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0. Introduction. Let M = G/K be an effective coset space of a connected Lie

group by a compact subgroup. Then there may be many G-invariant riemannian

metrics on M. But one expects the algebraic structure of the pair (G, K) to have a

strong influence on the curvatures of M relative to any G-invariant riemannian

metric. For example

(1) if G is semisimple with finite center and F is a maximal compact subgroup,

then it is classical from symmetric space theory that all (/-invariant riemannian

metrics on M have every sectional curvature S 0 ;

(2) if G is commutative then every G-invariant riemannian metric on M is flat ;

and

(3) if G is noncommutative and nilpotent then [7] every G-invariant riemannian

metric on M has sectional curvatures of both signs.

Those results are proved by choosing an adG (F)-stable complement 5DI to the

Lie algebra 5Î of F inside the Lie algebra © of G, and by performing calculations in

9JÎ and in © in a manner justified by embedding G in the orthonormal frame bundle

of M. But at certain crucial parts of those calculations one must have © either

semisimple or nilpotent. The idea in this paper is to create a setup in which the

calculations can still be carried out, by requiring that the complement 9JÎ split as

9K = (3K n m) + Cm n S) orthogonal direct sum,

where

© = SR + S is a Levi-Whitehead decomposition

and

9W n 9Î contains the nilpotent radical of ©.

§2 is a study of the circumstances under which 9JÎ can be chosen, and the Levi-

Whitehead decomposition @ = 3í + 2 can be chosen, so that M has such an or-

thogonal splitting. We describe those circumstances by the condition (2.2) that the

invariant riemannian metric on M be "consistent" with @=9x + 2.

Given the consistency condition (2.2), our main result (Theorem 3.9) says that

every unit vector XeWl n 9t, orthogonal to the nilpotent radical 9t of @, is a
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direction of negative mean curvature on M. Our applications (§4) essentially

consist of observing that, if M has mean curvature ^0 everywhere, then the

consistency condition implies 9c = (9JÎ n "¡R), i.e. fH = 9Î + (9i n St) semidirect sum.

The most striking of the applications is Theorem 4.4, which says :

Let M be a connected Riemannian manifold that has a solvable transitive group of

isometries. Then the following conditions are equivalent.

(i) M has mean curvature ^ 0 everywhere.

(ii) M has every sectional curvature =; 0.

(iii) M has every sectional curvature zero.

(iv) M is isometric to the product of an euclidean space and a flat riemannian

torus.

Theorem 4.7 adds negative curvature conditions in case M has a transitive nil-

potent group of isometries, extending the results of [7] to mean curvature.

1. Definitions and notation. © is a real Lie algebra. We have the nilpotent radical

9Î and the solvable radical u\, characteristic nilpotent and solvable ideals in ©

defined by

9Î is the union of the nilpotent ideals of ©,

ÏR is the union of the solvable ideals of @.

The basic facts on 9Î and 91 are the following.

(1.1) IfiC is a fully reducible group of automorphisms o/@, then there are C-invariant

semisimple subalgebras £c@ that map isomorphically onto ®/9i under the pro-

jection <p: © -> @/9î, and any two such subalgebras are conjugate by an automorphism

ad® (exp zz) of © where n £ 9Í is left fixed by every ce C.

The existence is due to G. D. Mostow [3, Corollary 5.2], and the conjugacy

statement is the result [5, Theorem 4] of E. J. Taft. In general a semisimple sub-

algebra fie© such that <p: £^©/9l is called a Levi factor of ©, and the Levi

factors of © are just the maximal semisimple subalgebras.

(1.2) If 2 is a Levi factor of®, then © = SR + 2 semidirect sum, 9Î + 2 (semidirect) is

an ideal in ©, and the derived algebra [©, ©]<=9c + £.

The first assertion is immediate and the second follows from Sft<=3L For the

third, one notes that [9?, 9t]c9î by Ado's Theorem and that ad® (2) normalizes

adsR (9Î) in the derivation algebra of 9F

Let M= G/K be a coset space of a Lie group by a closed subgroup. 5îc © are the

Lie algebras of K^G. An adG (ZC)-invariant subspace 9ftc@ such that © = 9JÎ + S

(vector space direct sum), is called an invariant complement for K. If an invariant

complement for K exists, then M= G/K is called a reductive coset space.

