
SURFACES OF CONSTANT MEAN CURVATURE

JOSEPH A. WOLF1

1. Introduction. Let 5 be a surface immersed in euclidean space

R3 with constant mean curvature H. In a recent note [3] we proved

that the quadratic differential form —HI+11 is a flat Lorentz metric

on the complement of the umbilic set of 5. Here the result is used to

set up a certain type of isothermal local coordinate system on 5. The

main consequences are:

(i) an obstruction theory, which tells one when an isometry of con-

nected surfaces of the same constant mean curvature is a congru-

ence ;2

(ii) Gauss curvature on 5 is set up as a solution to a nonlinear el-

liptic boundary value problem; and

(iii) construction of local surfaces of any given constant mean

curvature.

2. Notation. 5 denotes a surface with a fixed immersion v: S-+R3.

If £ is a smooth choice of unit normal defined over an open set UES,

then we recall the fundamental forms of the immersion:

I = dvdv, first fundamental form;

II = dvd%, second fundamental form;

III = d£-d£, third fundamental form.
I = dv2 is the riemannian metric induced on S by the immersion. The

eigenvalues of // relative to I are the principle curvatures, denoted ki.

As usual we have functions H, K on 5 given by

H — I {ki+k2}, mean curvature;

K = k/k2, Gauss curvature.

They define the quadratic differential form

0 = — HI + II, modified fundamental form.

The eigenvalues of Q relative to / are ki — %iki + k2) = +|(fei —fe2).

Thus S2 is a pseudo-riemannian metric of Lorentz signature (Lorentz

metric) on the open subset

5n = (xG5:£i(x) ^ £2(x)}
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of 5. We view 5n as a Lorentz surface with metric ft. Recall that a

point xES is called umbilic ii ki(x) = k2(x); thus Sa is the complement

of the umbilic set of 5.

3. Special coordinates on Sa. The results of this note are based on

the following observation.

3.1. Theorem. Let Sbea surface immersed in Rz with constant mean

curvature H. Let K denote Gauss curvature and define3 a function

(3.2) A = - § log(P2 - K) on Sa.

If xESn, then x has a local coordinate neighborhood* (U, u) with

UESq and

(3.3) / = ex{dux <g> du1 Ar du2 ® du2};

(3.4) II = (Pex + l)dul <g> du1 + (Hex - l)du2 ® du2;

(3.5) ki = H Ar e~\    k2 = H - tr\    K = H2 - e~2\

If (V, v) is another local coordinate neighborhood of x with these prop-

erties, then v* = ±uiA-ci, c* constant, on each component of UfAV.

Proof. Let the principle curvature be numbered so that£i>£2on

Sa- Given xG5q we choose a neighborhood WESa of x which carries

an Porthonormal moving frame {Xi, X2} such that X, is a principle

vector with principle curvature ki. We have seen [3, Corollary 4.11]

that the connection form of the Lorentz surface Sa is identically

zero in the S2-orthonormal moving frame { Fi, Y2}, where

Yi = {%(ki — k2)} ll2Xi. It follows that x has a local coordinate neigh-

borhood (U, u) such that PC IF and d/cV= F,-. Now

0 = du1 <g> du1 — du2 ® du2 in U.

On the other hand, I and II are diagonalized by {Xi, X2}, hence also

by { Yi, Y2} = {d/du\ d/du2}. Thus

2 2

I = Yl gidu{ <8> du*   and    II = XI bidu* <S> du*
i i

in U. This tells us

bi = kigt,    —Hgi + h = 1,    -Hg2 + b2 = — 1.

We compute

3 Here we must observe that IP-K>0 on Sa; for IP-K = \(ki-k2)i.

4 [7 is the neighborhood and u=(u>, u2) is the local coordinate.
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bi        b2       Hgi + 1       Hg2 - 1 1 1
2H = ki + k2 = — + — = —-+ —-=2H-\-

gi        gi gi gi gi        gi

Thus gi = g2, which must be positive because I is positive definite.

Now gi = g2 = ex for some function X defined on U. We compute

h = Hgi + 1 = Pex + 1, ki = bi/gi = H + e-*;

b2= Hg2-l = Pe* - 1, fc2 = b2/g2 = H - e~\

P = kik2 = P2 - e"2\    so    X = - | log(P2 - P).

This proves (3.3), (3.4) and (3.5).

For the uniqueness, observe that {d/6V, d/dv2} diagonalizes J and

// with first coefficient greater than second in II. Thus d/dv* is a

principle vector with principle curvature ki on S. As Q(3/3»', d/dv*)

= fl(d/6V, d/dra4) = ±1^0, now 5/30* = ± d/6V, sodv{=± du\ q.e.d.

