 8.12 shows that they are the best substitute for the
holomorphic arc components in case the latter are not complex sub-
manifolds of X. Corollary 8.11 gives the criterion for the algebraic arc
components of Go(x) to coincide with the holomorphic arc components.

Proor. Assertion (i) is immediate from Lemma 8.4.

Suppose that Qp.,0(x) does not depend on the choices of 3¢ and ®.
If gEG, then we define Qga,0(gx) from the choices ad(g)3¢ Cad(g)®.
=@, and ad(g™)*P; then Q1 =2ad(g)Qu1, S0 Qroe1,0=2d(g)Qre1.0s
implying the statement Qg.1,0(gx) =g Qra1,0(x) of (iv). If g& Q1,0 we
obtain Qpg1,0=Qe1,00 50 Qroa1,0(8%) = Qra1,0(g%) = Qa1 ,0(x), proving
(iii). Thus we are reduced to proving (ii).
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Given 3C, 05 = Zq,"n,@”¢= E_q,“n_,q,“( —y) is the sum of all 3C-
roots —y such that Gy ®.+7®,; thus 8s, Qrz1, Q1,0 and Qra,0(x) are
independent of choice of the set ® for which ®,= ®s, and they depend
only on the choice of 3C.

Let 3¢’ and 3¢”’ be two choices of 3C. They are 7-stable Cartan sub-
algebras of respective reductive parts (®,MN\7®;)’ and (®.N7®,)"" of
@:N7®,. Let Qf;and Q) be the analytic subgroups of G for the cor-
responding algebras @/; and Q(;j; let L’, L”” and L denote the respec-
tive analytic subgroups of G for (®.N7®.)’, (®.N7®,)" and (C.N7®,).
Then (L'UL") CLC(QmM QL) As any two reductive parts of L are
conjugate, we have gt &L such that ad(g) L’ =L’; as any two Cartan
subgroups of L’ are conjugate, we have go& L’ such that ad(g.g)3c"’
=3'. Now g=g.g is an element of Qf} such that ad(g)Qi;=Qf.
Thus @ =Qf. It follows that @f,0=Qu.0 and Qf0(x)=Qf,0(x).

Q.E.D.

We note the relations of holomorphic and algebraic arc com-

ponents with projections of flag manifolds.

8.14. ProPOSITION. Let Py C P, be parabolic subgroups of G, X i =G/ Pi
the resulting complex flag manifolds, and w: X,—X, the projection
gP1—gP,. Let xo& X, and let Go be a real form of G.

1. There exist points x, Ex—2(xy) such that Go(x1) is an open subset of
T 1Go(x2).

2. If x,En~(x2), then the following conditions are equivalent:

(2a) Go(x1) is open in T 1Go(x2).

(2b) (@1)z;+7(P1)zy = (P2)zy+7(P2)aye

(2¢) codimensiong(Go(x1) CX1) =codimensiong(Go(xz) CX>).

(2d) Let 3¢C(®1)s, be a 7-stable Cartan subalgebra of G, &1CP2
subsets of a simple 3C-root system such that (®s)s; = Ps,; then PINTH]
=P3MNrP3.

3. Let x,En~Y(x2) with Go(x1) open in w'Go(xs). Choose 3¢ and
D, CP; as in (2d). Then

(3a) the linear forms 8s,=0s,, the parabolic subalgebras Qpay
= Qtzq1, and the algebraic arc components of the Go(x:) are related by

Qtza).o(%2) = 7Qpey1,0(%1) and  Qreyr,o(®1) = Go(#1) M T72Q zy1,0(%2) 5

(3b) the spaces Mz =Mz, and in pariicular one is an algebra
if and only if the other is an algebra;

(3¢c) the holomorphic arc components of Go(x1) are complex sub-
manifolds of X, if and only if the holomorphic arc components of Go(xa)
are complex submanifolds of Xo;

(3d) holomorphic arc components Si.;3 CGo(x:) CX; are related by
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Steg) = e end Sy = Go(®1) N 77 (2,15
(3e) the algebras Mizy) = N2y and the groups Nizy1,0=Niz,,0.

PRroOOF. The projection w: X;1—X; is Ge-invariant, so 7~ 1Go(x2) is a
union of Go-orbits. As there are only finitely many Ge-orbits on X,
now n—1Go(x2) is a finite union of Ge-orbits, so at least one of them has
full dimension in 7—'Go(x2). That proves (1).

If Go(x1) is open in 7~!Go(x3), then

codimensiong(Gylx;) C X;) = dimg X; — dimg Go(x1)
= dimg X; — dimgr~1Go(x2)
= [dimz X, + {dimz X; — dimg X,}]
— [dimg Go(x) + {dimz X; — dimg X,}]
= dimg X; — dimg Go(x2)
= codimensiong(Golx2) C X32).

Conversely, if those codimensions are equal, the argument shows that
dimg Go(x1) =dimg 7 'Go(x2), s0 Go(x1) is open in 7~1Go(x;). Thus
(2a) and (2c) are equivalent. Theorem 2.12 (ii) says that (2c) is
equivalent to I@'{f\r@'{l = Iégnf@g[ . As &3 C®}, the latter is equiva-
lent to ®7Nrd}=®3N\7®;. Thus (2c) and (2d) are equivalent. We
reformulate (2d) as —®7N —7®} = —P3N —783, i.e. as (@1),"MN7(C1) ;"
=(®2)z,"N7(®2);", i.e. as (®1)z;+7(P1)z, = (®2)z,+7(®2)z,, which is
(2b). That completes the proof of (2).

Let x1&71(x2) with Go(x1) open in 7Go(x;). Then we have (2b),
(2c) and (2d). From (2d), ds,=0s,, 50 Qrz) = Qtzgty Qizi1,0= Qleal 0 and
Qtza1.0(x2) =7Qpz1,0(%1); and @2,MNGoCQzy1,0 implies further that
Qrzq,0(%1) =Go(x1) NT~1Q12,,0(x2), completing the proof of (3a).
Qzy1 = Q12,1 together with (2b) implies MM, =M s,, proving (3b).
Theorem 8.9 and (3b) imply (3c). If the holomorphic arc components
are complex manifolds then (3d) follows from (3b) and Theorem 8.9.
But in general we must look at holomorphic arcs.

If f: D—X, is a holomorphic arc in G¢(x:) then (w-f): D—X:is a
holomorphic arc in 7Go(x1) = Go(x2). Thus 7Sz CSzq. Let S=Go(x1)
N 1Sz, ;D=1r| s, and £ the fibration p: S—Siz,. Then § is locally
trivial and its fibres carry complex manifold structures as open sub-
sets of w-fibres. If y &S this implies Sp,) =p~pS(1. Thus S, is a dis-
joint union of sets pSp) =7Sy), YES, and S is disjoint union of the
corresponding p~'rSp,. As the images of holomorphic arcs in Go(x2)
fill out a neighborhood in Sy, of every point p(y) €Sz, and as those
holomorphic arcs lift to S, the sets p~'&xSy, are open in S, so
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S=p"rS,) by connectedness. That proves (3d). It follows that
R zy1,0= Nz,1,0 modulo the isotropy subalgebras of Gy at x1 and x,.
As those isotropy subalgebras (®:):;MN\Go=(®4)z;N\7(®4)z;,MNG0C Q=1
NGoC Niz,1,0, NOW Higy],0= Nizq1,0; (3€) follows. Q.E.D.

We describe the “space of holomorphic arc components” of a Go-
orbit on X.

8.15. THEOREM. Let X =G /P be a complex flag manifold, xEX, Gy a
real form of G, and K a maximal compact subgroup of Go. Define projec-
tions

(8.162) o: Go(¥) > Go/(GoN Nisp) by o(gr) = g(GoN Niap),
(8.16b) «k: Go(x) > Go/(GoN Q1) by k(gx) = g(GoN Qra1),
and
(8.16c) »: Go/(GoN Qz1) = Go/ (Go N Nia1)
by g(Go M Qpz1) = g(Go M Nia).

1. o 1s well defined and (8.16a) is a Go-equivariant differentiable fibre
bundle with
(1a) structure group Go Ny, the parabolic subgroup of Gy with
identity component Nz),0,
(1b) fibre over a(gx) equal to the holomorphic arc component Sign
=gS1s of Go(x) through g(x), and
(1c) compact base Go/(GoN\N)) =K /(KN Nyy), real flag mani-
fold that parameterizes the holomorphic arc components of Go(x).
2. k is well defined and (8.16b) is a Go-equivariant differentiable fibre
bundle with
(2a) structure group Go\Qrz, the parabolic subgroup of Go with
identity component Qiz1,0,
(2b) fibre over k(gx) equal to the algebraic arc component Qigz,0(gx)
=gQ1,0(x) of Go(x) through g(x), and
(2c) compact base Go/ (GoNQ1z1) =K /(KNQa), real flag manifold
that parameterizes the algebraic arc components of Go(x).
3. v=0-k"1, well-defined projection of real flag manifolds, and (8.16¢)
has fibre over v(gx) parameterizing the algebraic arc components of
Go(x) that are contained in the holomorphic arc component Siyz.

PRrOOF. @.N7®,C Q) C Ny implies GoNP,CGoMN Qo CGoNNia,
so o, kand v =0-k"! are well defined, and (8.16a, b, c) are G¢-equivari-
ant differentiable fibre bundles with structure groups as described in
(1a) and (2a).

Let F be the complex flag manifold G/N; or G/Qp;. View G as a
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linear algebraic group def/R such that G, is the topological identity
component of the set Gg of real points. Then F is def/R and Theorem
3.6(2) says that the Go-orbit of the identity coset on Fis Fg, and that
it is the unique closed Go-orbit on F. That proves that the base spaces
of (8.16a) and (8.16b) are real flag manifolds and that K acts transi-
tively on them. Now it only remains to prove (1b) and (2b); for then
(1c), (2¢) and (3c) will follow immediately.

Choose a 7-stable Cartan subalgebra 3C®, of § and decompose
3Co=3CMGe as JCr+ 3y, toroidal and vector parts relative to a Cartan
involution 6 of Go. The choice of 3¢ determines reductive parts @,
Qg and Nf; let ZpC3C, ZeC 3 and ZyC3C denote their respective
centers, and let ZCJ3C denote the center of ®;N\7¢}; note 7Z=1Z,
T7Zo=1%Zq, TZy=2Zy and ZyCZoCZ.

Ny is the centralizer of Zy in G, @}, is the centralizer of Zg in G,
and @ is the centralizer of Zp in G, because N, Q3 and @, are
parabolic subalgebras of §. Now ®,N\7 @, is the centralizer of Zp+7Zp
in G, and it follows that ®;MN\r@®; is the centralizer of Z in G. Decom-
pose real forms:

ZN,O = ZNn go and ZN,O = ZN,T + ZN.V)
Zo.o = ZoMN Gy and Zg,= Zor+ Zov,
Zo=ZNG and Zy=Zr+ Zr

into toroidal and vector parts by intersecting with 3¢z and 3Cy.
If $Cg then Z(8) denotes the centralizer of 8§ in G and Zy(S) denotes
the centralizer GoN\Z(8) of § in Go. Now we have Ni;=Z(Zw,r)
NZ(Zy,v), Qu=2Z(Zq.r)NZ(Zq,v) and PiN\7Py=Z(Zr)N\Z(Zv);
for Z(S) =Z(8N\Go) whenever § is a 7-stable subspace of G. Thus

GoN N1 = Zo(Zwr) N Zo(Zw.7),
GoN Qua = Zo(Zar) N Zo(Za ),
and
GoN PoN\ 1P, = Zy(Zp) N Zo(Zy).
It follows that
Go M exp(iZy,y) meets every component of GoMN\ N I,l,
Go M exp(iZq,v) meets every component of Go /M Qa1
and

Go N exp(iZy) meets every component of Go M P.N 1P,
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Using (®.MNr®.)" = C;NrE;, we also have
Go N exp(iZy) meets every component of Go M (P, M 7P,)".

Connectivity of real unipotent groups says that Go M\ N} meets every
component of GoMN\ N, GoN Q[ meets every component of GoM\Qya1,
and G (P.N7P,)* meets every component of GoMN\(P,N7P,)
=GN\ P,. Thus

Go N exp(iZy,y) meets every component of Go M N3,
Go M exp(iZq,v) meets every component of GoM Qpy,

and

Go N exp(iZy) meets every component of GoMN P;.

ZvCZoCZ implies 4Zy,yCiZqvCiZy, so GoNexp(tZy,v) CGo
Nexp(1Zq,v) CGoNexp(iZy). Thus Gy P, meets every component
of GoMQyz and also meets every component of Go/\Ny,;. This proves
that (GoNQ1) (%) and (GoN\Ni,;p)(x) are connected, hence equal to
Qt21,0(x) and Npa,0(x) = Stz), respectively. That proves (1b) and (2b),
completing the proof of the theorem. Q.E.D.

8.17. DEFINITIONS. In the notation of Theorem 8.15, the base space
Go/(GoN\Nyz)) of the fibre bundle (8.16a) will be called the space of holo-
morphic arc components of Go(x), and the base Go/(GoN\Qi) of the
bundle (8.16b) will be called the space of algebraic arc components of
Go(x). This terminology is based on results (1c) and (2c) of Theorem 8.15.

8.18. COROLLARY. Let Py C P, be parabolic subgroups of G, X;=G/P;
the resulting complex flag manifolds, n: X1—X, the projection gP1—gPs,
Go a real form of G, x:E X, and x1E7~1(x,) such that Go(x1) 1s open in
T 1Go(%2).

1. 7 induces a diffeomorphism Si">7 Sz = Stxz) from the space of
holomorphic arc components of Go(x1) onto the space of holomorphic arc
components of Go(xz).

2. w induces a diffeomorphism Qrz,0(x)—7Qz1,0(%) = Qxey,o(mx)
from the space of algebraic arc components of Go(x1) onto the space of
algebraic arc components of Go(xz).

Proor. This is immediate from Theorem 8.15 and the results
Q121 = Quzs1 and Ny = N, of Proposition 8.14(3). Q.E.D.

8.19. COROLLARY. Let X =G/P be a complex flag manifold, xEX,
and G a real form of G. Then the following conditions are equivalent:

(i) Go(x) is the unique closed Gy-orbit on X.

(ii) Golx) is compact.
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(iii) The holomorphic arc components of Go(x) are compact.
(iv) The algebraic arc components of Go(x) are compact.

Proor. We have noted equivalence of (i) and (ii) from compactness
of X. Now consider the fibrations (8.16)

o: Go(x) = Go/(GoN Nizy),
K: Go(x) g Go/(Go N Q[z])

whose base spaces, both compact, are the respective spaces of holo-
morphic and algebraic arc components of Go(x). As the base is com-
pact, the total space is compact if and only if the fibres are compact.
That given equivalence of (ii) with (iii) and with (iv). Q.E.D.

8.20. CoROLLARY. Let X =G/ P be a complex flag manifold, Gq a real
form of G, and xEX. If the holomorphic arc components of Go(x) are
points, then Go(x) is the closed Go-orbit on X. Semiconversely, if Go(x)
1s the closed Go-orbit on X, and if dimg Go(x) =dime X, then the holo-
morphic arc components of Go(x) are poinis.

ProoF. The first assertion follows from Corollary 8.19 because
points are compact. Now suppose dimg Go(x) =dim¢ X. Then @, =7,
by Theorem 3.6, so ®,N\7®,=®,+7®,, and the construction (8.8)
vields 9, as the aigebra ®,. Theorem 8.9 then says 9, =@, s0
Stz1 = N2y 0(x) = (GoNP,) (x) =x. Q.E.D.

9. Global conditions for the components of an orbit. We will study
certain conditions related to complexity and measurability for the
holomorphic arc components of a Goe-orbit. Those conditions are
defined as follows.

9.1. DEFINITIONS. Let X =G /P be a complex flag manifold, Go a real
form of G, x EX, Stz the holomorphic arc component of Go(x) through x,
N 0 the identity component of the normalizer of S in Go, and Ny
=Ny

1. The orbit Go(x) is called partially complex if its holomorphic arc
components are complex submanifolds of X, i.e. if S s a complex
submanifold of X.

2. The orbit Go(x) is said to be of flag type if the N (x), ' EGo(x),
are complex flag manifolds, i.e. if Niy(x) is a complex flag manifold,
i.e. if Nz has a 7-stable reductive part Nty that is transitive on Nz (x)
and that has Niy\P, as a parabolic subgroup.

3. The orbit Go(x) is called measurable if its holomorphic arc com-
ponents carry invariant positive Radon measures, i.e. if Sy carries an
Ny, 0-tnvariant positive Radon measure.
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4. The orbit Go(x) is said to be polarized if the ®@,+, x' EGo(x), have
7-stable reductive parts, i.e. if T®, =, for some choice of reductive
part ®,C Q..

5. The orbit Go(x) s called integrable if the distribution T of (8.10)
s integrable, i.e. if ®,+7®, is a subalgebra of G.

Theorem 8.9 gives several conditions for Go(x) to be partially com-
plex. The analogous condition for algebraic arc components is auto-
matic (Lemma 8.13), so it will not be given a name.

The notion of flag type is a useful hereditary condition. The anal-
ogous condition for algebraic arc components is that Qp;(x) be a
complex flag manifold. In that case we will say that Go(x) is of flag
type relative to its algebraic arc components.

The notion of measurable orbit is the primary object of this paper.
In §6 we obtained the basic facts for measurable open orbits, and the
definition here specializes to that of §6. The analogous condition for
algebraic arc components is that Q;,0(x) carry a Qi e-invariant
positive Radon measure. In that case we will say that Go(x) is
measurable relative to its algebraic arc components.

The notion of polarized orbit will be useful in studying the three
concepts above. Let 3C®, be any 7-stable Cartan subalgebra of G.
That determines a choice of @, and Lemma 2.10 says (@, N7 ®,)"
=@,N\r®;,. Thus Go(x) is polarized if and only if dim(®.Nr®;)"
=dim @,. The latter can be expressed as dim { (®.N\7®,)/(®.N7r®,)*}
=dim{®,/®%}, which is independent of choice of 3. Thus Go(x) is
polarized if and only if @, =7® relative to every 7-stable Cartan sub-
algebra 3¢C@; of G.

The notion of integrable orbit is recalled from §7, where it was
studied in some detail.

9.2. THEOREM. Let X =G/P be a complex flag manifold, Gy a real
form of G, xEX, 3C®, a 7-stable Cartan subalgebra of G, and ® a
subset of a simple 3-root system such that ®, = ®Ps. Define

(93) Vi= 3 Go, Vs=10s= 3 Gp UVo=7Vs~+ ;.

d¥N—rd% —3*Nro%
Then Go(x) is measurable if and only if

N = (PN 7@,)", N = (@N7®,) + Vs,

9.4
( ) 91[2] = ((Pz N T(Pz) + Vs

If Go(x) is measurable, then
(1) Go(x) is partially complex;
(ii) Go(x) s of flag type;
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(iii) Go(x) is polarized if and only if it is integrable; and

(iv) the invariant Radon measure on Sy is the volume element of an
Ny, 0-tnvariant kaehler metric (nondegenerate, but not necessarily posi-
tive definite).

ProoF. Let 4 be the set of 3C-roots such that ;= (P.N7TE,)
+ >4 Ge and define @= D4 ¢. If Go(x) is measurable, then Si; has
a positive Ny, e-invariant Radon measure u. Then the coset space
Nizy,0/ (N121,0\Pz) = Nz 0/ (P17 P,)o representing Si; has p as
invariant measure, so (P.MNP,)o acts with determinant +1 on its
tangent space, i.e. (®./MN7®;)o acts with trace 0 on I,/ (CNT®2)o0,
i.e. @M@, acts with trace 0 on N/ (@P.NT®;), i.e. (P.NT®,)" acts
with trace 0 on D4 G, i.e. 3C acts with trace 0 on D_4 Gy, i.e. @ =0.
The argument is reversible. Thus Go(x) is measurable if and only
if a=0.