K is called a reductive subgroup of G in case the group adG (K) of linear trans-

formations of © is fully reducible. If AT is a reductive subgroup of G, then adG (K)®
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= Ä implies that M=G/K is a reductive coset space. The converse fails in the

example

G = 52,(2, R)   and   F = U     "\ : n e z\-

However, compact subgroups, and semisimple subgroups with only finitely many

components, are reductive subgroups.

2. The compatibility condition. We can now define the compatibility conditions

with which we will operate. M=G/K is a coset space of a Lie group by a closed

subgroup. S is a Levi factor of © and 90c is an invariant complement for K. If

(2.1) TO = (£Ücn9t) + 0Dcn£)   and   ÏR = (TO n 3d) + (® n St)

then we say that S splits 50c and that 9Jc is split by the Levi- Whitehead decomposition

© = 9t+£. Suppose further that we have a G-invariant pseudo-riemannian metric

ds2 on M. Represent ds2 by an ad0 (F)-invariant inner product < , > on 9Jc. If

9Jc = Cmnm) + (W.n2),
(2.2)

m = emnïR) + (®nm)   and   <9Jt n m, m n £> = 0,

then we say that £ splits 9JI orthogonally and that ds2 is consistent with the Levi-

Whitehead decomposition © = 3t + £.

2.3. Proposition. Let Kbe a closed reductive subgroup of a Lie group G. Then for

every adG (K)-invariant Levi factor £ o/@, there exists an invariant complement 9JI

for K, such that £ splits 50Í. If ds2 is a G-invariant pseudo-riemannian metric on

G/K, xv : © -> ©/SR is the projection, and the representations of K on di/CM n $) and

£/(£ n <p_1 (p£t) are disjoint, then it is automatic that £ í/?//íj 90c orthogonally and

ds2 is consistent with @ = 9i + £.

Proof. Mostow's result (1.1) provides an adG (F)-invariant Levi factor fl of ©.

As K is reductive in G we have adG (F)-invariant direct sum decompositions

St = Wli + ÇM n St)   and   @/9t = W2 + <p(B).

Now define

9Jc2 = £ n çr1^)   and   2K = Wlx + 'm2.

Then adG (F)9J?¡ = 9Jc¡ so 9JÎ is an adG (F)-invariant subspace of © that satisfies

(2.1). If x e 9Jc n Ä then <p(x) g 9Jc2 n <p(St) = 0 so x e 3t; then re^nfSn Ä) = 0

so x = 0; thus 9Jc n iî = 0. On the other hand

dim dt = dim TOi + dimfjR n t)
and

dim ©/9î = dim 9Jc2 + dim <p(Ä) = dim 50î2 + dim ?>(St)

= dim 9Jc2-dim CM n Sï) + dim St

so

dim © = dim 3î + dim @/9t = dim 9Jc + dim SI.
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Thus iOt is a vector space complement to 5Î in ©. Now 501 is an invariant comple-

ment for K such that 2 splits SDÎ.

Let ds2 and the inner product < , > on 501 be given. The representation of K on

9ty(9í n Ä) is the representation ad^g- on Wx; the representation of K on

£/(£ n <p"V$) is adG|ff on 9ÎÎ2. If those two are disjoint then necessarily

<SR1,a»a>=0.   Q.E.D.

We reformulate the metric portion of Proposition 2.3.

2.4. Proposition. Let M=G/K be a homogeneous pseudo-riemannian manifold

with metric ds2, where K is a reductive subgroup ofiG. Let 0 be the base point, Ma the

tangent space at 0, \ the linear isotropy representation of K on Mç>, and R® the

subspace of Mo spanned by vector fields from elements of the solvable radical o/©.

Suppose that the representations of K induced by v, on R<r¡ andón Mv/Ra, are disjoint.

Then Me = R0 + Ra and ds2 is consistent with every Levi-Whitehead decomposition

& = m + 2fior which adG (£)■£ = £.

For, in the notation of the proof of Proposition 2.3, R& is spanned by the vector

fields from ÏOij while F¿ is spanned by those from W2.

In the riemannian case we will be able to arrange that Wlx = 50c n 9Î contain the

nilpotent radical 9F For that, we need a technical lemma.