Suppose Go(x) measurable. If &4 with G, C9,;, then a has
positive inner product with the sum of the roots of 91, contradicting
a=0. Thus 2.4 G.C9, and it follows that 9y C(®.N7®;). Now
A=—A4 by Lemma 6.2, for ;M (®:Nr®:) is reductive. As 4 is
disjoint from ®*N\7P*, i.e. as

AC(@N=—71)U (=N 727) U (&* N — 78%) U (—P* N 78%),

this says 4 GeCU,. As N, is parabolic now Y 4 Go=0,. Thus
Nz = (®:N7®,)+V,. That proves (9.4).

Conversely assume (9.4). Then N, acts trivially on Si; and
N0 acts transitively with reductive isotropy subgroup (P;N\7P})o,
so Lemma 6.2 says that Go(x) is measurable.

Suppose Go(x) measurable. Then (9.4) implies Ny C (P +742), so
Theorem 8.9 says that Go(x) is partially complex; that proves (i).
N Ce: by (9.4), so Ni,; acts trivially on Np;(x), whence Ni, is
transitive on N, (x); the isotropy subalgebra of 9, at x is NHNE:
= (®.N7®;)"+VF, parabolic subalgebra; thus N, (x) is a complex flag
manifold; that proves (ii). If Go(x) is polarized then 7®r=&", so
(®:NT®;) = @ +7F,+ (C;NTEZ) so (®.N7C,) +Uz=(@z+76)z): and
(9.4) says that M, = (®,+7®;); thus ®.+7®, is an algebra and Gy(x)
is integrable. If Go(x) is integrable then ) = (®;+7®,) by Theorem
8.9, for Qi = (®.N7®;); then (9.4) says that M —7P¥ and —P+N7P*
are empty, so 7®* =®r and G(x) is polarized. That proves (iii).

Suppose Go(x) measurable. By (ii), ¥'=Ni,(x) is a complex flag
manifold N,;/(NiyM\P;) on which N acts trivially. Lemma 8.4
says that S =Np0(x) is an open Nie-orbit on Y. Now S is a
measurable open N[,q-orbit on the complex flag manifold ¥, so
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Theorem 6.3 says that its measure is the volume element of a (pos-
sibly indefinite) N{;o-invariant kaehler metric ds?. As N, acts
trivially on Si; it must preserve ds2 Thus ds? is Ny, ¢-invariant.
That proves (iv), completing the proof of the theorem. Q.E.D.

9.5. COROLLARY. Let X =G/P be a complex flag manifold, G, a real
form of G, xEX, and U, as defined in (9.3). Then Go(x) is measurable
relative to its algebraic arc components if and only if

Q‘{z] = (®;N T@c)u, QI:] = (®:N 70:) ' =+ U,

(9.6)
Q1 = (@2 N 7®;) + Vs
In that case,
(1) Go(x) is of flag type relative to its algebraic arc components;
(ii) Go(x) is polarized if and only if it is integrable;
(iii) the invariant Radon measure on Quz,0(x) is the volume element of
@ Qiz1,0-tnvariant, possibly indefinite, kachler metric.

PROOF. Qp;; can be substituted for 9, throughout the proof of
Theorem 9.2. Q.E.D.

To decide whether a given Go(x) is measurable, compute 8; and
Qz1 by (8.6), then My, by (8.8), and finally W, = (@.N7®;) +V, by
(9.3). Then Go(x) is measurable if and only if (i) My =W and
(ii) W is an algebra. It is easy to check (i), and it follows from (9.3)
that (ii) isequivalent to [V}, Vs ] CWia. The latter inclusion can be
unpleasant to check, but it is much more easily decidable than is the
inclusion [M ), M,y ] CMy that says My, is an algebra. So measura-
bility is easier to check than is partial complexity.

9.7. THEOREM. Let X =G/ P be a complex flag manifold, G a real form
of G, x€X, C®; a r-stable Cartan subalgebra of G, ® a subset of a
simple 3C-root system such that ®, = Ps, and Vs as in (9.3).

1. Go(x) is of flag type if and only if V,C Nyy.

2. If Go(x) is of flag type, then Go(x) is partially complex if and only
if Stz1 = Nigj,0(x) s an open N[, c-orbit on the complex flag manifold
Ni(%)-

3. If Go(x) is partially complex and of flag type, then dime Si
= |<I>"f\ —1'<I>“| , With equality if and only if Go(x) is measurable.

Proor. Suppose Go(x) of flag type, so Np; is transitive on
Y =N (x) and NizNP, is parabolic in Ni;. As N; is solvable it has
a fixed point yE V. If g&E Ny, then Np(gy) =gNp(y) =gy; thus Np,
acts triviailly on Y; now 9NC®:, so 7 =Nj,; gives us I
C(®.Nr®,). If p&P*M —7®, it follows that neither ¢ nor —¢p is a
root of 91j;;, so both are roots of 9;; thus V,C M.
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Conversely suppose V. C ;). Then 9, contains (@;+76%) 4+ Vs,
and 9y contains (®.MN7@:)*; it follows that NC(®.N7®,)*, so
Np, is transitive on Np;(x). The isotropy subalgebra 9;MN\@, con-
tains (®,N7®;)+ Vs, so it is parabolic in 9. Thus Go(x) is of
flag type.

Let Go(x) be of flag type, ¥ = N,j(x) = Ni;(x). Then Siz = Nia,0(x)
= Npj.o(x). If Go(x) is partially complex, then 9%,C(®.+7®,) by
Theorem 8.9, so Sy, is open in ¥V by Lemma 8.4. If Sy, is open in Y,
then it is a complex submanifold of X, so Go(x) is partially complex.

Let Go(x) be partially complex and of flag type. Then Ny,
=(®,N7®;)+V;+ w, where w, is a 7-stable sum of root spaces Gy,
@ N —1P*)U(—P*N1P7). Now dimeSy; = dimeNp(x)
= dim¢ V7 + dime(W, N\ 7®,) = |@* N — 78| + dime(W, N\ 76,)
= l¢I>“f\ —1@"[ , and equality means w,=0, i.e. Ny = (®.MNT®;) + Vs,
i.e. Go(x) measurable. Q.E.D.

9.8. COROLLARY. Let X =G/P be a complex flag manifold, Gy a real
form of G, xE X, ILC @, a -stable Cartan subalgebra of G, ® a subset of
a simple 3C-root system such that ®,= ®s, and VU, as in (9.3).

1. Go(x) is of flag type relative to its algebraic arc components if and
only if V;CQra).

2. If Go(x) is of flag type relative to its algebraic arc components, then

(22) Go(x) is of flag type,

(2b) the algebraic arc component of Go(x) through x is an open
QF).0-0rbit on the complex flag manifold Qpy(x),

(2c) the algebraic arc components of Go(x) have complex dimension
= |<I>“/'\ —-rCI>“I , with equality if and only if Go(x) is measurable relative
to its algebraic arc components.

PROOF. Q3 can be substituted for 9, throughout the proof of
Theorem 9.7. Q.E.D.

Recall Example 8.12. There G=SL(2m, C), Go is SL(m, Q) or
SL(2m, R), the simple root system ¥ = {1#1, IR 1#2,,,_.1} y Wi =Vom_i,

and ®,=@®s where = {1#1, s e, %m_z} . So X is complex projective
(2m —1)-space and we calculated
Q1 = ®r where I'= {{s, + + -, Yams} and

Mpz) = Co+7Cs = D ey Go Where p=¢1+¥a+ - - - +¥om_s.
Thus M, generates G. As M C Ny by Proposition 8.7, it follows
that 9 =G. Thus Go(x) is of flag type, but it is not partially complex.

9.9. THEOREM. Let X =G/ P be a complex flag manifold, Go a real form
of G, and xE X such that the orbit Go(x) is polarized. Then the following
conditions are equivalent:
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(i) Go(x) is integrable.

(ii) Go(x) is measurable.

(iii) Go(x) 7s measurable relative to its algebraic arc components.

(iv) Go(x) is partially complex and of flag type.

v) Go(x) is partially complex and is of flag type relative to its alge-
braic arc components.

If the above conditions hold, then Mz = (PN ®2) +V.=Qrx1, S0 the
algebraic arc components of Go(x) coincide with the holomorphic arc
components.

Proor. If Go(x) is measurable, Theorem 9.2 says that it is integra-
ble. If Go(x) is measurable relative to its algebraic arc components,
Corollary 9.5 says that it is integrable.

Suppose Go(x) integrable, so (8.6) and Theorem 8.9 show that 91,
=(®,+7®.) = Q1. As Go(x) is polarized, (®,+7®;) = (®.N7®,) +V,.
Thus Ny = (®NT®;) +V:=Qp1, and Theorem 9.2 says that Go(x)
both is measurable, and is measurable relative to its algebraic arc
components.

If Go(x) is measurable, Theorem 9.2 says it is partially complex and
of flag type. If Go(x) is partially complex and of flag type, Theorems
8.9 and 9.7 say that (@,N7®;)+V,CHC(®,N7T®,), while
(@N7®;)+V,=(®P,+7®,) because Go(x) is polarized; thus 9,
= (®,N7®.)+ U, and Go(x) is measurable by Theorem 9.2.

If Go(x) is measurable relative to its algebraic arc components, then
it is measurable because it is polarized, so it is partially complex by
Theorem 9.2; and V.C0,; by Corollary 9.5, so Go(x) is of flag type
relative to its algebraic arc components by Corollary 9.8. If Go(x) is
partially complex and is of flag type relative to its algebraic arc com-
ponents, Theorem 8.9 and Corollary 9.8 say that (®,N\7®,)+U.
CO) CHp C(®+7®,), while (@.N71®;)+V,.=(P.+7®;) because
Go(x) is polarized; thus @) = (®.N7®;)+V, and Corollary 9.5 says
that Go(x) is measurable relative to its algebraic arc components.

Q.E.D.

9.10. COROLLARY. Let B be a Borel subgroup of G, Y =G/B a complex
flag manifold, Gy a real form of G, and yES Y. Then the following condsi-
tions are equivalent, and they imply that the algebraic arc components of
Go(y) coincide with the holomorphic arc components:

(i) Go(y) is integrable.

(ii) Go(y) is measurable.

(iii) Go(y) ts measurable relative to its algebraic arc components.

(iv) Go(y) is partially complex and of flag type.
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(v) Go(y) is partially complex and is of flag type relative to its alge-
braic arc components.

Proor. Let 3€C®, be a 7-stable Cartan subalgebra of g.
Then ®,=3=73=7®], so Go(y) is polarized and Theorem 9.9
applies. Q.E.D.

9.11. COROLLARY. Let X =G/P be a complex flag manifold, Go a real
form of G, and x EX such that the orbit Go(x) is integrable.

1. RN =(Cr+7®,;) =Qz1, S0 the algebraic arc components of Go(x)
coincide with the holomorphic arc components.

2. Go(x) is partially complex and of flag type.

3. Go(x) is measurable if and only if it is polarized.

ProOF. Assertion (1) is immediate from (8.6) and Theorem 8.9.
Now Theorem 8.9 proves Go(x) partially complex and Theorem 9.7
says that it is of flag type. If Go(x) is measurable, Theorem 9.2 says it
is polarized; if Go(x) is polarized, Theorem 9.9 says it is measurable.

Q.E.D.

If Go(x) is an open orbit, then Si;; = Go(x), so it is rather trivial that
Go(x) is partially complex and of flag type. Criteria for measurability
of Go(x) are given by Theorems 6.3 and 6.7, the latter being that @
and 7@ are opposed. We now see that closed orbits are somewhat
better behaved.

9.12. THEOREM. Let X =G/P be a complex flag manifold, Gy a real
form of G, and xE X such that Go(x) is the closed Go-orbit on X. Then
Go(x) is measurable, hence partially complex and of flag type.

Proor. Let BCP be a Borel subgroup of G, Y=G/B the resulting
complex flag manifold, and w: ¥—X the projection. Choose y&En—(x)
such that Go(y) is the closed Ge-orbit on Y.

Let 3¢y be the Lie algebra of a maximally split Cartan subgroup of
Go, 3Co=73-} @ the decomposition into toroidal and vector parts, and
5C=5C3. The 3c-root system A=A\\JA, where A, consists of those
roots that vanish on @ and A, consists of those that do not. Ordering
the roots, we have

Iwasawa decomposition §o = X + @ + &%, NC = Z Se
a7

minimal parabolic £ = M+ @+ ¢, IMC =3+ 3 G,
4

Now define a Borel subalgebra ®’Cg by
® = (3+a+9)°+ 3G
A"
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Then
® =3+ a+ 9+ G
Yy

Thus
() ®Nr®' =B+ a+N)¢ and

(ii) ®'+1® = £°.

Let ¥&Y be the point such that ®&,=@®’. Then (ii) says that
Go(y') is integrable, hence measurable by Corollary 9.10, hence par-
tially complex and of flag type by Theorem 9.2 or Corollary 9.10. On
the other hand, (i) shows that the compact group K with Lie algebra
XK is transitive on Go(y’). Thus Go(y’) is the closed Go-orbit on Y, i.e.
Go(y") =Go(y). That proves our assertions for the case where P is a
Borel subgroup of G.

Conjugate ®’ by an element of G, that sends ¥’ to y. That done, we
may assume that ®, is given by the description of ®&’ above. Now
®z=®,+ Do+ D, where, for certain subsets DoCAy and D,CAr,

Do=2.G and D, =2, G
Dy D,

Thus
Co=G®,+ Do+ D, and ®, = @ + Do+ D,
and, defining

Do =2,G D=8, N = {Z&}f\e«»
L

Dy -D,
we have
Do = Do C® and D+ D, C @)’
In particular,
DNy =D,NBy =D, N71®, =7D,N®, =0.
Retaining the notation (9.3), we now have
v, = (BN @) + (@, N *®,)

= {(@: + D) N (0. + D)} + {(®2" + D) N (v¢; + 7D0) }

= (2N 76.") + (€ N7E.) + Do+ Dy =V, + Do+ Dy.
We also compute

(@:N7®;) = (By + Do+ D) N (7B + 7Dy + 7D))
= (®B,N1®,) + (Do + D) + (DN 7D,).
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As Go(y) is measurable, ) =(®,N7®,)+V, by Theorem 9.2.
Now define

(9.13a) Wi = (C.NTC,)+0s,.
Our calculations above say that

Wi = (CB,,f'\ T(By) + (Do + 53;) + (:Drn 7D,) + Ve
= (®BN1®,) + UV, + (DN TD,).

In other words,

(9'13b) Wia1 = m[ﬂ]+(®rn‘r®r)'
As both g and (®.MN7r@®,;) are subalgebras of Wy, and (®.N7¢:)
F V=W = Ny + (DN D,) by (9.13 a, b), the condition for Wiz
to be an algebra is

[Vs, DN 7D,] C Wiae
Observing D, C @, we calculate
[, 2.ND,] C [FeN 76", ®oN 6%
C {[e:, ] N [70;%, r@l]} C (@2 N 70" C VX,

and similarly [VU7, ©,NVrD,]CV;. Thus [V, D.,NVrD,]CV.CWia-
That proves W to be an algebra. As it contains the parabolic sub-
algebra 91g,; of G, and as 7W,;; = W,;, now

(9.13c) Wy, is a 7-stable parabolic subalgebra of g.

Comparing (9.4) and (9.13a), Theorem 9.2 says that Go(x) is mea-
surable if and only if Wy =M. As Wi CNMpz; by Lemma 8.4 and
Proposition 8.7, Theorem 8.9 says we need only check that Wi,
=9M,. Define 4 to be the set of roots such that M, =W+ 24 Ge
(direct) ; now the assertion of our theorem is reduced to the statement
that 4 is empty.

Express Wi = D u Ge and define p= Dy . Then (9.13c) says
that a root space GoC Wi, if and only if (¢, ) =0, GoC Wi if and
only if (¢, u)>0, and p=7u. In particular, {(p, u) <0 for every pE A4,
and (o, p)=0 whenever GoC (®.N7®,).

Let o&€A. If o+7¢ is a root, then Geire C(®;+7®,;) implies Goire
C(®:N7®:) because 7(p+7¢) =p+7¢; then 0=(p+70, u)=(p, 1)
+(ro, u)={(p, u)+(To, TR) =2{p, p) <0, which is absurd; thus Geire
Ce:*MN7®; %, so ¢ is not an JC-root of NM(); that contradicts pE4.

Let ¢€A4. Now ¢+7¢ is not a root. As (®,+7®,) = N C Wiz
because Go(y) is integrable, we have G,{ (®,+7®,). However
G C(®.+7®.). Replace ¢ by 7¢ if necessary so GoC @, =®y+ Do+ D,
As D,Cr®, now GeCD,. As D,NTD,CWp,) now Go7®.. Thus
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GeC P:NT@; . Also, o C D, shows (¢, T¢)0, so Proposition 8.7(2)
gives us the fact that

(9.14a) Z = hC + %.4C 4+ Go + Gro + G + Gro + Gro—v + Gore

is a 7-stable subalgebra of type 4. in G that is contained in My, and
has Cartan subalgebra 3¢’ =#%,C+£,.C. Define real forms Zy=ZMNG,
and 3¢J =3'MNGy=3CNZ,. Then 3¢J =3+ &’ where

(9.14b) 3, = Jf\ GC' = i(hp - h-pqp)R and (i' = Gf\ SC' = (ll¢ + hf(p)R.

Note that 3’ contains a regular element (ke —k,¢) of Z. Now Lemma
4.1 says that 3¢ is a maximally compact Cartan subalgebra of Z,.
As Z is of type A,,i.e. Z=8£(3, C), itsreal forms are $£(3, R) and the
Lie algebras of the groups SU(3) and SU!(3). In the latter two cases,
a maximally compact Cartan subalgebra of the real form is the Lie
algebra of a (compact) torus. Thus Z,CZ is $£(3, R)Cs£(3, C).
That implies that Z, has a split Cartan subalgebra @"”. Now consider
the algebra 3C,+Zo. It is reductive, and 3¢y is its maximally split
Cartan subalgebra. Now there exists an element g in the analytic
subgroup of Gy for 3¢o+Z,, such that ad(g) @’ CG. Replacing x by
g 1(x) we obtain (9.14a) with 3¢J = @" split, contradicting (9.14b).
That contradicts & 4.

We have proved 4 empty, so M, =Wy, algebra, whence 9
=W, by Theorem 8.9, so Go(x) is measurable by (9.13a) and The-
orem 9.2. Q.E.D.

9.15. COROLLARY. Let Py C P, be parabolic subgroups of G, X;:=G/P;
the resulting complex flag manifolds, and w:X,—X, the projection
gP1—gPs. Let Go be a real form of G. Choose x;E X ; such that w(x1) =,
and Go(x;) is the closed Go-orbit on X ;. Then holomorphic arc components
satisfy wSz) = Stzq-

Proor. Let BC P, be a Borel subgroup of G, Y=G/B, and»;: Y—-X;
the projections. Then v, =7-»,. Let y&»i1(x;) such that Go(y) is the
closed Go-orbit on Y. Then »;(y) =x;. Recall (9.13b) from the proof
of Theorem 9.12; it says W3 =91+ (a certain subspace of (®;),
M7 (®;)z,). The subsequent portion of the proof of Theorem 9.12 con-
sisted of showing Wi.j=9(.3. Now (.3 = Ny, + (subspace of (®,).,
N7(®:)z,). That proves »;Sp) = Sz;1. As m=wy-9177), it follows that
TStz =Sz Q.E.D.

The (rather minor) portion of Theorem 9.12 which says that closed
orbits are partially complex, allows us to strengthen Corollary 8.19.

9.16. COROLLARY. Let X =G/P be a complex flag manifold, xEX,
and G a real form of G. Then the following conditions are equivalent.
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(i) Go(x) is the closed Go-orbit on X.

(ii) The holomorphic arc components of Go(x) are compact.

(iii) The holomorphic arc components of Go(x) are complex flag
manifolds.

@iv) NGHC(®NT®:), and Niy= LB Y direct sum of T-stable ideals,
where JC(®.NT®;) and £LMGyis a compactly embedded subalgebra of Go.

Proor. Corollary 8.19 gives equivalence of (i) and (ii). As complex
flag manifolds are compact, (iii) implies (ii). Conversely (ii) implies
(iii) because Go(x) is of flag type and Sy, is an open N, q-orbit on
the complex flag N[,;(x).