2.5. Lemma. In a connected nilpotent Lie group every compact subgroup is

central.

Proof. Let A be the connected nilpotent Lie group, -n: N -> A the universal Lie

group covering, and T the kernel of -n. Then V is a discrete central subgroup of Ñ.

Let C be a maximal compact subgroup of A and C=tt~1(C). Then C is a torus

group, C is a simply connected commutative subgroup of Ñ, and T^C such that

C= C/T compact. As T is central in Ñ, and as Ñ is nilpotent, now C is central in Ñ,

so C is central in N. If E is any compact subgroup of A we have zz £ A such that

zzFzz_1cC, so E<=n~1Cn=C, proving F central in A.    Q.E.D.

2.6. Proposition. Let M=G/K be an effective coset space of a connected Lie

group by a compact subgroup. Then, for any adG (K)-invariant Levi factor 2 of ©,

there is an invariant complement 50Ï for K such that

(2.7) Wl = (50în9î) + (3!)fn£),   m = (M n 91) + (t n 91),   and   Di c 9K n 91.

In particular, if G is a group of isometries for a riemannian metric on M, and if the

metric is consistent with the Levi-Whitehead decomposition © = 9l + £, then in

addition we can choose 5DÎ so that 9K n 91 has a subspace 91 such that

(2.8) S0Í = 9Î + 9I + (m n fl),    m n 91 = 9? + 9l,    orthogonal direct sums.

Proof. Following Proposition 2.3 we take 50Î = ÎR1 + 9!)Î2, invariant complement

for K split by £, where Wx is any adG (/O-invariant complement to 91 n Sí in 9F
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Let TY be the analytic subgroup of G for 9Î. Then N is closed in G, so A^ n F is

compact. Let F be a maximal compact subgroup of N. It contains N n F and is

central in A^ by Lemma 2.5. Thus Fis unique, hence normal in G. As Fis a torus

and G is connected now F is central in G. Thus N n K is central in G. But G acts

effectively on M, so K contains no nontrivial normal subgroup of G. That proves

N n F={1}. In particular 9c n ft=0. Thus St = 9Î + 91 + («R n Sí), adG (F)-invariant

direct sum, where 9t is any invariant complement to 9c + (9t n Sí). For (2.7) we just

choose a»!=9l+*.
Suppose further that ds2 is consistent with © = 9f + fl. Then we have another

choice, say 9Jc* = 9Jlf + 50cf, of invariant complement for F, with <9Jcf, 9Jlf>=0

and 3t = 9Jcf + (91 n SÎ). If ^ : 9Jt^©/SÎ and </>*: 9Jl*s@/SÎ are induced by the

projection © -*■ ©/SÎ, now xb~l</j*: 9JÎ* -» 9JJ is a linear isometry carrying ÎOcf to

9Jc¡. Thus (SJli, 9Jc2> = 0, and we obtain (2.8) by choosing 21 to be the ortho-

complement of 9Ï in Wx.   Q.E.D.

We will view the space % of (2.8) as the "gap" between nilpotent and solvable

radicals of ©, taken modulo SÎ.

3. Mean curvature along the gap between the nilpotent and solvable radicals.    We

compute the mean curvature of a homogeneous riemannian manifold along a

direction in the solvable radical complementary to the nilpotent radical. This is

done by specializing the following general calculation to the case where the rie-

mannian metric is consistent with a Levi-Whitehead decomposition.

3.1. Lemma. Let (M, ds2) be a connected n-dimensional riemannian homogeneous

space. Let 0 e M. Let G be a connected transitive group of isometries of M and let

Me denote the subspace of Me consisting of tangent vectors Ye where Y is in the derived

algebra [@, ©]. If Xe e Me is a unit vector orthogonal to M'e, then the mean curvature

(n-l)k(Xe) = 2 <[{[*, £.]« + *[*, Fk}, Xhi, F(>

(3.2) -i2H*£hl"i

-i 2 <[X, Et]m, E¡)-([X, F,]œ, F>,

where SOlc© is an invariant complement to K, XelR represents Xe, < , > is the

inner product on Ttfirom ds2, and {E¡} is any orthonormal basis ofSJl containing X.

Proof. We follow the method of Nomizu [4], using the notation

a : M x 9JÎ -> 9Jc for the connection function,

<%: 9JÍ x 9JÎ -» 9JÎ for the symmetric part of a,

31 ; m x 9JÍ x TO -> m for the curvature tensor.

Now («- l)Ä(A-) = 2^i0 Kt= -2(fSt0 (ß(X, Et)X, Ei}= ~I, <ß(X, EAX, Ff> where
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{Et} is an orthonormal basis of 9JI, where X=Eio, and where Kt is the sectional

curvature of the tangent 2-plane spanned by X and F¡. Thus

(3.3) (n-l)k(X) = -2 <@(X, E()X, Ft>.
i

Using [4, formulae 9.6 and 13.1] and correcting a misprint in the latter,

MiX, Et)X = a(X, a(Et, X))-a(Et, *(X, A"))-«([A", Et]m, X)-[[X, Ff]s, X].

a(S,T) = l[S,T]»l + <%(S,T).

®(s, T) = -*? {<[s, £,]», Ty+qr, Efa, sy}Ej.
i

Our hypothesis on X and Xß is that <A", [A, B]¡l]i)=0 for all A, B e Wl. In par-

ticular

(3.4) n*, s) = ns, x) = -i 2 <[*> ^fc». w

Thus a(Z, A') = 0. Substituting that into (3.3) we have

(n-l)k(X) = -2 «X, *(Et, X)), Et}
i

(3.5) +2<«(FY,F¡k,A-),£i>
i

+ 2<[[X,E¡h,X],Eiy.
i

In order to evaluate the right-hand side of (3.5) we define coefficients bjk by

[X, E}]m = 2k bjkEk. Then, using (3.4),

2 2 <[X, *(£„ JQh,, F,> = -2 <[*, <[*, ¿zk, £.>£zk> ■$>
. u

= -2 <[X, EAm, F,>2 = -2*f<

- -2(2^) = -2ii[^£zkii2

= -2 ||[A-, FikI2 = 2 <[*. £ik> [£i. *k>

= +2 <{<[^. EÙ*, [Eu Ark>}£y, £,>
u

= -2Z<*(X,[Et,Xhd,EÙ-
i

In other words

(3.6) -i 2 <l* *(^i. X)hu F«>-| 2 <*(* Œ. *k), Ft> = 0.
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Using (3.4) and (3.6) we compute

-y<XXMEi,X)),EÙ
i

= ~\ 2 <[X, [Ei, A"kk, Ety-2 <«(X, *(£,, A")), Ft>

-i 2 <[* ̂ E, z)k, £«> -i 2 <*(* t£<- *k), F,>

= -i 2 <I^ [£" Zkk, F(>-2 <nx, *(£„ A")), F(>

= -i 2 <[*• »& ̂ kk, F(>-i 2 <[* £ik, F,X[A-, F,.fo, F(>.
i t.i

That gives us the first summand of the right-hand side of (3.5):

-2 <«iX, aiEt, X)), F(> = -i 2 <K* £<k, X}a, Ety
t t

(3.7)
-i 2 <[X, F.k, EfXXX, Et]w, F(>.

i.z

The second summand of the right-hand side of (3.5) is, again using (3.4),

2 <«([A-, E^, X), F(>t

= i 2 <KZ' Eihi, Xh, Ety-i 2 <{<t^ Ejh, [X, EthyE,}, Ety

= ¿ 2 <[[* Eth, A-fe, £,>-* 2 II [X, FikH2.
i i

Using (3.7) now, the sum of the first two summands of the right-hand side of (3.5)

is

-2 <«(A-, «(F„ A")), £> + 2 <«([A-, Ed* X), Ety
i i

(3.8) = +i 2 <[[*. Et]m, X]m, E¡>-\ 2 III* ̂ kll2
i i

-i 2 <[*. EiU Ef)■ ax, F,k, Ety.
u

Adding 2i <[[^", FJs, A^, F,> to both sides of (3.8), our assertion (3.2) follows

from (3.5).   Q.E.D.

We apply Lemma 3.1 to the gap between the nilpotent and solvable radicals of G.