Given (iv), g+ 9; is an ideal of 91, contained in the isotropy
subalgebra at x, so the subgroup Jo: Vj;;,0 of G for the subalgebra
(49U MGe must act trivially on Sp,;). Thus the subgroup L, for
£NG is transitive on S;;. But £MGy is compactly embedded, and
Gy has finite center, so Lo is compact. Thus Si,; is compact. Now (iv)
implies (ii).

Given (iii), we have 9 C(®:N\7®;) and Nj,, transitive on Sia.
Let Jo be the kernel of its action, so the Lie algebra g is an ideal of
N0 contained in (@.MN7®.)e. Let £ be a 7-stable complementary
ideal, Lo the corresponding subgroup of Nj;, Then L, is transitive
on the flag manifold Si, acting with finite kernel, so L, is compact.
Now (iv) follows with £=£§ and g=4g5. Q.E.D.

We can now complete the results of Corollary 8.20.

9.17. COROLLARY. Let X =G/ P be a complex flag manifold, Gy a real
form of G, and xEX. Then the holomorphic arc components of Go(x) are
points if and only if (a) Go(x) is the closed orbit and (b) 7@, C ®,.

ProoF. If the holomorphic arc components of Go(x) are points, they
are compact, so Go(x) is the closed orbit by Corollary 8.19 or Corollary
9.16. Now let Go(x) be the closed orbit, s0 (s = (®.NT®,) +V. by The-
orem 9.2; thus Sy, is a point if and only if V. =0. As V.= (®; 7P )
+7(®;Nr®; %), it is 0 if and only if 7@;N\P;7*=0. Thus S is a
point if and only if 7¢;C®,. Q.E.D.

It turns out that the proof of Theorem 9.12 does not apply exclu-
sively to the case where Go(x) is closed.

9.18. PROPOSITION. Let X =G/P be a complex flag manifold, Go a
real form of G, and xEX. Suppose that GoN\®, contains a maximally
split Cartan subalgebra 3Co of Go. Then the following conditions are
equivalent:

(i) Go(x) is measurable.

(ii) Ny =(C:NTC;)+V,.

(iii) (®@.N7®;)+V. is an algebra.
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ProoF. Theorem 9.2 is the equivalence of (i) and (ii), and of course
(ii) implies (iii). Thus we need only prove that (iii) implies (ii).

Assume (iii) and define Wi =(®:N7®;)+V.. The latter agrees
with (9.13a). Now W, is an algebra. As W[ =W and (®.N7®,)
CWi C(®,+7®;), Lemma 8.4 and Proposition 8.7 say Wi, CNM,.
Here we work with the Cartan subalgebra 3¢ =3¢ of G. Define 4 to
be the set of 3C-roots such that My, is the direct sum of Wy, and
>4 Ge. As in Theorem 9.12, we will prove that 4 is empty.

Let ¢ be a root with Go(CW,;. Then ¢ must be in &M —7P¥,
—®*N\1dr or —P* N\ —7P*where @, = ®s. Thus §_o CW,. That proves
Wiz parabolic in G. Define p to be the sum of all roots ¢ with G, CWi;.
Then p=7u and, for any root ¢,

if (o, u) >0  then G C Wia,

if (p,u)y=0 then G, C ’W,[‘z],
if (o, u) <0  then Go € Wia.

In particular, {p, p)<O0 for every ¢ &4, and {(p, p)=0 whenever
Ge C (G’me(Px) .

Let o€ A4. If o479 is a root, then Qoo C(®,+70,) would imply
Gere C(®:NTR,), 50 0 = {p+70, u) =2{p, u) <0, which is absurd; and
Corre (@, +7®,) would contradict GeCMy,; thus ¢+ is not a
root. As in Proposition 8.7, it follows that there are just two possi-
bilities, given as follows.

Case 1. p#107# —0, {p, T0)=0, T0 —¢ is not a root, and

(9193) Z = htpc + hrqu -+ 9«» + 9~¢ + gw + Q_ﬂo

is a 7-stable semisimple subalgebra of type 4:1® 4, in W,.
Case 2. o107 — 0, (@, T0) =%(0, @), T0—¢ is a root, and

(9.19b) Z = h¢C + hrqu + 8(0 + 9—4’ + 97?’ + g—‘rlﬁ + 87¢—¢ + gfp—ﬂ’

is a 7-stable semisimple subalgebra of type 4. in Wi,.

In both cases, 3¢’ =h,C+h.C is a Cartan subalgebra of Z, and we
define real forms Zo=ZMNG, and 3¢ =3CMNZe=3"MGo. Then, as in
(9.14b), 3¢{ =3+ @’ where

(9.19¢) 3 = i(he — he)R and Q' = (ke + h.o)R.

Checking the two cases separately one sees that 7(ho—h.0) €3 is a
regular element of Z, so Lemma 4.1 assures us that 3¢J is a maximally
compact Cartan subalgebra of Z,. We now use the hypothesis that
3Co is maximally split in Go; it allows us to use the argument following
(9.14b), and this eliminates Case 2.
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Now we are in Case 1 with Z given by (9.19a). As ¢E€ 4 we have
GeC(®:+7®:). Replace ¢ by 7¢ if necessary for the normalization
GoC ®:. As (g, p) <0 implies Go  (®.N7®;) we have Go C(®N7TP; ™).
Now G C Wiy gives us GeC (P;N 7@ ). It follows that

Zn@z=3cl+9¢+9—¢+9—w and

(9.19d)
ZN ((Pz Nr (Pz) = GCI + 9..¢ + g—vqm

The first equation of (9.19d) says that ZN@, is parabolic in Z, i.e.
that the analytic subgroup Z of G for Z has the property that Z(x)
is a complex flag manifold. Let Z, denote the analytic subgroup
of Go for Z,. Now (9.19d) gives us dimzZ(x)=2dim¢Z(x)
= 2{dimeZ — dime(zN®,)} = 2{6 — 5} =2 =6 — 4 = dimcZ
—dime(ZNEN7T®,) =dimgZs—dimz(ZoN®,;) =dimgZo(x). Thus

(9.19¢) Zo(x) is open in the complex flag manifold Z(x).

On the other hand, (9.19a) and (9.19¢) show that 3¢/ is a maximally
split Cartan subalgebra of Z,. The roots positive on — (ho+4.0) E G’
are —¢ and —7¢. Thus we have an Iwasawa decomposition Zy= X’
+@'+N, NC=G_ o+G_re, with (3'+@'+R)CZN(C.NT®,), so
Lemma 3.1 says that Zo(x) is the closed Z¢-orbit on Z(x). Combining
this with (9.19¢), we see that

Z, is the compact real form of Z,

so the maximally compact Cartan subalgebras of Z, are compact.
That contradicts (9.19c). We conclude that ¢ & A cannot exist, i.e.
that 4 is empty.

Now 4 is empty, so M =W, algebra; thus M,y = M,y by The-
orem 8.9, s0 W, = Ny;y. Thus (iii) implies (ii), completing the proof
of the proposition. Q.E.D.

Let K be a maximal compact subgroup of Go. Then every Cartan
subalgebra of G is maximally split, if and only if rank Go=rank X
+rank Go/K, the latter being the symmetric space rank. The only
such cases for which the symmetric space Go/K is irreducible with G,
acting almost-effectively are

(9.20a) Gy of type Eq with K of type Fi,

(9.20b) Gy of type Aj,—1 with K of type C,,

(9.20c) Gy of type Dn41 with K of type B,, and

(9.20d) Gy complex simple but viewed as a real group.

9.21. COROLLARY. Let X =G/P be a complex flag manifold. Let G,
be a real form of G that is locally isomorphic to product of compact simple
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groups and groups given by (9.20) above. Let xS X. Then the following
conditions are equivalent:

(i) Go(x) is measurable.

(i) Ny = (@.NT®;) +V,.

(iii) (®.N7®;)+V. s an algebra.

ProoF. Let 3CC®, be a Cartan subalgebra of G stable under 7.
Then the Cartan subalgebra 3Co=3C/MN\G, of Gy is a maximally split
Cartan subalgebra of Gy, by hypothesis on Go,. Now Proposition 9.18
applies. Q.E.D.

We end §9 with a short study of the case where the complex flag
manifold X =G/P is a hermitian symmetric space G,/ P} of compact
type relative to the compact real form G, of G, and where GJ is any
real form of G. Here we use the notation G¢ for purposes of reference
from §10, where G, will denote a real form of G such that Go/K is
the noncompact hermitian symmetric space dual to X =G./K.

9.22. LEMMA. Let X =G/ P be a complex flag manifold. Then the fol-
lowing conditions are equivalent:

(i) X is a hermitian symmetric space G,/ K.

(i) ®*1is abelian, i.e. [®*, G*]=0.

(iii) [ev, e—+]Ce.

ProoF. Let X =G,/K hermitian symmetric. Then X has a central
element z that defines the almost complex structure on X by

ad(z) = v/—1 on 0¥, ad(z) = — v/—1 on ¢,
ad(z) = 0 on X°¢ = @r.

If v, wEE* now ad(e)[v, w]=[3, [v, w]]=[[z v], wl+[v, [z »]]
= [ad(z)v, w]+[v, ad(z)w]=—2+/—1[v, w], while —2+4/=1 is not
an eigenvalue of ad(z); thus [v, w]=0; that shows ®* abelian. If
vE®* and wEE™ then ad(z)[v, w]=[ad(z)y, w]+[v, ad(z)w]=0,
so [v, w]E6"; that shows [®*, ®*]Ce". Now (i) implies (i) and (iii).

Let 3¢ =3¢ be a Cartan subalgebra of § where 3Cg,N®. Choose a
subset ® of a simple 3C-root system II such that ® =®s. Decompose §
as direct sum of simple ideals £;, so 3¢ = ZGC.- where 3¢;=3CNL;is a
Cartan subalgebra of £;, and Il =UII; whereIl;is a simple 3¢;-root sys-
tem for £;. Let u; be the maximal root of £, so u;= Zm nyy, ny
integers 2 1. If II,\® contains a root ¥, with ny,>1, we have positive

roots
a=2aov, B=XbY yv=at8
o 14
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with ay,>0 and by,> 0. If II\® contains two roots ¥, and ¥, then we
have positive roots «, 3, ¥ as above with ay,>0 and by,>0. In either
case a, B8, yEPY, so

Gy=[Ga» Gs]C [®*, ®*] shows that (ii) fails, and

Ga=[Gy, 8] C [®*, ®*]NE* shows that (iii) fails.

Thus (ii) and (iii) each implies that, for every %, either II;C® or
o\&= {\l/o} with ny,=1. It is immediate [10, Lemma 3] that
G./G.NP=G,/Py is a realization of X as a hermitian symmetric
space of compact type. Q.E.D.

9.23. REMARK. Let X =G/P be a complex flag manifold that is
hermitian symmetric. Let G¢ be any real form of G, 7/ conjugation of
g over GJ. If x€X then Lemma 9.22 shows that Wp,; = (®.N7'®.)
+(@NT'e ")+ (@ *N7'®}) is a subalgebra of G. As

@E.N7T®) C Wi = T Wi C (@ + 7'62),

Lemma 8.4 says that W, C 9, so Theorem 9.7 says that G¢ (x) is
of flag type. However, Example 8.12 shows that one cannot expect
Gd (x) to be partially complex without further restriction on X, x,
or G¢. In that context we prove

9.24. PROPOSITION. Let X =G/ P be a complex flag manifold that is a
hermitian symmetric space. Let G be any real form of G. Decompose

9=g1e...@9r’ @—_—0)1@...@@;-’ X=X1X"'XX'

where the G' are the minimal 7'-stable ideals of G, ®i=®MNGt, and
Xi=Gi/P* quotient of the analytic subgroups of G for G* and ®¢; so the
" =0¢ MG are the simple ideals of GJ. Then the following conditions
are equivalent:
(1) Some open G{ -orbit on X is a symmeiric coset space of GJ , with
invariant nondegenerate kaehler metric that may be of indefinite signature.
(1") Every open G -orbit on X is a symmetric coset space of G¢ , with
invariant nondegenerate kachler metric that may be of indefinite sig-
nature.
(2) Some open G -orbit on X is measurable.
(2') Every open G{ -orbit on X is measurable.
(3) For each index i, 0 S1=r, if G* is simple then either
(32) the maximal compactly embedded subalgebras X*CGY satisfy
rank Xf=rank G¢°*, or
(3b) Xt is the grassmannian U(2n)/U(n) XU(n) of n-planes
through the origin in C*» with Gi=8L£(2n, C) and either Gi =8£(2n, R)
or G =8L(n, Q), or
(3c) Xi is the complex quadric SO(2n+42)/SO(2n) XSO(2)
with G'=80(2n+2, C) and Gy =80*+1(2n+2) where 0t [n/2].
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(4) For each index i, G simple, either
(4a) rank Xi=rank G}, or
(4b) the noncompact dual of the irreducible compact hermitian sym-
metric space X* is of tube type, but not isomorphic to an SO*(21)/U (1)
for 1> 4.

ProoF. Let x€X such that GJ (x) is open in X. If G{ (x) is sym-
metric, say with symmetry o at x, then the isotropy subalgebra
8N, = {vEG( :0(v) =v} is reductive in G, so Lemma 6.2 says that
G{ (x) is measurable. If G{ (x) is measurable, Theorem 6.3 says

(i) there is an invariant, possibly indefinite, kaehler metric on
G{ (x) and

@ii) 7'®,=¢} and 7'®,=@; ™.

Choose a compact real form G, of G such that G¢ is invariant under
the automorphism ¢ of § induced from conjugation of G, by the sym-
metry at x; o is +1 on §,N®, = (®;), and —1 on a complement; thus
o is +1 on @®; and —1 on @;4+@®;*; now G¢ MNP, = (real form of @)
={vEQG{:0®) =v}, so G{ (x) is symmetric. We have proved equiva-
lence of (1) and (2) for GJ (x). As (2) and (2’) are equivalent by The-
orem 6.7, we now have equivalence of (1), (1°), (2) and (2').

In proving (2), (3) and (4) equivalent, it suffices to consider the
case where G¢ is simple. For if Go(x) isopenin X, and x = (x!, - - - ,x")
with x*€ X%, then Theorem 6.7 shows that G¢ (x) is measurable if and
only if each Gy(x%) is measurable. So we now assume that G{ is
simple, and we fix x€X with GJ (x) open in X.

If g is not simple, i.e. if G is not absolutely simple, then GJ is the
real structure of a complex simple Lie algebra £, g=£® £ with gJ
embedded diagonally, and 7’ acts on § by (%, v)—(v, #). Lemma 9.22
shows that (®,N7'®,) + (PN’ ®; %) + (®;*MN7'®P}) is an algebra; that
is condition (iii) of Corollary 9.21; thus G{ (x) is measurable.

Now let G be simple. If the maximal compactly embedded sub-
algebras X CgG¢ satisfy rank X =rank GJ, then Corollary 6.4 says
that GJ (x) is measurable.

Finally suppose G simple with rank X <rank gJ. If G{ (x) is mea-
surable, we have the symmetry ¢ of X =G,/P, at x, such that
08¢ =G4 and GI N\®, = {vego’ :0(v) =v}, real form of ®,. Leta be a
Cartan involution of gJ that commutes with ¢, §J = X+ 91, the
Cartan decomposition under a. Then G, = X ++/—19M,, and rank &
<rank Gy, so « carries over to an involutive outer automorphism of
G. that preserves (®})., thus acts on X =G./(P%)., and preserves the
invariant complex structure on X. We apply [11, Theorem 13.3] to a
and X =G./(PL)s, concluding that either X =SU(2%)/S(U(n) XU(n))
with a interchanging the two U(n) factors, or X =S0(2n+42)/S0(2n)
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X80(2) with & acting on SO(2n) XSO0(2) CO(21) XSO(2) as con-
jugation by some (Q, P) with det Q= —1. The other cases of [11,
Theorem 13.3(2)] are eliminated because they are not symmetric.
Thus measurability of G (x) implies alternative (3b) or (3c).

Conversely, suppose that we have alternative (3b) or (3c). Then
rank & <rank G¢ shows that 7’ induces an outer automorphism of a
compact real form G, of G. Let 3 denote a 7'-invariant Cartan sub-
algebra of G.. Choose a 7’-invariant Weyl chamber for the Cartan
subalgebra 3¢ =3¢ of G. Then 7’ acts on the corresponding simple root
system II by

1 Y2 ¥n-1

¥n in the case of alternative (3b),
Yan-1 Yan-2 Ynit

¥n
- S in the case of alternative (3c).
¥1 ¥ Yn-1

'ﬁn-q-l

On the other hand, ® is conjugate to ®s where, in the notation just
above,

d = { Vi, * 0y Vet Yngty * * ;bzn__l} in alternative (3b),
Pd = {'[zz, Y3, 5 ¥y ¥ny \l/,..,_l} in alternative (3c).

Thus 7/® =®, so 7/®» =CPs. But ®s is opposed to itself. Thus @ and
7'® are opposed. Theorem 6.7 now says that GJ (x) is measurable.

We have proved that (2) and (3) are equivalent.

Suppose G simple with rank X <rank G¢. Then G has an involutive
outer automorphism, so it is of type A;, D; or Eg. Let X, denote the
noncompact dual of X =G,./P,. If Gis of type 4;, then X is the grass-
mannian of k-planes through the origin in C**, 2k </+41, and X, is
of tube type if and only if 2k=1I+41. If G is of type D;, then either
X =80(2])/U(l) where X, is of tube type if and only if / is even, or
X =80(21)/S0(2!—2) XSO(2) complex quadric with X, of tube type.
If g is of type Eg then X, is not of tube type. That proves equivalence
of (3) and (4), completing the proof of the proposition. Q.E.D.

9.25. COROLLARY. Let X =G/ P be a complex flag manifold that is a
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hermitian symmetric space. Let GJ be any real form of G such that the
maximal compact subgroups K CGJ satisfy rank K =rank GJ. Then
every open G{ -orbit on X is a symmetric coset space of G¢ with invariant,
nondegenerate, possibly indefinite, kaehler metric.

For that is a special case of alternative (3a) of Proposition 9.24.

CHAPTER I1I. HERMITIAN SYMMETRIC SPACES

Let X =G/P be a complex flag manifold that is a hermitian sym-
metric space of compact type. In other words X =G./K, where G, is
the compact real form of G and K =PNG, (necessarily a compact
real form of Pr) is a symmetric subgroup of G.. Let Gy denote the real
form of G such that X,=G,/K is the hermitian symmetric space ot
noncompact type dual to X. §10 is a complete analysis of the Go-orbit
structure of X and the holomorphic arc component structure of an
arbitrary Go-orbit. §11 carries that analysis over to a decomposition
theory for an arbitrary orbit Go(x) that extends the Siegel domain
theory for the convex open orbit X,. A summary of the Siegel domain
theory for X, and its reformulation as a theory of holomorphic fibra-
tions of X over its boundary components, is collected in the Appendix
to §11 for use in our decomposition of Go(x).

In §10 we pick out certain points xr,s&X by means of the Wolf-
Koréanyi partial Cayley transform theory [15], and certain complex
subgroups GyxrCG and their Go-real forms Gue\r,o, such that the
Go-orbits on X are just the Go(xr,z) and the holomorphic arc com-
ponents of Go(xr,z) are just the k-Ge\r,o(xr,z) where 2 K. More
precisely let ¥ be a maximal set of strongly orthogonal noncompact
positive roots of G relative to a Cartan subalgebra 3¢ with 3C XK.
Any two choices of (3, ¥) are adg(K)-conjugate, l \I/] =rank X,
and Xo=K-Go[¥](xo) where x, is the base point and Go[¥](xo)
= H\p Go[¥](xo) polydisc in X,. If ¢ E¥ then ¢y is the Cayley trans-
form on the Riemann sphere G[¢](x0), rotation by /2 carrying the
south pole xo up to the equator. If BCY thencp= [[s¢y. f T, ZC¥
then xr,z=crc3xo and Gur is the derived group of the centralizer of
3¢+ Z\‘J—I‘ Gy in G.