3.9. Theorem. Let {M, ds2) be a riemannian homogeneous space, G a transitive

Lie group of isometries, K the isotropy subgroup at a point (!) e M, and 2 an adG (K)-

invariant Levi factor of @, such that ds2 is consistent with the Levi-Whitehead

decomposition © = 9î + fl. Choose an invariant complement ÏR = 9Î + 9i + (9JÎ n 2)
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for K that satisfies (2.8). Let X eSSSl be a unit vector, Xe e Me the corresponding

unit tangent vector.

L If X _|_ [©, @],jj¡ then the mean curvature k(Xe) Ú 0, and k(Xe) = 0 if and only if

(a) XeSSiand(b)[X,SSSt] = 0.

2. IfXeSH thenk(Xe)<0.

Proof. By choice of TO and by [©, @]<=9c + £ we have an orthogonal direct sum

decomposition

TO = 9c' + 23 + (TOn£),    9c' + 93 = TOH9Î,    SSI' c 9c,
(3.10)

[©, &]m = 9c' + (TO n £),   91 c 33.

Let A'g 23. Then we have an orthonormal basis {F¡} of TO containing X, such that

each Fj is in SSI', TO n £ or 23. We apply Lemma 3.1 with that basis.

Define coefficients by [X, E,]w = 2fc ajkEk and let A = (aik). Then

([X, Ffe, F;> = a«   and   <[Ar, FJ^, F¡> = an

so

2 <[*, F,k, £,><[*, F.k, Ff> = trace (A-*A).

Take polar decomposition A = ST with S symmetric and F orthogonal. Then

^•'.4 = S-'S. Let S=(Sii), so

trace (^'^) = trace (5'5) = 2*v = 0»
i.i

and note that 2 í« = 0 if and only if 5=0, which is equivalent to /I = 0. Thus

(3.11) - i 2 <[X, Et)*, EXÍX, F.fe, F;> g 0
i.i

with equality if and only if[X, TO]g¡ = 0.

That takes care of the last summand of (3.2). For the first two summands we

define

(3.12) k, = ([{[X, Eite + UX, Et]w}, A-k, £i>-i|[Jr, EM\2-

If F¡ g 23 then <[©, ©]ffl, 23>=0 implies kt= -\\\[X, F,y|2. If E, e TO n £ then

[@, X]mc [@, fófoc(TO n 9t) _L (TO n £) implies <[®, X]m, F¡>=0 so

zci= -i|| [A", Fife||2.
Thus

(3.13) ifFiG23+(TOn£)thenA:i = -}|[J¡r, EfcA* Ú 0.

If Fi g 9T then Ei e SSt so [A-, F(] g 9c<=TO. Thus

(3.14) if F; e SSI' then kt = -i<ad (A-)2Fi( F¡>-i||[Z, F¡]||2.
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As (ad A')9i'c=9i' we can stipulate that, for numbers {A„} such that {A„, A„} are the

eigenvalues of (ad X)\w, each F¡ £ 9F is contained in the sum of the subspaces of

9FC on which (for some b = bt) ad X— Xb and ad X— A6 are nilpotent. That stipulation

made, ||[jr, F¡]||2^ |A6|2 and |<ad (X)2Et, F(>| S |A„|2. So (3.14) implies

(3.15) iîEteWthenkt S -i|Aö|2 S 0.

Combining (3.13) and (3.15) we have J.tktSO. Adding that inequality to (3.11),

and applying Lemma 3.1, we conclude

(3.16) k(X<s) S 0 with equality if and only if [X, Mfat = 0.

If [A", SK]TO=0 then [X, SLtt]<=Si. As m<=m and [A", 3l]<=3l it follows that [X, 9Î]

= 0. Then <B = XR+W is a nilpotent subalgebra of®. But X e 9t and [9t, 9t]c$tt, so

<3 is a nilpotent ideal in 9i. As 9Î is the maximal nilpotent ideal of ÏR it follows that

XeW. This fact and (3.16) imply the first statement of Theorem 3.9. If X e 9i then

X i % so k(Xe) <0. That completes the proof of Theorem 3.9.   Q.E.D.

4. Application to manifolds of nonnegative mean curvature. We first apply

Theorem 3.9 to homogeneous riemannian manifolds.

4.1. Theorem. Let (M,ds2) be a connected homogeneous riemannian manifold,

G a transitive Lie group of isometries, K an isotropy subgroup, and 2 an adG (K)-

invariant Levi factor of © such that ds2 is consistent with the Levi- Whitehead de-

composition © = 9t + £.

1. If(M, ds2) has mean curvature ^0 everywhere, then the solvable radical 91 and

the nilpotent radical 9Î of © satisfy 9i = 3t + (S£ n 91) semidirect sum.

2. If (M, ds2) has mean curvature > 0 everywhere, then the derived group [G, G]

of G is transitive on M.

Proof. If (M, ds2) has mean curvature ^ 0 everywhere, then, in the notation

(2.8), Theorem 3.9 says 91=0, so 3DÎ n 9l = 9c; thus 9t = (3B n SÄ) + (Ä n 9t)

= 9Î + (Ä n 91). If further (M, ds2) has mean curvature > 0 everywhere, then

Theorem 3.9 says 3K = [©, @]w, so the derived group G' = [G, G] has an open orbit

G'((9)<^M. As G'(@) is complete and M is connected, G'(0) = M, so G' is transitive

on M.    Q.E.D.

4.2. Corollary. Let (M, ds2) be a connected riemannian homogeneous manifold,

G a transitive Lie group of isometries of M,G> e M, and K the isotropy subgroup of G

at 6. Let R® denote the subspace of the tangent space Ma consisting of vectors Y&

where Y is contained in the solvable radical 91 o/@. Suppose that the linear isotropy

representation of K splits into disjoint representations on Re and i?¿.

1. If (M, ds2) has mean curvature ä 0 everywhere, then 9Î is related to the nil-

potent radical 31 of © by 91 = SSI + (Sí n 91).
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2. If (M, ds2) has mean curvature > 0 everywhere, then the derived group of G is

transitive on M.

Proof. Let £ be any adG (F)-invariant Levi factor of @. Proposition 2.4 says that

ds2 is consistent with the Levi-Whitehead decomposition @ = 9i + £. Our assertions

now follow from Theorem 4.1.   Q.E.D.

In order to apply Theorem 4.1 to the case of a transitive solvable group of

isometries, we must first prove the following lemma about a simply transitive

nilpotent group of isometries. Note that the lemma extends the positive curvature

portion of [7].

4.3. Lemma. Let (N, ds2) be a connected nilpotent Lie group with a left invariant

riemannian metric. Then the following conditions are equivalent.

(i) (N, ds2) has mean curvature ^ 0 everywhere.

(ii) (N, ds2) has every sectional curvature zero,

(iii) N is commutative.

Proof. As (iii) => (ii) => (i) trivially we need only check that (i) => (iii). So

assume that (N, ds2) has mean curvature ^ 0 everywhere. In the context of Theorem

3.9,

G = N,    K= {I},    £ = 0,    TO = 9c,

and consistency of ds2 with © = 9î + £ is automatic. Now Theorem 3.9 says that

there is no noncentral element X e SSI such that X J_ [SSI, 9c]. But nilpotence of SSI

implies that in the lower central series

W = 9c0 => 9i1 3 . .. z> ̂ s % SSls + x = 0,    9in + 1 = [Sfl, Sftk],

any vector space complement to 9ÎX = [9c, 9Î] generates 9c. Let [9c, SSI]1 be the com-

plement. As it consists of central elements of 9Ï (our application of Theorem 3.9),

it must be all of 9Î. Thus N is commutative.   Q.E.D.

Now we have a general result on the curvature of riemannian solvmanifolds.

4.4. Theorem. Let (M, ds2) be a connected riemannian manifold that has a solv-

able transitive group of isometries. Then the following conditions are equivalent.

(i) (M, ds2) has mean curvature ^ 0 everywhere.

(ii) (M, ds2) has every sectional curvature ä 0.

(iii) (M, ds2) has every sectional curvature zero.

(iv) (M, ds2) is isometric to the product of an euclidean space and aflat riemannian

torus.

Proof. As (iv) => (iii) => (ii) => (i) trivially we need only check that (i) => (iv).

So assume that (M, ds2) has mean curvature S 0.
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G denotes the closure of a solvable transitive group of isometries of (M, ds2) in

the full group of isometries. So G is a solvable transitive Lie group of isometries.