Theorem 10.6 says that the Gy-orbits on X are the Go(xr,z), I' and
2 disjoint in ¥, and gives criteria for Go(xr.,z») =Go(xr,z) and
Go(xrr,3) CGolxr.z). If {ry, - - -, r,} are the ranks of the irreducible
factors of X, it follows that there are precisely % D 15isp(ri+1) (r:42)
Go-orbits on X. The open Go-orbits are the Go(x4,z); they are
Dasisa(ri+1) = I\I’I +$ in number, are indefinite-hermitian sym-
metric spaces of Gy, and are indefinite metric versions of X,. Theorem
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10.9 says that Ge\r(xr,z) =Gunr(rr,s) is a compact totally geodesic
hermitian symmetric subspace of rank |[¥\I'| in X, that the
Gwr.o(xr,z), TMNZ=¢, are the open Gur,c-orbits on it, that the
holomorphic arc components of Go(xr,s) are the &-Gu\r,o(xr,z) with
k€K, and that the complex Lie algebra normalizer 9,y 5 = 9r,s of
Gu\r,o(xr,z) depends only on I'. The method is rather delicate; The-
orem 8.9 is used to show 9r,; independent of Z, and results from
Wolf-Kor4nyi [15] are used to determine 9r,4. In particular every
holomorphic arc component of every Go-orbit is indefinite-hermitian
symmetric, so every Go-orbit is measurable.
In §11 we work out a decomposition:

Go(xr.z)
Y B a

w- Gg:.o(xr.z)—’K (%ryz) = Go/N1.30

There « is the K-equivariant fibration whose fibres are the holo-
morphic arc components of Go(xr,s). 8 is a K-equivariant fibration
whose restriction to a holomorphic arc component is a holomorphic
fibration over the maximal compact subvariety of that component;
the fibres of 8 are hermitian symmetric spaces kcrck{Garusz.o(*o)
XG,Z;,o(xo)} of noncompact type whose second factor is the tube part
of Gs,0(x0). And v is an a.e. analytic measurable bundle whose restric-
tion to cl~c§{G\p\(pU2),o(xo) XGg'o(xo)} is a holomorphic fibration over
a bounded symmetric domain, any of the Siegel domain realizations
of type III for a boundary component of Gu\qus)o(¥0) X Gz o(%0).
The Siegel domain theory used in v is in the Appendix to §11. The
fibration B8 plays two roles. It gets rid of compact subvarieties of
holomorphic arc components so that some function theory is possible
despite the injunction of Theorem 5.7, and it allows construction of
the “generalized Siegel domain” 4 in a manner whose discontinuities
do not interfere with integration.

NotEs FOR CHAPTER III. The results of Chapter I1I depend in an
essential manner, both on the results of Chapter II, and on the earlier
work of Wolf-Kor4nyi [15]. The latter contains the theorems of §10
for those Go-orbits that are in the topological closure of X,.

Enumeration of the Gp-orbits on X (Theorem 10.6) was first worked
out by Takeuchi [9]. Using the partial Cayley transforms of Wolf-
Korényi [15] it is not difficult to see that every Go-orbit must be one
of the Go(xr,z), so the problem is reduced to that of finding a criterion
for Go(xr+,2') =Go(xr,z). There, a little serious thought reduces the
question to the case IV =¢ =T of open orbits. Takeuchi [9] settles the
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latter by picking out the maximal compact subvarieties of open orbits
and counting them with the aid of some Morse theory results on cell
decompositions from his thesis [8]. We find it more convenient to
apply Theorem 4.9 and count some double cosets.

The fibration 8: Go(xr,z)—K (*r,z) was worked out by Takeuchi [9]
for the case I'=¢ of open orbits, where holomorphic arc components
are not needed; part 3 of Theorem 11.8 answers (in general) the
triviality question on 8 that Takeuchi raised in his special case. A key
to our result Theorem 11.8 on 8 is Lemma 11.6, which was proved by
Takeuchi [9], for the case I' =¢ of open orbits, in a different way.

Except for the overlap with Wolf-Kor4nyi [15] and Takeuchi [9]
described above, the material of §10 and §11 was worked out by this
author in the fall and winter of 1968.

10. Hermitian symmetric spaces: orbit structure and holomorphic
arc components. Let X =G,/X be a hermitian symmetric space of
compact type. Then X is a flag manifold G/P where G, is the compact
real form of G and K = PN\G, is the compact real form of P7. Now let
Xo=Go/K be the dual hermitian symmetric space of noncompact
type; if Gu=%+4+9IM, Cartan decomposition, then Go= XK+,
Mo=+/— 1M, real form of G such that K = PNG,, maximal compact
subgroup of Go. The “Borel embedding” of X, in X is the embedding
b: X¢—X of X, as an open Go-orbit on X, given by b(gK) =gP for
gEGo. Let x denote the identity coset in X =G/ P, so b(X ) =Go(x0).
We map ®—* onto a dense open subset of X by £(z) =exp(z) - xo. Then
the “Harish-Chandra embedding” of X, as a bounded domain D in a
complex euclidean space ®* is given by D=«(X,) where k(gK)
=£"1(gK), and £: D=2Go(x,) relates the two embeddings. One views
the inclusions {£(D) =Go(xo) } C£(®—*) CX as a generalization of the
classical (unit disc) C(complex line) C (Riemann sphere).

Bott-Korényi (see [2, Theorem 3.6]) used convexity properties of
D in @ to identify the Bergman-Silov boundary of Gy(xo) in X as
the unique closed Go-orbit in the topological boundary 9G(x,) of
Go(xo) in X. Koranyi-Wolf [2] studied the structure of the Bergman-
Silov boundary and its role in the realization of X, as a Siegel Domain
of type I1. Then Wolf-Koranyi [15] made full use of the convexity of
D in @* to obtain the Ge-orbit structure of dGy(x,), the holomorphic
arc components of 3Gy(x,) (there called the “boundary components”
of Go(xo) in X), and the realizations of X, as Siegel Domains of type
II1. There, it was shown that every holomorphic arc component of
9Go(xo) lay in a boundary orbit; so the holomorphic arc components
of 8Gy(x) are the same as the holomorphic arc components of orbits
Go(x), xE3Go(x,). Having seen Korinyi-Wolf [2] but not Wolf-
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Korényi [15], Maebashi [6] enumerated the Go-orbits on X for the
case where X is the Siegel upper half plane Sp(n, R)/U(#n). Finally,
Takeuchi [3] extended part of Wolf-Kor4nyi [15], enumerating the
G-orbits on X in general by means of a recursive procedure based on
a counting of the open Gg-orbits; the latter consisted of describing a
set consisting of just one maximal compact subvariety from each open
Ge-orbit as the critical set of a certain function on X. Nonconvexity
of the general open Ge-orbit on X prevented Takeuchi from extending
the boundary component theory. That difficulty is avoided by our
notion of holomorphic arc component developed in §§8 and 9, and
this allows us to give a complete treatment of the Go-orbit structure
of X.
We establish notation for hermitian symmetric spaces.

Xo: hermitian symmetric space of noncompact type.

Go: largest connected group of isometries of X.

xo: fixed “base point” in X,.

K: isotropy subgroup of Go at x9, maximal compact in Go.

o: Cartan involution ad(s), where s is the symmetry of X, at x,.

Let X CGo denote the Lie algebras of K CGy. Then

Go=XK+M,: Cartan decomposition into (+1)-eigenspaces of o.

G =85 = %°+9N complexification where 91 =9N§.

Gu = K+, M, =<M,, compact real form of G.

G: adjoint group of G, so Gy is the analytic subgroup for G.

G.: analytic subgroup of G for G,, compact real form of G.

X: G,/K, hermitian symmetric space, compact dual of X,.

3: Cartan subalgebra of Gy (or G,) contained in X.

A: 3C-root system of G.

Ax: compact roots, i.e. 3°-root system of XC.

Ay noncompact roots, i.e. roots ¢ such that G,CIN.

z: central element of X such that J=ad(z)| g is the almost complex
structure of X, and X.

amt: (F+/—1)-eigenspaces of J=ad(z)| g

®: XC+ 9+, parabolic subalgebra of G defined by iz.

P: parabolic subgroup of G with Lie algebra @®.

We observe @r=X° @*=9M*+ and @ *=9N~. Theorem 5.4 says
GNP =K =G,NP. Thus G, is transitive on the complex flag mani-
fold G/P with isotropy subgroup K. That identifies X =G,/K with
the complex flag manifold G/P, providing the Borel embedding
b: Xo—X by b(gK) =gP for g&Go. Now we identify X, with 5(X,),
thus identifying the base point x with the identity coset of X, thus
identifying X, with the open orbit Go(x).
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Choose a simple root system II such that ® =®s for some subset
® CII. Then® consists of the compact simple roots and II\® the non-
compact simple roots. There is one noncompact simple root for each
simple ideal of G. Note

r % + u -
‘I’ =AK, 3] =AM, —‘I’ =AM.

Two roots ¢ and  are strongly orthogonal if neither of ¢+ is a root;
in that case {p, ¥) =0. Now we define
V¥: maximal set of strongly orthogonal positive noncompact roots

by ¥ = {\Ill, .« -, ¥,} where ¥,,, is the lowest element of Aj strongly
orthogonal to each of {{1, - - -, ¥;}. Thus, for each simple ideal of G,
the noncompact simple root is the first element of ¥ that is a root of
the ideal. The number 7=|¥| is the common symmetric space rank
of X and X. Define a real basis of 9, consisting of all

. +
Zeo=¢o+ o and yeo0= —i(ep — _p),0 € Ay,

where e1,EG4o are normalized by [es, e_o] =%,E143. Then I, has a
real basis consisting of all

Xe = 'i(e¢ + e_¢) and Vo = €p — €, (4 E A:{
That gives us

Qo: Z Rxy o, maximal abelian subspace of 9,.
¥
@u: i@ = > Ry, maximal abelian subspace of 91,.
¥

For every noncompact positive root ¢ we compute

Jxe,0 = [3, %o.0] = Ye.0, T¥e0 = [3, Yool = — %or0, [F0,0, Yer0] = 2ihe,
Jxp = [z’ x"] = Yoy Jye = [z; y‘l’] = — Xe, [x¢, y¢] = — 2the.

In particular, using strong orthogonality of the roots in ¥,

[@0, @] = [@u, J@u] = 20 Gy)R.
v

That gives

(10.1a) 3=3++43" orthogonal direct sum, where

(10.b) 3~ =[@¢, JQo] and 3+ is the centralizer of @, in 3.
For every subset I'C¥ we define

(10.2a) 37 = 2 e\r(ihy)R, so 35 =3~ and 33 =0;

(10.2b) @r= X _r(*+,0)R, s0 @;=0 and Gg = Gy;

(10.2¢) 3¢r=3t+43r+Gr, so 3s=73 and g =3I++ Qo.
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Note that (10.2c) is an orthogonal direct sum. The 3Cr are the Cartan
subalgebras of G, with which we shall work. They are related by the
partial Cayley transforms [15] defined by

(10.3a) ¢y =exp((w/4)yy) EG, for every y €¥, and

(10.3b) ¢cr=]]r c,EG. for every T CV.
Now we have

(10.4a) ad(cy): ye—yy, xp—21hy, 2thy— —xy; SO

(10.4b) ad(cr\r)3cs=135c% for TCI'CV, and

(10.4c) ad(cz)?3er=3Cr for ', T CV.
We use the partial Cayley transforms to define points

(10.5) xr,z=créxoEX whenever I', ZCV.
Now we can state the decomposition of X into Gg-orbits.

10.6 THEOREM. Decompose G=G'@ - - - @GP direct sum of simple
ideals, so A=ANJ - - - \UA? where A is the root system of GF.

1. The Go-orbits on X are just the Go(xr,z), I' and 2 disjoint.

2. Orbits Go(xr,z) and Go(xrr,30) are equal if and only if, for 1 Sk < p,
| @\ NAF| = | E\I)NAF| and |T'NA*| = |TNAH|. In particular,
the number of Ge-orbits on X is 32 asksp(re+1)(r+2) where
re=|TNAH|.

3. Golxr,3v) is in the closure of Go(xr,z) if and only if, for 1 Sk<p,
| E\I)NAH =| G\D)NAH| and | (EUT)NAY < | ' UT)NAH .

4. Go(xr,z) is open in X if and only if ' =¢ empty set. In particular
there are precisely D asksp(re+1)=|¥| +p open Go-orbits on X.

5. Go(xw,s) s the closed Go-orbit on X, Bergman-Silov boundary of
Xo in X, contained in the closure of every Go-orbit.

The corresponding result for Cartan subalgebras is

10.7. THEOREM. Let G* and A* be as in Theorem 10.6.

1. 3Cr s maximally compact among the Cartan subalgebras of Qo con-
tained in ®;p 5, 'NZ =¢, and every Cartan subalgebra of Go is conjugate
to some XCr.

2. 3r and Iy are conjugate in Go, if and only if, for 1=SkZp,
|TNAY| =|T/NAF| .

3. 3Cr centralizes a Go-conjugate of 3r., if and only if, for 1 Sk Zp,
|TNAr| < |T/NAF .

4. 3Cr is maximally compact in Go if and only if I' =¢.

5. 3Cr is maximally split in G if and only if I' =7,

We will prove Theorems 10.6 and 10.7 as we decompose a Go-orbit

into holomorphic arc components. To express that decomposition,
note that

c . . - .
3 + 2. Gy is the centralizer of Jg\r in G.
eLr
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Now define

(10.8a) Ge\r is the derived algebra of 3¢+ D oir G,

(10.8b) Ge\r.o is the real form Go/MN\Gu\r of Ge\r, and

(10.8¢c) Ge\r and Ge\r,0 are the analytic subgroups for Gg\r and
Gw\r,0.

10.9. THEOREM. Let I' and 2 be arbitrary subsets of ¥.

1. Gonr(xr,s) =crc2Gor(x0), compact totally geodesic hermitian sym-
metric subspace of X; its symmetric space rank is I\Il\l"| ; relative
to the Cartan subalgebra 3MGuw\r,0, Y\I' 45 a maximal set of strongly
orthogonal noncompact roots of Gu\r.o.

2. Go\r,o(xr,z) 7s an open Gy\r,o-0rbit on the symmetric complex flag
manifold Ge\r(xr,s). It is an indefinite-hermitian symmetric space of
Gu\r,0; if TMZ =¢, then its invariant kaehler metric is positive definite
if and only if 2 is a (possibly empty) union of sets (W\I')MA* for which
Go(x0) is of tube type. Its isotropy subalgebra Gu\r,o \®up y at %r,z
has complexification ad(c3) {g\p\p(\@,r,d,}.

3. The holomorphic arc components of Go(xr,z) are just the
g:Gur.o(xr,2), gEK. If

(10.10a) Nr,z,0={gEGo: g-Gurr.o(xr.2) =Gurr,o(%r,z) } ,

(10.10b) Zp,z,0= {gENr,z,o: g acts trivially on Gw\r,o(xr,z)},
then

(10.10c) Nr,z,0=Gu\r,0'Zr,2,0,

50 Ge\r,0 and Nr,z,0 have the same action on the holomorphic arc com-
ponent Ge\r,o(xr,z) of Go(¥r,s)-

4. The parabolic subalgebra Nizp 51 of G, complexification of the Lie
algebra of Nr,s,0, ts just the parabolic subalgebra that is the sum of the
nonnegative egenspaces of ad( { D r\E X0 } - { D rnz%qy.0 } ); 4t is inde-
pendent of Z if we require that I' and 2 be disjoint.

10.11. COROLLARY. Every Go-orbit on X is measurable.

Proor oF THEOREM 10.6. If ¢ is a noncompact root then G[p]
denotes the simple algebra %,C+Go+G_, and Go[e] denotes its real
form §oNG[e]; Gle] and Go[p] are the analytic subgroups for G[e]
and Go[¢]; and S[e] is the Riemann sphere G[p](xo). The Gole]-
orbits on S[p] are:

n

lower hemisphere Go[¢] ({exp {— y¢} xo) , n=0 mod4,
T n
equator Gole] ({exp—4— y¢} xo), n =1 mod 2,

upper hemisphere Go[¢] ( {exp —;L y¢} xo> , n=2mod4.
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Define g[¥]= D ¢g[¢], so the real form G [¥]=gNg[¥] is
> ¢ Go[¥]; then the analytic subgroups for G[®] and g,[¥] are G[¥]
=1« Gl¥] and Go[¥]=T1Is Go[¥], and S[¥]=G[¥](xo) is the
product [Jv S[¥] of [¥| Riemann spheres. Now the Go[¥]-orbits
on S[¥] are the products [[¢ Dy where Dy is a Go[¢]-orbit on S[¥].
Given such an orbit, define

T = {¢ € ¥: Dy is the equator of S[y]}, and
= = {¢ € ¥: D, is the upper hemisphere of S[lI/]}.

Then the orbit is Go[¥](crcixo) =Go[¥](xr.z), and T and 2 are
disjoint.

The equator of S[y¢] has descriptions Go[¥](cyxo) =Go[¥]1(cix0).
If T' and 2 are arbitrary subsets of ¥, it follows that xp,z=cm\z-cinz
'C%\rxoeGo[\I’](xp,z\r). Thus

(10.122) Go[¥](xr,z) =Go[¥](xr,2\1)-

If we also have subsets I'V and Z’ of V¥, it follows that
(10.12b) Go[‘I’](xr,z) =Go[‘1’](xr1,zl) if and on]y if
C\I') = E"\I)and T =T1".
It also follows from (10.12a) that Go[¥](xr+,2/) is in the closure of
Go [‘I’](xr,z) if and only if

(i) rCr,

(i) @\INCE'UT), and

i) {(W\EUD)}C{[\E'VM ]I}

Those three conditions can be phrased
(@) G"\I")CE\TI') and (b) (ZUT)CE"VIY).
Thus
(10.12¢) Go[¥](xrv,z) is in the ciosure of Go[¥](xr,z)
if and only if Z'\I'")C(E\I') and EUT) CE'UTY).
Finally we observe that

(10.12d) Go[¥](xr,z) is open in S[¥] if and only if ' =4,

(10.12¢) Go[¥](xr,z) is closed in S[¥] if and only if I'=V.

To carry results from Go[¥]-orbits on S[¥] to Ge-orbits on X, we
define 4 =exp J@.CG,. As J@, is a maximal abelian subspace of 91,
we have G,=KAK. Thus

X = Gu(x0) = KAK(x) = KA(x) = K-S[¥].

If € X we thushave x = k(s), sES[¥], s0 Go(x) = Go(s) = Go-Go[¥](5).
We have disjoint sets ' and Z in ¥ with Go[¥](s) =Go[¥](xr,z). It
follows that Go(x) =Go(xr,z). That proves part 1 of Theorem 10.6.
Theorem 3.3 says that X has just one closed Go-orbit. In [2, The-
orem 3.6], Go(xy.4) is shown to be the closed Go-orbit on the boundary
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of X, and is identified as the Bergman-Silov boundary of X, in X.
That proves part 5 of Theorem 10.6.

Let 2C¥. We have 3CGoN\®z,, and (10.4c) with I'=¢ says
3=ad()3Cad(E)Puy= Petysy = ®zy,s. Thus GoN@s 5 contains a
compact Cartan subalgebra 3 of Gy, so Theorem 4.5 says that Go(x4,s)
is open in X. Conversely, if Go(xr,z) is open in X, then Go(xr,z) N\S[¥]
is an open Go[¥ ]-invariant subset of S[¥] that contains xr,s. As it is
open and G,[¥]-invariant, it is a union of sets Go[¥](xs,8), BCVY.
Thus we have BCY with xr,EGo[¥](x4,5). It follows that the open
Go-orbits on X are just the Go(xs,s) with ZCWP.