Let K be an isotropy subgroup. © is its own solvable radical dx, so the adG (K)-

invariant Levi factor S=0, and ds2 is consistent with @ = 9î + £ = 9l. Our invariant

complement 9Jc for K satisfying (2.8) now has the form 971 = 91 + 91, and Theorem

3.9 says 91=0.

Let A be the analytic subgroup of G for 9F Now we have an open orbit N(G>)^M.

As N(0) is complete and M is connected, the two are equal. Thus Ais transitive on

M. As G acts effectively on M, also Nacts effectively, so Lemma 2.5 says Kn N

={l}. That proves N simply transitive on M. Lemma 4.3 says that (M, ds2) is flat

and A is commutative. It follows [6, Théorème 4] that (M, ds2) is the product of

an euclidean space and a flat riemannian torus.   Q.E.D.

4.5. Corollary. Let (M, ds2) be a connected riemannian Einstein manifold that

has a solvable transitive group of isometries. Then either (M, ds2) has vanishing Ricci

tensor and is isometric to the product of an euclidean space with a flat riemannian

torus, or (M, ds2) has negative definite Ricci tensor.

Proof. The Einstein homogeneous hypothesis says that (M, ds2) has constant

mean curvature, say k. If k^O then Theorem 4.4 says that (Rtj) = 0 and that

(M, ds2) is the product of an euclidean space with a flat riemannian torus. If k < 0

then (R¡j) is negative definite.   Q.E.D.

For examples of the latter case of Corollary 4.5, let (M, ds2) be a noncompact

irreducible riemannian symmetric space, G the largest connected group of isom-

etries, K an isotropy subgroup, and G=NAK an Iwasawa decomposition. Then

S=NA is a simply transitive solvable Lie group of isometries of (M, ds2), and

(M, ds2) is a connected riemannian Einstein manifold with negative definite Ricci

tensor. G. Jensen [2] has shown that this example is essentially exhaustive in

dimensions 5=4.

The following lemma is similar to results of G. Jensen [2].

4.6. Lemma. Let G be a Lie group, let ds2 be a left invariant riemannian metric on

G, and let X be a nonzero central element of the Lie algebra ©. Then the mean

curvature k(X) s£ 0, and k(X) = 0 if and only if X is orthogonal to the derived algebra

of®.

Proof. We use the notation of the proof of Lemma 3.1. Note 501 = @. We take X

to be a unit vector and {E¡} to be an orthonormal basis of© that contains X. Then

(3.3) holds. As X is central in @, the analog of (3.4) is

*(S, X) = <W(X, S) = -i 2 <[S, Ej], xyE,.
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We still have <W(X, X) = 0, so a(X, X)=0 and (3.5) holds. But [X, F¡] = 0 simplifies

(3.5) to

(«- l)k(X) = -2 <«(A-, a(Fi5 A")), Fi>
i

= \Jj{cc(X,{[Ei,E,],XyE^,Ei~)
i.i

= ±2<tö> Ei\> XXa(X, F;), F(>
i.i

= -i 2 <iEu E,], XX<[Ei, Ek], X}Ek, Fi>
i.i.k

= -^<\Ei,Ei],xx[E},Ei],xy
i.i

= i2<[^^]>*>2-
i.i

Thus k(X) ^ 0, and k(X) = 0 if and only if each < [F¡, E¡], X) = 0, which is equivalent

to<[®, ©], X} = 0.   Q.E.D.

We now combine Lemmas 4.3 and 4.6, extending our calculations [7] from

sectional curvature to mean curvature, and sharpening Theorem 4.4 in the case of a

nilpotent group. After hearing the result, G. Jensen gave another proof of Theorem

4.7 [2, Theorem 4].

4.7. Theorem. Let (M, ds2) be a connected riemannian manifold that has a nil-

potent transitive group of isometries. Then the following conditions are equivalent.

(i) (M, ds2) has mean curvature ä 0 everywhere.

(ii) (M, ds2) has mean curvature = 0 everywhere.

(iii) (M, ds2) has mean curvature tí 0 everywhere.

(iv) (M, ds2) has every sectional curvature 3:0.

(v) (M, ds2) has every sectional curvature =0.

(vi) (M, ds2) has every sectional curvature ^ 0.

(vii) (M, ds2) is isometric to the product of an euclidean space and aflat rieman-

nian torus.