LetZ and 2’ be two subsets of ¥. If | ZNA¥| = |Z'NA*| for 1 Sk <p,
then [7, Theorem 2] there is an element g& K normalizing 3 such that
ad(g)Z =2, s0 Go(%4,37) = Go(cz%0) = Go(gczg™")%0 = Go(c3%0) = Go(%4,3).
Conversely suppose Go(x4,z) =Go(x4,2). Then, as both orbits are
open, Theorem 4.9 says that ¢; and ¢ represent the same double
coset in a certain space Wx\ W/ Wg?\,pr. There 3o =13, s0 We = Wg;
and Pr=7Pr=K°, so Wi ,pr=Wg. Thus &EWg-cs-Wg, so we
have w;E Wx with ad(cZ) =w;-ad(cZ) -w,. If z denotes the central
element of X such that J=ad(z)|sm, and if 2 CV¥, then ad(c3)z—32
= ZWGE"('th)- Thus

- X hy = i{ad(c?z')z - z} = i{wl-ad(cz,v,)-wzz — z}
ver

= i{wl-ad(czg)z -3} = wl-i{ad(cfs;)z — 3}

= 'w1<— > m).

yeZ

As 32 yes xpo=—(i/2) 2yez xy=ad(cz)(— 2yes by), it fol-
lows that § D yez %y,0 and 3 D_yex &y,0 are conjugate elements of G.
Thus the corresponding parabolic subalgebras of G are conjugate.
But [15, Theorem 6.5] those parabolic subalgebras of G are the com-
plex normalizers of the boundary components of types ¥\2 and ¥\’
of X,in X, so [15, Corollary 6.9] Go(xs,4) =Go(x3,4), and it follows
[15, Lemma 5.1] that | ZNA*| = |Z/NA¥| for 1 <k <p. In conclusion,
open orbits Go(x4,z) and Go(x4,3/) are equal if and only if, for 1 Sk <p,
|ZNA¥| =|Z'MAF|. In particular, if 7, = | #NA*| then there are pre-
cisely D igrksp(re+1) = ] \I’l +p open Ge-orbits on X. That completes
the proof of part 4 of Theorem 10.6.

Consider an open orbit Go(xs,z). The intersection with S[¥] is
Go[¥ ]-invariant and open in S[¥], hence a union of sets Go[¥](%4.5).
The sets B there are just the subsets of ¥ such that Go(x4,z) = Go(%x4,5).
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Thus

(10133) Go(x¢,z)nS[‘I’] =Us Gy [‘I’](x¢,3)
where

(10.13b) ® = {BC¥:| BNA¥| =|ZNA¥|  for 1<k =<p}.
Now consider an orbit Go(xrr,5/). It is in the closure of Go(x4,z) if and
only if xr,5 is in that closure. So (10.12c) says that
(10.13c) Go(xrr,zr) is in the closure of Go(x4,z) if and only if, for some

Bea®, G'\I'")CBCE'UIY).

In view of (10.13b), we reformulate (10.13c) as

(10.13d) Go(xrv,z+) is in the closure of Go(x4,z) if and only if, for

1=E<p, | @\IV)NAH <|ZNAF| < (Z'UTV)NAH.

Now consider arbitrary orbits Go(xr,z) and Go(xrz). According to
(10.13d), Go(xr,z) is in the closure of an open orbit Go(xs,z*) if
and only if

[E\DDNa| = [z*Na] = |[EUD)NAY  for1 Sk S p.
In particular, Go(xr,z) is in the closures of the open orbits
Go(%s,z\r) and Go(%s,3ur).

If Go(xr,3) is in the closure of Go(xr,z), then it is in the closures of
Go(xs,2zr) and Go(xs,zur), and (10.13d) says that | (E'\I")f\A"I
< | @E\IDNA* and | EUT)NAF| < | (Z"UT")NA*| for 1 k< p. Con-
versely, if we have those numerical inequalities, then [7, Theorem 2]
there is an element gE K normalizing 3 such that ad(g) sends 2'\I"/
into Z\I' and sends Z’UI" to a set containing ZUT'; as Go(xr-,3)
=Go(Xad(g) 1" ad(pyzr) We thus may assume (Z'\IV) C(Z\I') and (ZUT)
C(Z'UT), so (10.12c) says that Go(x1,3) is in the closure of Go(xr,z).
That completes the proof of part 3 of Theorem 10.6.

Orbits Go(xr,z) and Go(x1,3/) are equal if and only if each is in the
closure of the other. According to part 3 just proved, that can be
formulated

| (\I) N a*| = | (S\DD) N A*¥| and
|(ErUrynar =|(EuUr na,
which is equivalent to the criterion
| G\T) N a*| = | (G\I) N A*| and | T'N A = | TN AF|
asserted in part 2. In particular, if we enumerate WNA*

= {uh,,l, e, xp;,,,,,}, and the choices of I'MA* and ZNAF leading to
distinct Ge-orbits are

PnA&:{‘h‘,l)"':'ﬁhi}, oéjérby
ENA = {Yjpr, - tea}, jSISh



1969)] ACTION OF A REAL SEMISIMPLE GROUP 1205

The number of such choices is

Sl =i) =t D= Y= (at+ 1) — dn(e + 1)

=0 =0

=¥+ 1)+ 2).

Thus there are precisely % > 2_o(rx+1)(rx+2) Go-orbits on X. That
proves part 2 of Theorem 10.6, completing the proof of the theorem.
Q.E.D.
Proor oF THEOREM 10.7. Decompositions (10.1) and (10.2) show
that 3Cr is an abelian subalgebra of 3¢y with the same dimension as 3.
If ¢ is the Cartan involution of Gy with fixed point set &, then
o(3¢r)=3Cr by (10.2), so 3¢r is a reductive subalgebra of G, It
follows that 3¢r is a Cartan subalgebra of Gy Note 3¢S =ad(cr)3°¢
=ad(cr)ad(c3)3° Cad(cres) Pog = Popedey=Papz; thus Hr is a
Cartan subalgebra of G, contained in @,y ;. It is standard [3] that
every Cartan subalgebra of Gy is conjugate to one of the 3Cr.
Let € be maximally compact among the Cartan subalgebras of G
contained in ®,; ;. Conjugating by an element of Go"\P, 5, we may
assume

e=(ECNX +(@ENmM), (" +50)C(eNx), (€N M) C Gr.

If the latter two inclusions are not equalities, then we have 039
€CNIr\g. Thus 0#£vE Pz ;N 3e\r. But ad(cr?)ad(cs?) sends ®up 5
to @ and sends Jg\r to ¢@r; thus 0#ad(cr)ad(cz2)vEPMNIGr, con-
tradicting ®MiGr=0. Thus

(eNx) = (" +57) and (€N M) = @r,

proving € =3Cr. Now the first part of Theorem 10.7 is proved.

If 3¢r and 3Cr- are conjugate in Gy, then for 1 £k < p their split parts
@rMNg* and @r-MG* along the simple ideal GoMNGF of Gy must have the
same dimension; those dimensions are |T'MA*| and |TVNAF|, which
thus must be equal. Conversely, if [TNA*| =|TVNA*| for 1<k=p,
then [7, Theorem 2], we have g€ K normalizing 3 with ad(g)3¢r = 3r.
That proves part 2 of Theorem 10.7. Parts 4 and 5 are immediate, for
3Cr is maximally compact if and only if it is conjugate to 3 = 3C4, maxi-
mally split if and only if it is conjugate to 3++ @o=3Cy.

If 3¢r centralizes a Go-conjugate ad(g) 3, then ad (g) 37 C3Cr. As 3Cr
is commutative, now ad(g)3pr CXNi3r=53++4+37C3, so we can as-
sume that g€K and ad(g)3=3; thus Gr+J@r+[@r, JGr]=Go[T']
centralizes ad(g)3r, so Go[[']Cad(g)(Gr.0). The former has T, and
the latter has ad(g)I, as maximal set of strongly orthogonal non-
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compact roots. Thus, for 1=<k<p, |TNA* =|ad(g)I'NA¥|
= [I"NA*|. Conversely, if [TNA*| <|TVNA*| for 1<k <p, then we
conjugate I'V by an element of W so that I'CI”, and then 3Cr cen-
tralizes 3. That proves part 3, completing the proof of Theorem
10.7. Q.E.D.

Proor oF THEOREM 10.9. Our assertions all are known for Ge-orbits
on the boundary of Xo=Go(xo) in X: in Wolf-Korinyi [15] it is
shown that Ge\r(xo) is a compact totally geodesic hermitian sym-
metric subspace of X (Lemma 4.2); that Ge\r,o(®0) CGu\r(%0) is the
Borel embedding of the noncompact dual (Lemma 4.2); that ¥\I'
is a maximal set of strongly orthogonal roots of Gu\r,o relative to
3MGer,0 (Lemma 4.2); that the holomorphic arc components of the
topological boundary dX, of X, in X are just the sets g-crGe\r,0(%0)
with gEK and ¢ #I'C¥ (Theorem 4.8); and that the set Bg\r of all
elements of G, that preserve ¢rGu\r,o(%0) is the parabolic subgroup of
Go whose Lie algebra ®e\r is the sum of the nonnegative eigenspaces
of ad( X r %,,0) on Go and satisfies ®e\r=Gu\r,0+ Ze\r where Zor
is the ideal that is the Lie algebra of the kernel of the action of Be\r
on ¢crGu\r,o(xo) (Theorems 6.5 and 6.8). Now we make the key ob-
servation that every holomorphic arc component of X is contained
in some Gy-orbit on dX, and thus is a holomorphic arc component of
that Go-orbit. Thus the case £ =¢ of Theorem 10.9, i.e. the case of
Go-orbits in the closure of X, is contained in the results of Wolf-
Korényi [15].

Now we go to an arbitrary orbit Go(xr,z). To minimize subscripts
on subscripts, we adopt the notation

®r,z = (P-"I‘,Z and 9p,z = fﬂ.[,r'z].

Recall the Cartan subalgebra 3¢ C®r,s of Go. All roots in this para-
graph will be 3e-roots of G. Now

&r,z denotes the root system of @r,s,

Ar,z denotes the root system of Ir,s.
From (10.3) and (10.4) we have
ad(ci«)JCp = Jr and f-ad(c;) Imr = ad(czz)-'rI:,cP.
This and ad()®r,s = ®r,z imply
(10.14a) ad(ci)ép,d, = Prz and ad(cé)r@r,¢ = 7Pr,3;
in particular

(10.14b) ad(cs){®r.e N 7®r4} = &r,3 N 7855,
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(10.14C) ad(c:-,) { @r,d, V) T@r.‘b} fad @r,z U ‘r@r,z.

Recall Theorem 8.5, let 8,5 denote the linear form (8.6a) on 3§, and
let @r,z denote the parabolic subalgebra (8.6¢) for xr,z. Then (10.14a)
gives us

ad(c;)ﬁr,.; = ad(c:;) . > = Y > ., ¢=90rz

u
er,¢N7er,¢ ¢r,zN7%r,3

so ad(c2)@r,s = @r,z. Recall Proposition 8.7 and let 9Mr,z denote the
linear space (8.8b) for xr,z. In view of (10.14c) it follows that
ad(&)Mr,o = Mr,z. As Go(xr,4) is partially complex, Theorem 8.9 says
IMr,e=Mr,4, SO Mr, is an algebra, and thus Mr,z=ad(E)Mr,4 is
an algebra; now 9ir,z=9Mr,z by Theorem 8.9. Thus

(10.15a) Hr,z = ad(ci)f)‘cr,¢ and Nrz= ad(c;)Nr.¢

where the latter are analytic subgroups of G. Now let Zr,z be the
kernel of the action of Nr,z on Nr,x(xr,z), Zr,s its Lie algebra. Then
(10.15a) gives us

(10.15b)  Zr.z = ad(c2)Zre and Zr.z = ad(cs)Zr.e.

As (10.4a) says ad(c2)33\r = J3\r, (10.8a) yields

(10.15¢) ad(ci‘)gw\r = Gu\r.

We already know 9r,4 =Ge\r=+ Zr,s; thus (10.15a, b, c) combine for
(10.15d)  9r,z = Gunr + Zr,z and Nr:z = Gur-Zr,s.

Now (10.10c) follows. That proves part 3 of Theorem 10.9. As 9r,4
is the sum of the nonnegative eigenspaces of ad{ dor xy,o} on G,
(10.15a) says that 91,z is the sum of the nonnegative eigenspaces of

e Tof =ai( oot~ {0 )

That proves part 4 of Theorem 10.9.
Note that ¢r centralizes Gg\r. Using (10.15c), we have

Gur(xr,s) = C;G\I'\I‘(xl‘,é) = GrcéG\r\r(xo)-

We already know that Ge\r(¥r,s) is a compact totally geodesic her-
mitian symmetric subspace of X, rank |¥\I'| with ¥\TI' as maximal
set of strongly orthogonal noncompact roots of Gu\r,0 relative to
3MGe\r,0. Now the same statements follow for Ge\r(xr,z). That
proves part 1 of Theorem 10.9.
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Guw\r,o(xr,z) is open in Ge\r(xr,z) by (10.15d) and the fact that
Go(xr,s) is partially complex. Ge\r,o(%r,z) is symmetric with invariant
kaehler metric by Corollary 9.25. If I'MXZ=¢ and 2 is a (possibly
empty) union of sets (¥\I')NA* for which Gi(x,) is of tube type, then
Ge\r,0 has the same (thus compact) isotropy subgroups at xr,s and
xr,z, so the metric is positive definite. If 'MW =¢ and the metric is
positive definite, then Ge\r,0 has the same isotropy subgroups at
xr.¢ and xr,z, so [15, Lemma 5.6] the (—1)-eigenspace of ad(ci) on
Gu\r is zero, and the last statement of [15, Theorem 5.7] says that
2 is a union of sets (W\I')NA* for which Gi\re(xo) is of tube type.
However, [15, Corollary 4.11] says that the latter is equivalent to
Gg(x0) being of tube type. That proves part 2, completing the proof
of Theorem 10.9. Q.E.D.

11. Hermitian symmetric spaces: compact subvarieties and Siegel
domain realizations. Retain the notation and terminology of §10.
We will apply our explicit analysis of the Gg-orbit structure of X to
obtain certain “generalized Siegel domain” realizations of an arbi-
trary orbit Go(xr,s) CX. Those realizations are composed of several
decompositions of Go(xr,z) as follows.

1. a: Go(xr,z)—Go/Nr,z,0 is the K-equivariant fibration whose
fibres are the holomorphic arc components £%-Ge\r,o(%r,z)
=kcrGu\r,0(%4,z), REK, of Go(xr,z), and whose base is the space
Go/Nr,z,0=K/(KNNr,z,0) of holomorphic arc components of
Go(xr,s).

2. B: Go(xr,z)—K(xr,z) is a K-equivariant fibration whose restric-
tion B; to a holomorphic arc component k-Ge\r,o(xr,z) is a holo-
morphic fibration of that arc component over its maximal compact
subvariety k- (KMNGg\r,0)(*r,z). Assume I' and 2 disjoint. Then the
fibre of B (and also of Bx) over k&' (xr,z), ® € KMNGw\r,0, is a certain
hermitian symmetric space

kk"Gi\r.o(xr.z) = kk’CPC;'G\i\r.o(xo)
P
= kk’crc‘;{Gw\(rUz),o(xo) X G,0(x0) }

of noncompact type and rank I\I/\I‘l where G34(xo) denotes the tube
domain part (c.f. [2]) of the domain Ggz,o(x0). @ factors through S,
i.e. a-B~1: K(xr,5)—Go/Nr,z,0 is a well-defined K-equivariant fibra-
tion.

3. y4:.B: Go(xr,z)——)W‘Gg:,o(xr,z) where W is a certain subset of K
and we have disjoint decompositions

T=4U4", W\(I'UZ)=BUB, E=A\UB, E =A4'UB.
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Given EEW, the restriction yi? of v4-2 to (y4:8)~'(k-Gho(%r,s))
is a holomorphic fibration vi%: k-Gazpo(xr.z)—k-Garo(%r,5) equiva-
lent to a certain projection that is implicit (but made explicit in the
appendix to this §11) in the intrinsic realization (c.f. [15] or the
appendix to this §11) of Gi\ro(¥o) as a Siegel domain of type III
over its boundary component Ggf,o(xg,.,,). ~4:B is not necessarily con-
tinuous, but it is real analytic almost everywhere, and B factors
through y4-5.

The fibration a: Go(xr,z) —Go/Nr,z,0 is the subject of Theorem 8.15
with details supplied by Theorem 10.9. The fibration B:Go(xr,z)
—K (xp,z) is described in Theorem 11.8 below, while y4:2 is described
by Proposition 11.20 and Theorem 11.23. Proposition 11.20 is a
transcription of Proposition 11.3A (A for appendix) which extends
the Wolf-Korényi description [15] of the realizations of hermitian
symmetric spaces as Siegel domains of type III.

Let I and 2 be disjoint subsets of ¥. We decompose the real form

Ge\r.0=GNGu\r of Ge\r by
(11.1a)  Guro = Xenr + Maenr.o, Kenr = XN Gur  and
Merr,0 = Mo N Gor.

If Yy €V then ad(cy) has order 4 on the odd dimensional irreducible
representation spaces of adg(g [¢]), order 8 on the even dimensional
ones; so ad(c}) has square 1. Now

ad(c;) = ad(c,:)_1 = ‘r_l-a,d(c;)"r
shows that ad(c;) preserves Go, and
ad(cy) = ad(ey) " = o -ad(ce)-o
shows further that ad(c}) preserves X and 91,. Define
(11.1b) 93\1‘ = {r Egnr: ad(c::)v =9} and gi\r.o =GN Qi\r.

Now Girp is a real form of G3\r, and in fact

p z z z z
Gur,o = Xonr + Maeyr,o, Xonr = XN Gwnr and
(11.1c) = z
Mar,0 = Mo M Ga\r.
Finally, we define
(11.1d) Qi\r is the (—1)-eigenspace of ad(c:;) on X\,

(11.1e) (Ri\r,o is the (—1)-eigenspace of ad(c;) on NMur,o-
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That gives us symmetric decompositions under ad(ct):

(11.1f) 5C\1l\r=5(’.§\r+Q§\r and Sw\r,o=9§\r,o+(Q§\r+m:\r.o)-

Roman letters denote corresponding analytic groups.
We collect some information in a sequence of lemmas.

11.2. LeMMA. Ky\r=KNGe\r,0, maximal compact subgroup of
Ge\r,0-

11.3. LEMMA. Kj\r=KNGiro, maximal compact subgroup of
Genr.o. Both Ki\r and Ganr,o are normalized by crcs, and Kanp is the
isotropy subgroup of Girw, both at % and at xr,z. In particular

b 2 3 P z
Ga\r,o(%r,z) = crezGu\r,0(%0) = Gu\r,0o/ Ko\r,

and that orbit is a totally geodesic hermitian symmetric subspace of non-
compact type and rank |‘I’\1"| in crczXo.

11.4. LEMMA. K3\ r is the isotropy subgroup of Ke\r at xr,z, and the
orbit Ke\r(xr,5) =K w\r/K3\r is a totally geodesic hermitian symmetric
subspace of compact type in X.

11.5. LEMMA. The isotropy subgroup of Ge\r,o at xr.z is the analytic
subgroup with Lie algebra Xa\r+ ®3vr,0=ad(crcd) XS\ rMNGerr,o-

11.6. LEMMA. Define f: Ko\r X M3\r,0 X Rorr.0—Gw\r,0 by f(&, 91, v2)
=Fk-exp v1-exp V2. Then f is a diffeomorphism.

PROOF OF LEMMAS. Go\r,0(%0) =G o\r,0/ (KNG w\r,0) is a hermitian
symmetric subspace of noncompact type and rank I\II\I‘I in X,. Thus
KNGe\r,o0is connected and maximal compact in Ge\r,0. As KNGu\r,0
has Lie algebra Xe\r, now KNGwnr,c=Ke\r and Lemma 11.2 is
proved.

Note Gu\r,oCGerr.0CSuw\r and ad(z)9M3\r,0=Me\r,0. It follows
that Gy\r,0(%0) is a totally geodesic hermitian symmetric submanifold
of noncompact type and rank ] \I'\I‘l in X,. As above, now Kj\r
= KNG3\r,0isotropy subgroup at £, and maximal compact subgroup
of Gﬁ\r.oo

As cr centralizes Gy\r it centralizes the subgroups K3\r and Ga\r,o-
As ad(&) preserves Geu\r and commutes with ad(c}), it preserves
Gi\r- Now ad(c2) preserves Givro because

ad(cfs;) = ad(c;)—l = 'r_l-ad(czz)-r on gi,\r.
Furthermore

ad(c;) = ald(c:i;)ml = a~l~ad(czz)-a on gi\p,o,
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so ad(c%) preserves both X3\r and 9Mz\r. Now Gizr,0 and Kz\r are
centralized by ad(cr) and normalized by ad(c%), so they are normal-
ized by ad(crc}). As Ki\r is the isotropy subgroup of Gi\r.o at %o,
it thus is the isotropy subgroup at crc2xo =xr,z. Lemma 11.3 is proved.

The symmetry of X at xr,z is ad(cr)-o-ad(crcd)~'=ad(crc3)® o
=ad(2)-ad(c}) 0. It acts on Gu\r,0 as ad(c}) -o. Thus it normalizes
Ke\r, so Ke\r(xr,z) is a compact totally geodesic symmetric sub-
space of X. It is a complex submanifold of X by Lemma 5.1, so it is
hermitian symmetric. The isotropy subgroup of Ke\r at xr,z con-
tains K3\r, has Lie algebra X3\r that contains the center of Xg\r;
thus K3\r(x0) is of compact type and necessarily simply connected;
now K3\r is the isotropy subgroup of Ke\r at xr,z. Lemma 11.4
is proved.

The isotropy subalgebra of Gu\r,0 at crxo is Xe\r, so the isotropy
subalgebra at & (crxo) =%r,z is ad () X$\+NGe\r,0. Now ad(cl) pre-
serves X3\r, as seen above, and sends Qi\r to ®3\r by [15, Lemma
5.6]. Thus Gu\r,o has isotropy subalgebra X3\r+ ®3\ro at xr,z. The
isotropy subgroup of Ge\r,0 at xr,z is connected by Theorem 5.4,
so it must be the analytic subgroup for X3\r+ ®3\ro. Lemma 11.5
is proved.

Define ¢: Ma\r,0—oGe\r,0(x0) by ¢(v) =exp(—12)-exp(—u1)-x0
where v =v,4+;, 9, EM3\ro and 1€ R3\ro. We view o as a differenti-
able map from the euclidean space 9Mg\r,0 to the symmetric space
Ge\ro(*o) of noncompact type. We will prove ||gsf|| =||£]| for every
tangent vector £ to Mg r,o. Then [13, Theorem 1] ¢ is surjective and
covering, hence a diffeomorphism because Ge\r,0(x0) is simply con-
nected, and it follows that from f(k, v1, v2)~*x0 = (v1+1:) that f defines
a diffeomorphism of K X 9M3\r,0 X ®RI\r,0 0nto Ge\r,0.

Let 1,EM3\ro be fixed, v,ERI\r, variable. Then o(v;42,)
= exp(—1:) exp(—u)xo = exp(—u)-exp(v)-exp(—uvs)-exp(—v1)xo
=exp(—v1)- {ad(exp v1)-exp(—u) }xo=exp(—-vl) . {exp(—ad(exp 91)
-v3) }x0. Now exp(—w,) is an isometry on Ge\r,o(%o), and

1
ad(exp 1) ‘v, = exp(ad vy) 92 = Z —! ad(vy)”-va.

nzo 7

Note ad(v1)": € R3\r, for 7 even, €Q3\r for # odd; so

1
d . = d 2n, —_— 2n4-1,
ad(exp 1) - vz ”Zzo: ) ad(vy)?-v; + ”Eko; @n + D1 ad(v1) v

with the first sum in ®3\ro and the second in Q3\r. As ad(w) is sym-
metric, so ad(v1)? is positive semidefinite, now



1212 J. A. WOLF [November

[| (ad(exp 1) -v2)smarr,of| 2 [|va]].

Thus ¢ does not decrease lengths of tangent vectors on v+ ®a\r-

Let 9,E®R3\ro be fixed, 1, EMi\r, variable. Then ¢(v;+2s)
=exp(—v;) exp(—v1)x, is the composition of —1 on MI\r,, expo-
nential map in the symmetric space Gg\ro(xo) of noncompact type,
and left translation by exp(—wv). As Gi\ro(xo) has curvature =0,
now ¢ does not decrease lengths of tangent vectors to Mg\ o+2;.

Fix € M3\ro and let w; be variable there; fix »,E€ ®R3\ro and let
w, be variable there. Now

(v + Cﬂi\r.o) = {eXP(—‘Uz - W2)'CXP(—111)'900},
qa(imfy\r,o + v;) = {exp(—vs)-exp(—v1 — 1) %o}.

Those manifolds intersect at ¢(v:1+,) =exp(—19,)-exp(—v1) - %o, and
we want to show the intersection there to be orthogonal. For that,
translate by the isometry exp(v) sending exp(—vz) exp(—uwvi)xo to
exp (—ad (exp 1) - 12)%0o E@(®3\r,0), 2nd note first that exp (1) (R3Iro)
consists of all

exp(—ad(exp v1) -v2 — ad(exp v1)ws) - %o
and second that exp(v1)o(M3\ro) consists of all
exp(—ad(exp v1) -72) exp(—w;) - xo.
Thus the question of orthogonality is reduced to the case v;=0,
where it follows from first
exp()e(Rarro) = {exp(—wo)ao} = o(Rrr.o)
because exp (vz) exp(—v2 —w») =exp(—w,) mod K3\r, and second from
exp(v2)p(@Mar,o + 2) = {exp(—wi)zo} = ¢(Marr.o).

Now let £ be tangent to Me\r,0 at v. Decompose £ =£,+£, along
Marr,0=M3\ro+ Rerro- We have proved

llestd| 2 [l&dl,  llostall 2 [|&l,  estr L outa.
Thus
llostll? = lloxts + extall? = [|estil|? + [lental|? 2 [&]2 + [|2:]]2 = [|£]]=

That completes the proof of Lemma 11.6. Q.E.D.
We need notation for the factorization of Lemma 11.6. The nota-
tion will be, for every g&EGye\r,0, that
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p) P
(11.7) g=gx"gu-gr where grE Ke\r,guEexp Mar,0, grE€XP Rurr,0-

11.8. THEOREM. Let I’ and Z be disjoint subsets of ¥. Given kREK,
define

Bi: k-Gu\r,o(xr,z) = k- Ke\r(ar,z) by Bi(kgar,z) = kg(ar,s).
Now define
B: Go(r,2) = K(2r,2) by B e-0g\r gter, = Br-

1. Bi: B-Gu\r,o(xr.z) k- Ky\r(xr,z) is a well-defined holomorphic
bre bundle with
6'(la) structure group: the conmected reductive complex Lie group
Ki\r;

(1b) total space: the homomorphic arc component k-G r,o(%r,z);
of Go(xzr);

(1c) base space: the maximal compact subvariety k-Ke\r(xr,sz)
which is a compact totally geodesic hermitian symmeiric submanifold
of X;

(1d) fibre over kk'(xr.z), ' EKy\r: the totally geodesic hermitian
symmetric submanifold

P
kEk' -Ge\r,o(#r,3) = kk'GrC;'Gi\r,o(xo)
P
= kk'arc;{ Ga\rus,0(%0) X Gz,o(x0)}

of noncompact type and rank [\I/\I‘] in kR crcz - Go(xo).

2. Let v be the holomorphic mormal bundle to k-Ky\r(xr,z) in
k-Guw\r,o(xr,z). Then v is the homogeneous holomorphic vector bundle
over the hermitian symmetric coset space Ke\r/Kinr=2k-Kinp(xr,s)
defined by the representation of Ki\r on the holomorphic tangent space
of Girro/Ko\r=Gi\ro(*r.z), and the bundle By is holomorphically
fibre-equivalent to a relatively compact tubular neighborhood of the zero-
section of v.

3. Let det v denote the determinant bundle of the holomorphic normal
bundlev. If dime k- Ko\r(xr,z) >0, then det v is a positive holomorphic
line bundle (in the sense of K. Kodaira), and the bundles B, v and det v
are all topologically montrivial. Furthermore, the following conditions
are equivalent:

(3a) Bx is holomorphically trivial,

(3b) Bx s topologically trivial;

(3c) B has base reduced to a point;

(3d) Ganr,o(xr,z) is hermitian symmetric;
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(3e) ad(cz) has order 4 on Gy\r; and

(3f) If A™ are the root systems of the simple ideals of G, then for
each m, either ZNA™=¢, or (¥NA™) C(T'UZ) with Genam,o(xo) of
tube type.

4. B: Go(xr,z)—K(xr,z) is a well-defined real analytic fibre bundle
whose fibres and structure group coincide with those of the restrictions By
to the holomorphic arc components k-Go\r,o(xr,z) of Go(xr,z). The
bundle B is real analytically equivalent to the homogeneous complex
vector bundle over K(xr,s) with fibre equal to the holomorphic tangent
space of Girro(xr,z). The following conditions are equivalent:

(4a) B is real analytically trivial;
(4b) B is topologically trivial;
(4c) for each irreducible factor of X, the corresponding factor of B
has base or fibre reduced to a point; and
(4d) if A™ are the root systems for the simple ideals of G, then for
each m, either
(4di) TNAm=¢ =ZNA™, or
(4dii) TNA™=TNA™ and ZNA™=¢, or
(4diii) TNA™=¢ and ZNA™=VNA™ with the bounded domain
Gynam,o(x0) of tube type.

Proor. Fix k€ K. Then B is well defined by the factorization (11.7)
resulting from Lemma 11.6. The total space k:Gu\r,o(xr,z) is a
holomorphic arc component of Go(xr,z) by Theorem 10.9, and the
base space kK o\r(*r,z) =K\ r/K3\r is a totally geodesic hermitian
symmetric submanifold of X by Lemma 11.4. That realizes ; as a
real analytic fibre bundle with structure group K3\r; now we may
view K2\ as the structure group.

Let 2’ &Kqg\r. The Bi-fibre over kk’(xr,z) consists of all kg(xp,z)
such that kE'(xr,z) =kgx(xr,z). The latter condition is %'(xr,z)
=gx(xr.z), which is gg €#’K3\r by Lemma 11.4. Thus the fibre con-
sists of all kk'kigugrrr,z with guEexp Mi\re and gr€exp Rirro
Lemma 11.5 says gegxr,z=%r,z, and we have kigyxr,z=ad(k)guxr,z
which is in exp(IMZ\r0) (xr,z). Thus the fibre consists of all kk'gyxr,z,
and now Lemma 11.3 says that it is the totally geodesic hermitian
symmetric subspace kk'Gi\ro(xr,z)=kF crczGanro(xo) of noncom-
pact type and rank [¥\T'| in k#’cré Xo.

In the notation of [15], itis shown [15, §5.4] that g¥\2
={[0F"%, e¥V*]4+0F 2} ® £F\* where the second ideal is in X, it is
shown [15, Lemma 4.4] that ®f‘®=@®ss+®sz,, and it is shown
[15, §6.6] that [Ge\z, Gza]=0. The
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g¥\2 of [15] is our ad <exp -2 z) {g.N g2},

T
@,%\2 of [15] is our ad <exp T z) {om, N g2},

»J:-|=|

®e\z of [15] is our ad (exp z) {fmu N Gz},

®z, of [15] is our ad (exp z) {am, N 9;},

NI

o
Gew\z of [15] is our ad (exp n z) {8.N g3},
Gsa1 of [15] is defined as [(Pz,l, (Pz,1] + ®@s.1.

Using that dictionary we conclude that
Gy =Gn:®G:®L: L:C XK.
Taking intersection with Gg\r, now
gi\r = Gu\(ruz) @ g§ ® Lr,3, Lr,z C GCC.
All three ideals are 7-stable. Thus
Guro = Grnaun.o © Gro ® Lrza  LrzeC XK.

It follows that

G;\r.o(xo) = Gu\(ruz).o(%o) X Gg,o(xo)-

We have proved every part of (1) except for the fact that the
bundle B; is holomorphic. However we have seen that its total space,
base and fibres are complex submanifolds of X, and that its structure
group is a complex Lie group acting holomorphically on the typical
fibre, so we need only demonstrate the existence of holomorphic
transition functions. Thus, to complete the proof of (1) it suffices to
complete the proof of (2).

Ga\r.o(*o) has holomorphic tangent space Mg\r =M-NME\r, at
%9, and m§§r=m-nm€°{r,o is the subspace that is the holomorphic
tangent space to Gapo(*o). Define ®RIr=M-NRNro S0 Marr
=93+ ®Ir. Recalling that ad(c2) interchanges ®iKpo with
Qﬁf’{p and noting that ad (c3) Rir = Ri\r, we define Q3 r =ad (2) Rar;
then ad(d)Mg\r =ad(Z)Miw+Q5\r. Now Lemmas 11.3, 11.4 and
11.5 say that, at xr,z,
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Gor.ofar.2) has holomorphic tangent space ad(c2)Manr + Quvr,
Gz\r,o(xr,z) has holomorphic tangent space ad(ci)smg'{r’

Ko\ r(2r,z) has holomorphic tangent space Qi{r.

Now the holomorphic normal space of Ke\r(*r,z) in Ge\r,o(*r,z) at
xr,s is ad () M3 r, and K3y preserves it and acts there by its repre-
sentation on the holomorphic tangent space to Ga\ro(xr,z). That
identifies the holomorphic normal bundle » of k:-Ke\r(xr,z) in
E-Ge\r(xr,z) with the homogeneous vector bundle over Kg\r/K3\r
with fibre ad()M3r that has KZ\p-module structure from adg.
The Harish-Chandra realization of Ga\ro(*r,z) as a bounded domain
in ad (2) M3 r identifies B; with a relatively compact open sub-bundle
of ». Now (2) is proved, and that completes the proof of (1).

Let k be the canonical (holomorphic) line bundle over k- Kg\r(*r,z).
It is the holomorphic line bundle whose sections are the (d, 0)-forms,
d=dim¢ k- Ke\r(xr,z). Thus its dual «* has fibre AQ33 where of
course d =dim¢ @33r. Let § denote the representation of K3\r on the
fibre of k, so its dual 8* is the representation on A¢Q3\;. Define
zexr=(4/2) D w\r by EX3\r. Then [15, Lemma 6.2] ad(ze\r) acts
on ®3yr as scalar multiplication by /2. As ad(c%) preserves Xi\r
and interchanges ®3\r with @33r, now ad(c2) (2ze\r) is an element of
X3\r that acts on @33r under adg as scalar multiplication by 7. Thus

z 2 . . 3
ze\r = ad(cz)(2ze\r) is central in Xe\r
and

ad(zi\p) ch is the almost complex structure of k- Kg\r(xr,z).
\T
Let 8 CX3\r denote the Lie algebra of the kernel of the action of
Ke\r on Ker(xr,z)=Ke\r/K3\r- Now 8* can be described by:
0*(ze\r) =id, 6*(8) =0, and 6* annihilates the orthocomplement of
the image of 25\r in X3\r/8. Thus we describe k as the homogeneous
line bundle on Ke\r/K3\r induced by the character § on K3\r such
that 8(z3\r) = —id, 8(8) =0, and & annihilates the orthocomplement
of the image of z2\r in K3\r/8.

Let v over k- Ke\r(xr,z) denote the holomorphic normal bundle in
k-Go\r(xr,z). We will describe the determinant bundle det » over
k- Kg\r(xr,z) so as to be able to compare it with the canonical bundle
k. det » has fibre A® ad(c3) M35y where @ =dime M3y Let a denote
the representation of K3\r on that fibre. We know [15, Lemma 4.4]
that ad(ze\r) is scalar multiplication by 7 on M33r; thus ad(z3\r) is
scalar multiplication by 24 on ad(c3)M3xr; we conclude that a(si\r)
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=2ia. Let 8 CX3\r denote the Lie algebra of the kernel of the action
of Girroon Ginro(xr,z)=Gi\ro/K3\r- Then & is orthogonal to the
subalgebra Go[¥\I'] of G3\r0 that contains z3\r. Thus we can specify:
a(zi\r) =2ia and a annihilates the orthocomplement of zi\r in
%%\r. Comparing representations we now conclude that (det »)¢
=xk~2 as holomorphic line bundles.

Recall d =dim¢ k- Ke\r(*r,z) and a=dim¢ Gi\ro(*r.z). If a=0,
then the noncompact type symmetric space Ga\ro(%r,z) is reduced to
a point, so its rank I\II\I‘I =0; then I'=¥ so Ge\r,o(xr,z) =2%r.2
= Ku\r(xr,z), whence d=0. In other words, if d>0, then ¢>0.

Suppose d>0. Then the canonical bundle k of Kg\r/K3\r is nega-
tive in the sense of K. Kodaira; as ¢> 0 it follows that k=% is positive;
thusdet»isa positive line bundle. Let [c(detr) |E H (K e\r/K3\r; Z)
denote the Chern class of det ». Now [c(det »)] is represented by a
K g\r-invariant positive definite (1, 1)-form c(det »). As it is positive
definite, ¢(det ») #0; as it is Ky\r-invariant and K¢\r/K3\r is sym-
metric, now [c(det »)]50; thus det » is not topologically trivial. It
follows that » is not topologically trivial. As the bundles » and B are
topologically equivalent, now f3; is not topologically trivial.

If d=0, then Kexr=Kj\r, 50 Qr=0; then ®\ro=ad(c)
-(1Q3\r) =0, 50 Ge\ro=G3\ro- That says that ad(cz) has order 4 on
Gu\r. Let = Y g™ decomposition into simple ideals, A=UA™ cor-
responding decomposition of the root system of §. Then [15, Corol-
lary 4.10] the Go\r = G(v\mnam are the simple ideals of Gu\r (possibly
with some of them equal to zero); further [15, Corollary 4.11] if
G@\mnam,o(%xo) is of tube type and positive dimension, then Gynam,o(x0)
is of tube type; finally [15, Theorem 5.7] ad(cz) has order 4 on Gu\r
if and only if, for each simple ideal G(v\rnam of Ge\r, either

1) ZNEE\I')NA™ is empty or

(ii) Giw\mnam,o(xo) is of tube type and (W\I')NA=CZ.

We conclude, using disjointness of I' and 2, that ad(cz) has order 4
on Gu\r if and only if, for each m, either

@) ZNAm=¢ or

(ii) Gena™,o(x0) is of tube type and YNA»C(T'UZ).

That completes the proof of (3).

We will prove B:Go(xr,z) 2K (xr,z) well-defined. In other words,
given k, ¥’ €K with k-Ge\r,o(xr,z) =k'-Gu\r,o(xr,z), we will prove
Br=PBr. Now suppose

& € k-Gu\r,o(xr,2) = k' -Gu\r,o(2r,z); kK EK.

Express
x = kg(xr,z) = K¢ (ar2); g8 € Gurao
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k'8’ €K preserves the holomorphic arc component Go\r,o(xr,z) of
Go(xr,z); that holomorphic arc component being a symmetric space
of noncompact type, now k—k’=kk;, where 2 & Ko\r and k; acts
trivially on Ge\r,o(*r,z). Thus we may ignore k; and assume

B = kb, withk € K\p\r.

As in (11.7) we decompose

’ /7 7 ’
g = grguge and g = grgugr.

Using ggxr,z =%r,z =gkXr,s, Now we have

® = kgrgur,z = kkigrgu®r,z.

Thus grgmh =rkigkgly where BEGu\r,o fixes xp,z. Lemma 11.5 says
h=hghg, ks €K3\r and krEexp ®R3\r,o. Now

(klg;{)g;l = grguhghr = (gxhx)(h;glguhx)ha.
Uniqueness of (11.7) thus says

klg;t = gxhx, gju = hz_:lguhx, 1 = hg.
Thus

Bu(%) = kgr(xr,z) = kgrhx(xr,z) = khige(xr,s) = F gr(tr,2) = Bi(x),

and B is proved to be well defined.

Now B:Go(xr,s)—K(xr.z) is a well-defined real analytic map. If
xEGo(xr,z), then x and B(x) are in the same holomorphic arc com-
ponent of Go(xr,z). It follows that B is a real analytic bundle whose
fibres coincide with those of the restrictions 8;. The structure group
of B is the isotropy subgroup of K at xr,s. That isotropy group pre-
serves the holomorphic arc component Ge\r,o(*r,z), S0 its every ele-
ment has factorization k=kik: with 2EGer,0 K =Ks\r and %,
acting trivially on the fibre Go\r,o(*r,s) of 8. Note k& K3\ because
ki(xr,z) =%r,z. Thus we can reduce the structure group of 8 to the
structure group Ki\p of its restrictions fBs.