Proof. Let N denote the identity component of the closure of a nilpotent

transitive group of isometries. Then N is a connected nilpotent transitive Lie group

of isometries of (M, ds2). Its isotropy subgroups are central by Lemma 2.5, hence

trivial; thus TV is simply transitive on (M, ds2). Now we may view ds2 as a left

invariant riemannian metric on N.

Lemma 4.3 says that (i) implies (v); so (ii) implies (v).

We use Lemma 4.6 to prove that (iii) implies (v). Let 3 be the last nonzero term

of the lower central series of 9?. Then 3 is central in 9Î. Let Oj^XeQ. Assume (iii),

so k(X)^0. Lemma 4.6 says k(X)^0. Thus ifc(A') = 0 and Lemma 4.6 says

<[9c, 9c], A->=0. If 9c is noncommutative then Xe 3^ [9c, 9c] and so <[9c, 9c], X)
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7^0. That proves N commutative, so every sectional curvature of (A, dsz) is zero.

Thus (iii) implies (v).

Now (i), (ii) and (iii) each implies (v). It follows that (iv) and (vi) each implies (v).

But (v) implies (vii) by [6, Théorème 4], and (vii) clearly implies each of (i), (ii),

(iii), (iv), (v) and (vi).   Q.E.D.

4.8. Corollary. Let (M, ds2) be a connected riemannian Einstein manifold that

has a nilpotent transitive group of isometries. Then (M, ds2) is isometric to the product

of an euclidean space and aflat riemannian torus.

Proof. We have the hypothesis of Theorem 4.7 as well as condition (i), (ii) or

(iii); thus we have condition (vii) of Theorem 4.7.   Q.E.D.

Our last application is a refinement of [8, Corollary 5.8].

4.9. Theorem. Let (M, ds2) be a compact connected locally homogeneous rie-

mannian manifold with mean curvature è 0 everywhere. Suppose that the fundamental

group tti(M) has a solvable subgroup of finite index.

Let OT : M —> M be the universal riemannian covering, G the largest connected

group of isometries of (M, -n* ds2), K an isotropy subgroup of G, 2 an adG (K)-

invariant Levi factor of® and L its analytic subgroup ofiG, and 9Í and 31 the solvable

and nilpotent radicals of © and R and N their analytic subgroups of G. Let F denote

the group =rrx(M) of deck transformations of M^-M. Suppose that n* ds2 is

consistent with © = 9î + £.

1. L is compact.

2. R = N(K(~\ R)0 semidirect product, where (K n R)0 is a torus group whose Lie

algebra St n 91 acts effectively on 31 in the adjoint representation.

3. T has a torsion free normal nilpotent subgroup A of finite index, Ac N-ZL(N)0

where ZL(N) is the centralizer of N in L, and A projects isomorphically to a discrete

subgroup with compact quotient in N.

Proof. Compactness of F is part of [8, Corollary 5.8], and the decomposition

R = N(K n R)0 follows from Theorem 4.1. In the proof of [8, Corollary 5.8] it is

shown that F has a nilpotent subgroup A of finite index, and that the identity

component of the closure of RA in G has form

F = R ■ U for some torus U <= L.

Enlarge U to a maximal torus F of F. Then T=TNTRIN- U local direct product,

where TN is a maximal torus of A and TRjN is an adG (F)-conjugate of (K n R)0.

These constructions are not changed if A is cut down to a subgroup of finite index.

So we first cut A down to A n F, then [8, (4.5)] to a torsion free group, and finally

to a normal subgroup of T.

Let F be the kernel of the action of F on A, i.e. the centralizer ZT(N). Then

TN c F0<= TH ■ U. Let F* = F/ V; then F* = A* ■ F* where N* = N/TN simply connected

nilpotent group and

T* = (TRIN-U)/{(TRIN-U)nV}.
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A* is the projection of A to F*. As A is a discrete subgroup with compact quotient

in F, the same is true of A* in F*. By construction of F* and the fact that TN is

central in F, conjugation represents F* faithfully as a group of automorphisms of

N*, so L. Auslander's result [1] says that A* n N* has finite index in A*. Again

cutting A down, we may assume A*^N*, i.e. that A<^N-ZU(N)0(=N-ZL(N)0.

Q.E.D.
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