Consider the special case 8:Go(xr,) =K (xr,4) where G, is simple
and ¢ #T' V. The fibre of B over k(xr,4) is the holomorphic arc com-
ponent k-Ge\r,0(%r,s) of Go(xr.s). The space K(x4,r), maximal com-
pact subvariety of the open orbit Go(x4,r), has been seen to be a
totally geodesic hermitian symmetric subspace of compact type in X.
We will construct a positive holomorphic line bundle X over K(x4,r),
and a fibration f: K(xr,s)—K(%4,r), such that
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f*\ is the determinant bundle of 8: Go(xr.s) — K(xr,4).
For that construction we use the notation

LT: isotropy subgroup of K at xr,4;
KT: isotropy subgroup of K at x4,r.

Lemma 11.4 says that KT = K§, centralizer of ¢} in K; the decomposi-
tion G§ 4= £r.4,0D Gur,0+ Gl informs us first that LT =Ly 4,0- Ke\r
local direct product where the first factor acts trivially on Ge\r,o(*r.4),
and second that KT =LT- KT local direct product. Now we define

f: K(xr,4) = K/LT— K/KT = K(%s,r) by f(RLT) = kKT.

View f as identification under the right action of Kf on K/LT. That
action commutes with the action of LT on the fibres of 8. Thus, in the
category of topological vector bundles,

B8 = f*y for some vector bundle v over K(xs,r).

As KT acts on the fibres k- Gu\r,0(xr,4) of v via the action of K$\; on
Go\r,o(xr,s), which is holomorphic,

v over K(x4,r) is the K-homogeneous holomorphic
vector bundle with fibre 9Mg\r over x4 r.

Now we compare det v with the canonical bundle « over K(xy,r).
ad(c2)z acts on the fibre A*dMg\r, a =dime Mg\, of det v, as multi-
plication by a. It acts on the fibre (A%Q%7)*=(A? ad(d)®RY)*,
d=dim¢ @~ =dim¢ K(x4,r), of k, as multiplication by —id. Thus
as before,

(det v)2 = ko,

Our hypothesis that Gy be simple and ¢ #=I' #V¥ ensures d #0 #a.
As « is negative, now (det )¢ is positive, so det v is positive. Define
A =det v, and we have

A = f* det v = det f*y = det(B:Gu\r,0(*1,6) = K(2r,4))-

That completes the construction.

Suppose Go simple. We will prove that B:Go(xr,z)—=K(xr,z) is
topologically trivial if and only if

(i) T'=¢=2, so B is fibration of Go(xe) =X, over the single point
Xo, O

(ii) T'=Y and Z =¢, s0 B:Go(¥v,s) K (xe,) is the fibration of the
Bergman-Silov boundary of X, in X over itself with fibre reduced to
a point; or
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(iii) I'=¢, =7, and X¢=G(xo) is of tube type, so 8 is fibration
of Go(x4,9) =& X, over a single point x4, = c3x,.

First note that § is topologically trivial in the three cases described
just above. Conversely, now assume 8 topologically trivial. Then the
restrictions B; to the holomorphic arc components k-Ge\r,o(xr,z) of
Go(xr,z) are topologically trivial, so either T =¢, or ¥ =I'UZ with X, of
tube type. First suppose Z =¢, so 8:Go(xr,s) K (xr,4), and recall the
map f: K(xr,4) > K(x4,r) of the paragraph before last. If ¢ =TI =V,
we saw that the determinant bundle of 8, viewing 8 topologically as a
complex vector bundle, is of the form f*\ where N\ over K(x4,r) is a
positive holomorphic line bundle. As its Chern class is nonzero, N is
not topologically trivial, so f*A=det B is not topologically trivial,
contradicting topological triviality of 8. Thus either I'=¢ and we are
in case (i) above, or I'=¥ and we are in case (ii) above. Now suppose
Z#¢, so ¥ =TUZ with X, of tube type. As X is of tube type, i.e. as
¢y =1, we have K and G, stable under ad(c%). Now, using the conse-
quence cg =cpcz of ¥ =I'UZ and 'M2 =¢, we have

cfy:Go(xr,z) “"Go(C?rxr,z) = Go(C:‘C;xo) = Go(2r,4),

and that the map has the properties

C;K(xr,z) = K(xr,3) and cfrk'Gw\r.o(xr.z) = k' -Ge\r,o(%r,4)-

Thus ¢ defines a fibre bundle isomorphism between the fibrations
B given by

Go(xr,z) = K(xr,z) and Go(xr,s) = K(xr,g).

The first being topologically trivial by hypothesis, the second must
be trivial, and we have just seen that to imply either I'=¢ or I'=V.
But ¥=TUZ, I'NMZ=¢ and Z#¢; thus I'=¢, 2=V and we are in
case (iii) above.

Let g™ denote the simple ideals of G, A™ the root system of gm»,
Gy =GoMg™, G™ and Gy the analytic subgroups for g™ and gy, and
Xm=G"(xo) and X7 =Gy (x0). Then Go(xr,z) is the product of the
Gy (X*rnamznam), and the base and fibres of B:Go(xr,z)—K(xr,z)
decompose similarly. Thus 8 is topologically trivial if and only if each
of the “factors”

Gy (xrnam znam) — (K N Gy )(wrnam, znam)

is topologically trivial. According to the paragraph before the last one,
B is topologically trivial if and only if, for each m,
(i) YNA"=¢=ZNA"™, or
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(iif) TNA»=¥NA™ and ZNA™=¢, or

(iii) TNAm=¢ and ZNA»=¥NA™ with X7 of tube type.
That completes the proof of (4), completing the proof of Theorem
11.8. Q.E.D.

11.9. COROLLARY. Let I'C¥. Then the fibration 8: Go(xr,4) =K (xr,4)
of Theorem 11.8 is given by B(k-Gu\r,o(*1,4)) =k(xr.4) for REK, and it
s real analytically equivalent to a complex homogeneous vector bundle y
over K(xr,;). There is a fibration f:K(xr,s)—K(xs,r) defined by
f(kxp,g) =kxg,r, whose fibres are compact totally geodesic submanifolds
k-K%(xr.4) of X, and whose base is the totally geodesic hermitian sym-
metric subspace K(x4,1) of X; w=f*y for a certain holomorphic homo-
geneous vector bundle v over K(x4,r). If ¢ #TNA™ EVNA™ where Am
1s the root system of some simple ideal of G, then dime K(x4,r) >0 and
det v is a positive homogeneous holomorphic line bundle over K(x4,r);
in particular, in that case det v, v, det u, u and B all are topologically
nontrivial.

11.10. CorROLLARY. LetT' CV and Z =U\I' with X, of tube type. Then
the fibration B:Go(xr,z)—K (xr,z) of Theorem 11.8 is given by mapping
GkGur.0(xr,6) =ad()k- Gurr,o(Xr,2) to cykxr,s=ad(y)k %13, and
it is real analytically equivalent to a complex homogeneous vector bundle
' over K(xr,z). There is a fibration f':K(xp,z)—K(x4,z) defined by
f'(kxp,z) = kx4, whose fibres are compact totally geodesic submanifolds
k-KS(xr,z) =k-Ki(xr.z) of X, and whose base is the totally geodesic
hermitian symmetric subspace K(x4,z) of X; u' =f"*y' where v’ is a
certain holomorphic homogeneous vector bundle over K(x4,3). If ¢ #Z
NA7=VTMNA™ where A™ is the root system of some simple ideal of G,
then dime K (x4,z) >0 and det ¥’ is a positive homogeneous holomorphic
line bundle over K(x4,5); in particular, in that case dety’, v', det u’, u’
and B are all topologically nontrivial.

Corollaries 10.9 and 10.10 are related by: ¢ is a bundle isomor-
phism of Go(xr,z)— K (xr,z) onto Go(xr,s)—K(xr,4) and maps K(x4,z)
onto K(x4,r), inducing the fibrations f’ from f, u’ from u and v’ from .

ProoF oF CoroLLARIES. Corollary 11.9 is contained in the proof
of part 4 of Theorem 11.8 for the case where G is simple, and the
general case follows. The second paragraph of the statement of Corol-
lary 11.10 is also contained in that proof, and the first paragraph
then follows from Corollary 11.9. Q.E.D.

The special case of an open orbit is worth separate examination.
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11.11. CorOLLARY. Every open Go-orbit on X has a holomorphic
fibration

B: Go(xs,3) = K(x5,2) by P(g%s,3) = gr%s.z
where
¢=gxgugr, ¢xE€K, gu€expiMys  gr € exp Ry
1. The bundle B has structure group K%, has total space Go(x4,3), has
base space K (x,,z) which is a compact totally geodesic hermitian sym-

metric submanifold of X, and has fibre over k(x4,s) which is the totally
geodesic hermitian symmetric submanifold

E-Gy.o(2s,5) = kczGa.o(o) = kcz{Gurz.o(mo) X Gz,0(%0)}

of noncompact type and rank I\III in kzGo(xo).

2. The holomorphic normal v bundle of K(x4,z) in Go(xs,z) is the
homogeneous vector bundle over K (x4,2)=K /K% associated to the repre-
sentation of K3 on the holomorphic tangent space of G3,o/K%. The
bundle B is holomorphically equivalent to a relatively compact open sub-
bundle of that holomorphic normal bundle v. If dime K (x4,5) >0, t.e. if
the root system A™ of some simple ideal of G satisfies ZNA"#=p, and
satisfies ZNA™ZEVYNA™ in case Genam,o(%0) s of tube type, then det v
15 a positive homogeneous holomorphic line bundle over K (x4,z), and the
bundles det v, v, and B all are topologically nontrivial.

ProoF. This is the case I'=¢ of Theorem 11.8. Q.E.D.
The case of the “opposite” open orbit is of further interest because
it gives new characterizations of tube domains.

11.12. CoRrROLLARY. The “opposite” open orbit Go(xs,9) CX has a
holomorphic fibration

B: Go(xs,9) — K(xs,9) by PB(g%s,9) = gr¥s,v

where

s v
g = ZrguER, g €K, gu € exp NMy,o, gr € exp Ry,o.

1. The bundle B has structure group K3, total space Go(x4.%), base
space K (x4,v) which is a maximal compact subvariety of Go(x4,v) and is
a compact totally geodesic hermitian symmetric submanifold of X, and
has fibre over k(x4,) which is the “tube part” (c.f. [2])

v 2 @
k-Gy,o(2s,9) = kcy-Gy,o(%0)

Of kc?p . Go(xo).
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2. The bundle B is a relatively compact open subbundle of the holo-
morphic normal bundle v of K(x4,%) in Go(x4,v). v is the homogeneous
holomorphic vector bundle over K (x4,4) = K/Kg associated to the repre-
sentation of K3 on the holomorphic tangent space of the tube part
Gz,0(%0) of Go(xo).

3. The following conditions are equivalent:

(3a) B is kolomorphically trivial.

(3b) v is holomorphically trivial.

(3c) det v is holomorphically trivial.

(3d) B is topologically trivial.

(3e) v is topologically trivial.

(3f) det v is topologically trivial.

(3g) K(x4,v) ts the single point x4,%.

(3h) cy has order 4 on X.

(3i) The bounded symmetric domain X o=Go(xo) s of tube type,
i.e. 1t has a holomorphic realization as a tube domain over a homogeneous
self dual cone.

(3j) The Bergman-Silov boundary Go(xy,s) of Xoin X is a totally
geodesic submanifold of X.

(3k) dimg Go(x¢,4) =dime X.

(3l) Viewing G as the identity component of the group Gr of real
points in the linear algebraic group G, we have Py 4 defined/R, 1.e. X
is defined /R.

Proor. Statements 1 and 2, and equivalence of (3a) through (3h),
are the case £ =Y of Corollary 11.11. Equivalence of (3h), (3i), (3j)
and (3k) is contained in [2, Theorems 4.9 and 6.8], and Theorem 3.6
says that (3k) is equivalent to (31). Q.E.D.

We recapitulate the decomposition of an arbitrary Ge-orbit
Go(xr,z) CX. Here I and 2 are disjoint subsets of ¥. First we have
the fibration of Theorem 11.8,

B: Go(xr,z) = K(2r,3),

that maps an arbitrary holomorphic arc component k-Ge\r,o(%r,z)
holomorphically onto its maximal compact subvariety k- Ke\r(*r,2);
the fibre over kk’'(xr,z), *EK and k' E Ky, is

kk"G;\r,o(xr.z) = kk’CI‘C;‘{GW\(I‘UZ).o(xO) X G:‘,o(xo)}-
We then follow 8 by a-8~! where
a: Go(xr.z) - Go/Nl‘.s.o
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is the fibration of the orbit over the space of its holomorphic arc com-
ponents. This amounts to collapsing each of the maximal compact
subvarieties k- Kg\r(*r,z) Ck-Ge\r,0(%r,z) to a point. That collapsing
is, of course, already done when, whenever A™ is the root system of a
simple ideal of G, either ZNA™"=¢, or ('UZ)NA»=¥NA™ with
GeNam,o(x0) of tube type. Now we come to the final stage of the de-
composition, which is realization of the S-fibre
Gi\r,o(xr,z) = Gy\ (Uz),0(%r,z) X Gg,o(xr.z)

as a Siegel domain of type III over any of its boundary components.
That Siegel domain realization is the content of Wolf-Koranyi [15,
§7]; the appendix to this §11 transcribes it into our notation, and
explicitly works out the holomorphic fibration over the boundary
component (Proposition 11 A.3) that is implicit in the Siegel domain
formulation, for the hermitian symmetric space Xo=Go(xo). We now
recast the results of that appendix to this §11 to cover our case of the
hermitian symmetric space

Gz\r.o(xr.z) = Go\ (rUz),0(*r,5) X Gz,o(xr.z)
z z
= crcfz{ G\ (tUz),0(%0) X Gz,0(%0)} = CFCL’ZG\I'\I‘,O(xO)-

W\T is the maximal set of strongly orthogonal noncompact positive
roots of G3\ro- Let E be any subset. Then we have disjoint unions

W(IUZ)=A4U4d, 2=BUB, E=AUB, E = A'UB.
Now observe

Manr N Mg = M4~ + Mz,

mg:r N (Ri_ = (R;\_(rUz) + (&g_ﬂ mg—), and

- —_ -— B’—

Marr N Mo\ g = My + Mp .
Thus we define
(11.132) Vi=i, Vi= Qevquz and Vi =Mz;
(11.13b) vy = 311:-, Ve = ( mé"n &mi") and Vi = smﬁi'; and
(1113¢c) Vi=Vi®Vy, V.=V,®V, and Vi=V;® Vy.
Now every v& M3 has unique decomposition
(11.13d) v = vi+ oy + o+ vy + v+ v's', e V: and v;' (= Vlj'

that we use without further explanation.
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If PCQCY¥ we have the bounded domain D§ =E—1GS,0(xo) in oM.
Now the bounded domains in V¥, V{’ and V; that serve our Siegel
domains, are

(11.142) Dar = £ Garo(xe) C Vs, Dar = £ Gpoo(we) C V5, and
(11.14Db) Da X Dpr = Da = E—ng",o(xo) CVs.
144

Note that they are the respective intersections of VY, V¢’ and V;
with the bounded domain Dg\g,o(x0) CMg\z.
The real forms of V{, V{’ and V; are

158) Uy = ad(ca) {Go M ad(ca )V},
(11.152 Uy = ad(cB){gof\ ad(cEL)V;'} and
(11.15b) UL ® UY = Uy = ad(cs) {Go N ad(cz ) V).

They contain the self dual cones

(11.162) G4 = ad(K4 )£ (%a,0) C Ut where £ (2a.6) = Doss
(11.16b) Gp = ad(K3 )£ (%5.4) C UL where £ (%5.6) = Doy,
G4 X Gz =Gz =ad(Kg )£ (x54) C Uy where

£l @ns) = Lrey

If wEDE we have the conjugate-linear map u(w): Va— Vi of
operator norm<1, given by

(11.16¢)

(11.172) w(w)v = ad(w)-ad(cs) -7u(v) = ad(w’)-ad(cs) - ru(v))
+ ad(w") -ad(c;) -1 ("),
It specifies the “bilinear plus hermitian” map F,: V32X V,—V; by

(11.17b)  Fu(w, 1) = — (i/2)[u, ad(cx) -1u- (I — p(w)) o).

The splitting in (11.17a) says that u(w): Ve—V: is the direct sum of
operators

w@): Vi > V4 and u(@’): Vi —>V{.
Thus (I—p(w))—!: Vo—V, splits as the direct sum of
(I —p@): Vs -Vy and (I — p@")1: V' - VI,
It follows that F,: V> X V,—V; is the direct sum of maps
Fo:Vi XV{—V{ and Fu.: VI XV >V
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in the sense that, for wED% and u, vE Vs,
(11.17¢) Fu(u,v) = Fyp(t', ') + Fure (W', 2"').

Carrying (11A.1) back to our situation, now

(11.182)  Gw\(ruz) .4 = {v' € Me\(ruz): 2§ € Dy and
Im v/ — Fyy(v{,v{) € Ca},

(11.18b) S35 = (v € M3 : v’ € Dy and
Imo{’ = Foy(vi’, ') € Cs},
(11.18¢) @:\r,x = {v € ﬁn\zr—\r: 1€ DI;,' and

Imov; — Fv;(vﬁr 92) i~ @E}
are Siegel domains of type III that satisfy

z - z- -
(11.18d) Su\r,z = G\ quz.a X @;B C Mo\ ruz) @ Mz = M1

Furthermore, (11A.2) in our context says that

c4Gu\ (ruzy,0(%0) C E(Mey\ ruz) and

5—11 caGu\ (ruz,0(%0) = Se\ (rUz) .4,
(11.19b) csGao(xe) C EON) and £ ': csGaolwo) = S5,
(11.19¢) cxGanr.o(xe) C E@Wanr) and £ : cxGanr.olte) 2 Sonr. x,

such that the analytic equivalence of (11.19c) is the direct product of
those of (11.19a) and (11.19b). Finally, now, the coarse structure
portion of Proposition 11A.3 becomes:

11.20. PROPOSITION. Let I' and 2 be disjoint subsets of ¥, let ECY\T',
and define disjoint union decompositions by

E=AUB, EE=A4'"UB, ¥\(I'UZ) =A4U 4’ and = = BU B'.

Retain the notation (11.13) through (11.18). Then we have holomorphic
fibre bundles

(11.19a)

z B’ z B’
7't S\ (Uzy.4 — Dar, 7'’: Sz,5— Dpr and w: Se\r,g— D
given by
(@) =9, a'0") =9 and 7@) =v;=19{ +v{.

1. There are connected Lie groups Hy, Hyo and H, that act transi-
tively on the respective total spaces of w', ©'’ and m by holomorphic bundle
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automorphisms. They have semidirect product structure

He =Guar-Zey, Hew=GpoZer and Hy= GgroZs

where the first factor is equivariant for its natural transitive action on the
base, and where the normal subgroups composing the second factor are the
respective identity components of

p)
Gau\quz M ad(ca)Za,6,0, Gz ad(cp)Zp,s,0 and G;\r N ad(cz)Ze.s.0-

The latter are trivial on the base and transitive on every fibre. Finally, H,
acts on Si\r,z=Su\(ruz),4a XS3 5 a5 Her X Horr.

2. The fibres of «’, @'’ and 7 are holomorphically equivalent to her-
mitian symmetric spaces of noncompact type with respective ranks l A| )
| B| and |E|=|A|+|B| and with respective tube parts G4o(xo),
G5 0(x0) and GE,o(xo) = G4,0(%0) X G5.0(x0). The realizations of the fibres
over 0 as Siegel domains of type 11 are

1r'_1(0) ={n+nec e + (Ré:(ruz): Im v — Fo(v2, v2) € Ca},
7N0) = off + o EMp + (R Nz ):
Im vy — Fo(v2, v2) € Gz},
7 (0) =7 (0) X 7' 7(0) = {0 E V1 ® Va:Imo, — Fo(vs,05) € G}
3. The bundles ©’, ©'’ and © are real-analytically trivial. Let {A;,’ }
be the root systems of the simple ideals of Ge\cruz), {A)'} the root sys-
tems of the simple ideals of G35. Then
(3a) 7’ is holomorphically trivial if and only if A is a union of sets
of the form [W\(T'\UZ)]|NAY,
(3b) #'' is holomorphically trivial if and only if B is a union of sets
of the form ZNA.]’, and

(3¢c) ™ is holomorphically trivial if and only if both ©’' and '’ are
holomorphically trivial.

We come to the final step of the decomposition of Go(xr,z). Recall
B: Go(xr,5)—K(xr,z) with B~'k(xr,s) =k-Gi\roe(*r,z). Proposition
11.20 fibres

(11.21a) ﬁ'l(xr,z) = Gz\r.o(xr,z) - G;".o(xr.z)
by

(11.21b) CrC;E;lf(v) — c;vci;g(rv) for every v € @i\m.
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As seen from the case where the unit disc is fibered over one of its
(one point ) boundary components, G3-(*r,3) is generally not Ka\p-
stable, so we cannot just extend (11.21) to Go(xr,z) by K-equivari-
ance. That problem is avoided by use of a measurable, a.e. real an-
alytic, “section” of the principal K\I,\p-bundle K—K /K\I,\r

Let ’Uq,\p denote the orthocomplement of SC\I,\P in X; define
Vevr = exp(’O\I,\r) CK. Then every kREK has expression k=uvk’,
vE V\I,\r and &’ EK\I,\F, but that factorization need not be umque
To approach uniqueness, let K/K3\r carry a riemannian metric in-
duced by a bi-invariant metric on K, so the exponential map

z z
€XPp: 'U\xz\r—> K/K‘p\r by expefv) = exp(v) -0

where 0O is the base point. Now let “W3\r consist of all ¥&V3\r such
that expe(fv), 0=¢=<1, is the unique minimizing geodesic from 0 to
expe(v). Define Wia\p =exp(Wi\r) C Varr. Then

(11.22a) Wi\ (0) is a dense open subset of K/Kz\, and
(11.22b) expe: Wi\r— Warr(0) is a diffeomorphism.

That gives us a “section” s: K/Ka\r—K by
(11.22¢) s(expe(w)) =exp(w) E Warp for wEWIr,

(11.22d) s(k-0) EkKanr arbitrary for k-0 Wia\r(0).

Although s may be discontinuous, it is real analytic on the dense open
subset Wa\r(0) CK/K3\r whose complement has measure zero.

11.23. THEOREM. Let T and Z be disjoint subsets of ¥, let ECW\T',
and consider disjoint unions

E=AUB, E=A4UB, \['UZ)=4UA4', T=BUB.
If kEK, define

4,B p B
Ye k- G\p\r,o(xr,z) - k . GE,.O(xp,z)
by
7f'B(kcrc§c§1£v) = kcrcés(m)) Jorve @i\r, z-
Retain the notation (11.22) and define

A,B

: Go(xr,3) = s(K/Kanr) - Gar o(or,2)
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by

A,BI A,B
z = 0)e
Y kGZ\1,0p,5) Yek-0)

1. Given k€K, v&® is a holomorphic fibre bundle that is equivalent
to the bundle w: Sy, —D5E, of Proposition 11.20 under the maps:

= =
k- Gy r.o(ﬁ,z)-—-——*@\p T.E
\ Elc ¢k \

AB EZ T
Yk T

1 -2 -1 -1
£ cserk B
o4

k- Gg",o(xr,z)

2. y4:B 45 a well-defined, but not necessarily continuous, “fibre bundle”
whose fibres coincide with those of its restrictions v&ile), and which is real
analytic over Wi+ Gor o(xr,z).

3. The fibration B: Go(xr,z)—K (xr,z) of Theorem 11.8 comes from
Y4B by

A,B -1

=807} where (8-} kG (wr.5) = E(xr,).

PROOF. Statement (1) is immediate from Proposition 11.20. yi8
sends the B-fibre k-Ginro(xr,z) =5(k-0)-Gi\ro(*r,z) over k(xrs)
=s5(k-0)(xp,z) into its hermitian symmetric subspace k-Gﬁ:,o(xp,z).
As B is well defined, (3) follows.

We check that y4+2 is well defined. Let x&Go(xr,z). Suppose
B(x) =k(xr,z), EEK. Then xEB%(x)=s(k-0) -Gi\ro(*r,z), sO
x=s(k-0)g(xr,z) for some gEGi\ro. Now, by definition, v4-E(x)
=r4Bo (x) =s(k-0)cresk(my)  where vES3rr such that g(xr,z)
=crcécg'E(v). That procedure is unique, first because & is specified
modulo K¢\r because § is well defined, and then because % is specified
modulo K3\; by Lemma 11.4.

(v4-B)1(s(k-0) (xr,5)) = (YAiZe))~*(s(k- ©) (xr,z)) by construction and
well definition of 8- (y4-8)—1

Over Wi\r-Garo(xr,2), Y48 is given by

'yA'B(kcrc;c;lE(v)) = kcrc;E(m;), kE W\?,\r and v € @?p\r,n.

That is real analytic. Q.E.D.
We now have the triple fibration
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s(B/Ke.x)-Gonoler.z)
AB AB -1

¥ g8 )
B

Go(tr,z) S K (v13)

\ l ad
Go/Nr.z.0

of an arbitrary orbit Go(xr,z) CX as described at the beginning
of this §11.

AprPENDIX TO §11—SIEGEL DOMAINS. We first recall the concepts
of cone and Siegel domain.

Let U be a real vector space with a positive definite inner product
( , ). Then a self dual conein U means a subset € C U such that

C={uE U: if 0 v E T then (u, v) > 0}.

It is automatic that a self dual cone is a cone (nonempty, and ¥E¢
and >0 imply ru&@€), is open, is convex, and does not contain a
straight line. “Domain of positivity” is another term for self dual cone.

Let €C U be a convex open cone that does not contain a straight
line. Define V=U+47U complexification; if &V than v=(Re v)
+4(Im v) with Revand Im »in U. The tube domain over € is defined
to be the set {v&V: Im vEE}. The Poincaré and Siegel upper half
planes are examples. By Siegel domain of type I we mean a tube
domain over a convex open cone that does not contain a straight line.
A hermitian symmetric space is of tube type if it is holomorphically
diffeomorphic to a Siegel domain of type I; in that case the cone is
self dual. A standard classification result says that a hermitian sym-
metric space is of tube type if and only if it is a product, each of
whose factors is one of

SU(m, m)/S(U(m) X U(m)), m=1; or
SO*(4m)/U(2m), m = 2; or
Sp(m; R)/U(m), m=1; or
SO(2, m)/S0(2) X SO(m), m=1; or
E7, index—25/Es-SO(2).
Let V; and V. be complex vector spaces, U; a real form of V;,

C€C Uy a cone as above, and F: V,X V,—V; an hermitian map that is
positive definite in the sense
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00, EV, implies 0 £ F(ps, v;) € €.
That data defines the domain
{(vl, 1) € Vi@ Vy: Im v; — F(vs, v2) € G}.

Those domains are the Siegel domains of type II. Siegel domains of
type I are the special case V>=0. Every hermitian symmetric space
of noncompact type has a standard realization (Kordnyi-Wolf [2])
as a Siegel domain of type II, and that Siegel domain is of type I if
and only if the hermitian symmetric space is of tube type; the cone
is self dual.

Let Vi, Ve:and V; be complex vector spaces, U a real form of V;,
C€CU, a cone as above, and DCV; a bounded domain. Suppose
further that, for every w& D, we have

F:: Vs X Vy— V; hermitian and
Fu: Vi X Va— V, bilinear

depending smoothly on w&D, such that

Fz =0 and Fz is positive definite relative to G.
Then we define
Fu:VaXVi—Vi  byF, = Fua+ Fu.

Assume that for every wE&D, F, is nondegenerate in the sense that
each of F,(v, V2)=0 and F,(V3, v) =0 implies v =0. Then the domain

{(v1,v2,7) E V1 ® Vo ® Vivs € D and Im v; — Re Foy(22, v5) € G}

is called a Siegel domain of type III with base D. Siegel domains of
type II are the special case V=0, i.e. the case where the base is re-
duced to a point.

In [15, §7] Wolf and Korényi describe Xo=Go(xo) as a Siegel
domain of type III in 91— whose base is the bounded domain in Mg\g
equivalent to an arbitrary boundary component Gy\g,0(¥£.s) of Xo.
That description involves the holomorphic injection

L —-X by £(v) = exp(v) %o
of 9N~ as a dense open subset of X, and is given in our notation
as follows.
First note M~ =M§ + RS~ =Ma\g+ M +®RE~ direct. Now if
vE I, we will decompose

. B E- -
v=19;+ 9+ 75 with 2, € Mg , 1. € Ry , v3 © My\£.
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Our bounded domain in Mg\ is
Do\g = £'Ge\z,0(%0).

The real form of Mz~ is ad(cg) {gof\ad(cil)fmg' }, and the positive
definite inner product on that real form is induced by the positive
definite hermitian inner product (%, v) = —(u, o7v) on G. The self dual
cone Gz Cad(cz) {GoNad(cz")ME~} requires some notation. If FC¥
we have Kr=KNGr, and the fixed point set K& of ad(c}) on Kr;
now ad(c) restricts to an involutive automorphism of %%, and that
defines an algebra

(KZ;J' ={re acf: ad(cf;)v =9} + ifvE chz ad(c:;)v = —o}.

Its analytic group is denoted Ki. Now the cone is given, in our
notation, by

Cr=ad(Kp)f (tm¢) and £ (vm¢) = 2oz ey.

If wEMg\z then u(w):RE-—@E~ is defined by u(w)v=ad(w)
-ad(c%) -o7(v); it has operator norm <1 if and only if w&E Dyg\z. Thus
if wEDy\g, I+4+wp(w) is invertible and we have F,:®i~ X®E~
—IME~ by

Fu(u, v) = — (i/2)[4, ad(cs) -or- (I + u(w)) ).
The main result of [15, §7] says first that

(11A1) ©g = {v € M~:9;EDy\g and Im v; — Re F,,(v2, v;) ECr}
is a Siegel domain of type I1I with base D ¢\z, and second that

(11A.2) ceXo C (M) and £!': cpXo X Gp.
In proving the results stated above, Wolf and Kordnyi use certain
symmetry properties
ad(k)Fy,(u, v) = Faaqyu(ad(k)x, ad(k)v) forkE Kz‘,
Fu(u, (I + p(w))v) = Fo(u,v) and Fo(u, p(w)v) = Fo(v, p(w)n)

of the F,, and rely on the £-'-equivariant actions of ad(¢cg)Zg,¢,0 and
ad(ce)Ng,s,0 (cf.(10.10)) from the natural action on cgX, to the
(defined by equivariance) action on 9—. For if N¥ denotes the com-
mon unipotent radical of those groups,

NE = {ad(CE)NE.qs.o}“ = {ad(CE)ZE.¢.0}";
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then [15, Theorem 6.8] N¥ is 2-step nilpotent, its Lie algebra 9t®
has complexification

0" = ad(cs)Np.s = ad(cz)Z.s = (@5 + Ry ) + Mz,

and ad(cg)Zg.s,0 and ad(ce)Ng,s,0 have respective identity com-
ponents

{LE..»,O'K?} N and {G\I,\E,O-LE,d,‘o.Kg'} .NE;

here we recall G o=Gu\£,00 ££,4,0DGE.0, £5,6,0C X, so that

E* E»
Ky = Kwg'Lgg,0 Kk .

The action of KE* on 91— is induced by adg; it preserves each of 9%,
®RE- and IM3z\z, the real form specified of M~ and the cone G there,
the bilinear maps F, and the domain Dy\g, and thus also the Siegel
domain &g. The action of N¥ on 91~ is based on the unique repre-
sentation of every g&N¥ in the form exp(u+ (I —ad(ck)or)v) with
uEME~ and vERE™; if

f:®% X Ma\s— Ry by (,1) > /(@) = v+ u(w)s,
then NF acts on 9~ by
gle) = e+ u + fi(es) + 2iF.i(ex, fo(es)) + iFei(fo(es), foles))s

that action preserves the Siegel domain &g. The action of Gg\g,0 on
9N or &g is not made explicit in [15], but the action of Ke\g CKE*
is described above, and Gy\z,0 acts on Dy\g in the natural fashion.

11A.3. PROPOSITION. Let S be the Siegel domain (11A.1) with base
Dgy\z that is holomorphically equivalent (by cg'-£) to Xo. Define

7:Sg— Dy by w(v) = v,

1. 7:&g—De\r is a holomorphic fibre bundle.

2. Theidentity component { G z,0-Lr,¢,0- K5 } - NE of ad(cg) Ng.4.0
acts transitively on ©g by holomorphic bundle automorphisms, with
Gu\E,otransitive onthe base and the identity component {L £.6.0° KE* } -NE
of ad(cg)Zg,¢,0 trivial on the base and transitive on every fibre.

3. The fibre w1(0) is the Siegel domain {vEfmg‘ +®y": Im o
— Fo(ve, vz)E@E} of type 11 homogeneous under {LE,.,,O-KE*} -NE,
and it is holomorphically equivalent to a hermitian symmetric space of
noncompact type that has rank |E| and tube part G%,o(xo).
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4. The bundle m:Sg—De\r is real-analytically trivial, and it is
holomorphically trivial if and only if E is a union of sets WNA* where
the AF are the root systems of the simple ideals G* of G.

Proor. Let e=e1+e:+e;&Se and represent g& NF in the form
exp(u+ (I —ad(ck)or)v) with uEME~ and vERE~. Let ¢’ =g(e); then

el =e + u +f’(33) + ZiFes(ez’ f'(ea)) + iFea(f’(e:)‘)s fv(e:!))y
so ef =es, e =e+f,(es) and
ef = e1+ u+ 2iFe(er, foles)) + iFe(fo(es), foles))-

Thus the action of N¥ on S preserves every w-fibre. If k€ Lg 4,0 K&*,
then k(e) =ad(k)e,so k(e)s =ad(k)es = es. Thustheactionof Lg,4,0- K5*,
on &g preserves every w-fibre. Define

v=—(I+ u(es))-lez and g =exp((I — ad(civ)a'r)v) EN o
Then g(e) =e{ +0+e¢;. Now define
u=— Ree{ and g = exp(u) & NE,

Then g’g(e) =e{’ +0+e; with 7e{’ real. In fact g'g(e) ESx gives us
Im ef’ —Re F,,(0, 0)=Im e¢{’ ECx. Thus there exists kEK% such
that ad(k)-Im e{’ =t-'(xz.4). Now kg’gKE - NE has the property
that

(kg'g)(e) = i& ' (xxm,0) + e

Wehave proved that the r-fibresare just theorbits of {Lz,4,0: K& } - N®
on Sg.

Let gEGw\zo Then g normalizes {Lgzg¢.0-K5}-NE in
{GW\E,O'LE,,,,O-KE*} - NE | hence permutes its orbits on ©z. Now g
is a w-fibre map of &g. Thus (2) is proved subject to (1) being demon-
strated.

Let Q denote the identity component of ad(ce) Ng,¢,0, Y its isotropy
subgroup at i£-(xg,4) ESE, and Z the subgroup preserving 7—1(0).
Then YCZ={Kwe-Lgso Ki }-NE=K§ -NF and 7 is projection
Q/Y—Q/Z by qY—qZ. Thus = is a differentiable fibre bundle with
structure group Z. But 7 visibly is a holomorphic map, and the fibre
over g(0), g&Gy\g,0, is the complex submanifold

8‘7"_1(0) =g {” € ‘JTZZ_ + 615“: Im vy — Fo(vs, v2) € @E}

of ©g. As Z acts by holomorphic transformations of #—(0), it follows
that 7: ©g— Dy, £ is a holomorphic fibre bundle. That completes the
proof of (1) and (2).
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Every w-fibre is of the form g-7—(0), g&EGw\z,0, and Gg\g,0 nor-
malizes the transitive group {LE,¢,0-K§‘} - NE of transformations of
the fibre; thus an arbitrary w-ibre has the same properties as 7—1(0)
as complex homogeneous space of {Lg,4,0- K%'} - N5. Now we observe

10) = {v € zmi‘ + (Ri_: Im 9y — Fo(2s, 25) € Gz}

where Fo:®R%~ X ®E-—mE~ is the positive definite (relative to Gg)
hermitian map given by

Fo(u, v) = — (/2) [, ad(cx)oro].

Thus 7#1(0), hence every fibre, is a homogeneous Siegel domain of
type II. Comparison with [2, §6] suggests that it should be sym-
metric, and we prove that symmetry as follows.

Observe that {s€72(0): 12=0} is the tube domain over the self
dual cone Gg; in fact that is the realization of G% o(xo) as a Siegel
domain of type I. Thus there is an analytic automorphism & of order 2
on that tube domain with #~'(xg,4) as the only fixed point. Given
eE7—1(0), define

v=—¢ and g =exp((l — ad(c;)o"r)v) e "
Then ¢’ =g,(e) satisfies ed =0, ef =e;+f—.,(0) and
e’ = e1 + 2iFo(e2, f,(0)) + 1Fo(f,(0), f-6,(0)).

As  f ,(0)=—e+p(0)(—e)=—e, now ef =er+2iFo(es, —eo)
+1Fo(—e3, —es) =e1—~1Fo(es, e2), e/ =0 and ef =0. Thus

ge(e) = e1 — iF(eq, €2) € {v € r10): v, = 0}.

Now define e*=g8g,(¢). It satisfies e} =0dg,(e)+2iFo(0, f_.,(0))
+5Fo(f-3(0), fey(0)) = dgu(€) +iFo(ez, €s) and €3 =f_.,(0) = —e». Thus
e* = gobg.(e) = 8(ex — iFo(es, €3)) + iFo(es, €2) — ea.

Now

(e¥)* = 8(8(e1 — iFo(ez, €2)) + iF (e, €2) — iFo(es, €2)) + iFo(ez, €2) + €2
= 82(e1 — iFo(es, €2)) + iFo(ez, €2) + €2
= e; — 1Fo(ez, €2) + iFo(ez, €2) + €2 = €1+ €2 = e.

Thus e—e* is an analytic automorphism of #—1(0) with square 1. If
e=e* then

e = 6(61 el ‘I:Fo(ez, 82)) + iFo(ez, ez) and €y = = @a.



1236 J. A. WOLF [November

Thus e;=0 and e; =08(e;). The latter says e;=16~1(xg,4). Thus e=¢*
implies e =7£"1(xg,4). Now e—e* is an analytic automorphism of order
2 on m1(0) with #~!(xg,4) as unique fixed point. As 7~1(0) is a
homogeneous complex manifold holomorphically equivalent to a
bounded domain, it follows that #—1(0) is a hermitian symmetric
space of noncompact type. The tube part of that symmetric space is
{vET1(0):9:=0}, tube domain over Gz, holomorphically equivalent
to G%o(xo); in particular 7—1(0) has rank IEI Statement (3) is
proved.

Ge\e,0 has Iwasawa decomposition Kg\g-Ae\g- Us\g and the
solvable group B=Ag\g- Us\g is simply transitive on Dg\g. Now
define

A: 1r"1(0) X D‘I'\E_)@E by )\(t, b(O)) = b(t)

Then N is a real analytic trivialization of 7:&g—Dy\z.

Let G* denote the simple ideals of G, A* the root system of G*. If E
is a union of sets WA, then Go(xo) =Ge\£,0(x0) XGE,0(%0) and =
projects to the first factor. Conversely suppose 7w holomorphically
trivial. Let D% denote the bounded symmetric domain in M5~ 4+ ®E-
holomorphically equivalent to #—1(0). Then there is a holomorphic
equivalence of Go(xo)=2&g with Dg\g X D%. As G, is the largest con-
nected group of holomorphic automorphisms of Go(x,), as Ge\g,0 is
the largest connected group for Dy\g, and as the Bergman metric on
Dg\g X D} is the direct sum of the Bergman metrics of Dy\z and of
D%, it follows that Go=Ge\r,0XGEg,0 where Gg,o is the largest con-
nected group of holomorphic automorphisms of Dg. Thus Ge\z is a
sum of simple ideals of G, so ¥\E is a union of sets ¥NA¥, and we
conclude that E is a union of sets W/NAF, Statement (4) is proved, and
that completes the proof of Proposition 11A.3. Q.E.D.
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