4. The Mainardi-Codazzi equations. Let (£/, u) be a connected

local coordinate neighborhood on a surface 5 immersed in R-. Sup-

pose that the fundamental forms are given by

(4.1) J = e^'dra1 ® du1 + du2 <g> du2\  and II =   zZa bijdu1' ® duK

Then the Christoffel symbols are easily computed:

1 1 2 1       d\ i 2 2 1     3X
(4.2) Tn = — T22 = Ti2 = —- ; Ti2 = — Tu = T22 =-•

2   du1 2   du2

Thus the Mainardi-Codazzi equations reduce to

dbn     dbi2       1 d\
—- = — ibn + 622)-    and
6V      du1       2 du2

(4.3)
3Z>22     dbi2       1 d\
—-; = — (611 + 612)-

du1      du2      2 du1

Now suppose that our surface 5 has constant mean curvature H.

Let z = ul + ( — l)ll2u2, complex local coordinate, and define

4>iz) = (611-622) + 2(-l)1'2Z>12.

As 2H=bne~x+b22e~x = ibii+b22)e->L is constant, (4.3) says that d/dz

= %{d/du1 + i — l)ll2d/du2} annihilates d>', thus <p is a holomorphic

function of 2. Let / be the function on U defined by

bn = He*+f,       &22 = Pex-/.

Suppose that Gauss curvature satisfies
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K= H2 - e-2\    i.e.,    X = - § log(PP - K).

Then

2 2X 2X .      , 2 2   2X ,   2 2 ,
P e    - 1 = Ke    = 6n622 - br2 = H e    - (f + tS12),

so /2+&,22 = l. But <£ = 2(/+(-l)1'2&,2) is holomorphic; now the

maximum modulus principle says that <p is constant; thus/ and bn

are constant.

Notice that PC5Q by the assumption PP-P = e-2X>0. Cutting

U down if necessary, Theorem 3.1 gives us a local coordinate v on U

in which I = ex{dvl ® dv1 + dv2 <g> aV} and J7 = (Hex + l)aV ® aV

+ (P/ex — l)dv2®dv2. If a is the oriented angle from d/du1 to d/dvl, the

two expressions for I give

oV = cos a du1 + sin a du2    and    <fo2 = — sin a du1 + cos a du2.

Equating coefficients of du1®dul in the two expressions for II,

Pex +/ = bu = (Pex + 1) cos2 a + (Pex - 1) sin2 a

= Pex + {cos2 a — sin2 a}.

Thus/ = cos2 a — sin2 a = cos (2a). Similarly &i2 = 2 cos a sin a = sin (2a).

Now a is constant, and d1 = cos a^+sin au2A-cl and v2= —sin aw1

+cos au2-\-c2 for some constants c\ We summarize as follows.

4.4. Theorem. Let S be a surface immersed in JR3 with constant

mean curvature H, and define X= — J log (H2 — K) on Sa- Let (U, u)

be a connected local coordinate neighborhood such that UESa and

I = ex{du1 ®dulArdu2®du2}. Then there is a constant a such that

II = (Pex + cos 2a)dul ® du1 + 2 sin 2a duldu2

(4.5)
+ (Hex — cos 2a)du2 ® du2.

Let c* be constants, v1 = cos az^+sin au2A-cx and v2 = —sin aMx+cos aw2

+c2. Then v = (vx, v2) is a local coordinate on U, a is the angle from

d/du1 to d/dv1, and

I = ex{aV ® dv1 + dv2 ® dv2}    and(4.6) l

II = (Pex + l)aV <g> dv1 + (Pex - 1) dv2 ® dv2.

5. Obstruction to a congruence. The following result generalizes

the fact that an isometry of small patches of a right circular cylinder

is a congruence only when it preserves the direction of the axis of the

cylinder.

5.1. Theorem. Let S, S' and S" be connected surfaces embedded in
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R3 with the same constant mean curvature H, which are not open subsets

of a plane or a sphere. Then to every isometry f: S^>S' we have a real

number «(/), defined up to addition of an integral multiple of tt, speci-

fied by the property: if xESa and (P, u) is a local coordinate neighbor-

hood of x given by Theorem 3.1 then f*II' = [He^+cos 2a(/) }dul®dul

+ 2 sin 2aif)du1du2+{Hex-cos 2aij))du2®du2 in U.

a has the properties:

(i) / extends to a rigid motion of R3, if and only if «(/) =0 mod tt;

(ii) «(/->) = -«(/);
(iii)   if g: S'—>S" is an isometry, then aig•/) =«(/) +aig);

(iv) two isometries f, g: S—>S' differ by a rigid motion of R3, if and

only if aif)=aig) mod tt.
Given xESa and a real number b, there is a neighborhood V of x,

a surface W of constant mean curvature H, and an isometry h: F—>W,

such that aih) =b.

The proof is based on the standard fact [2 ]:

5.2. Lemma. PeZ S be a connected surface immersed in R3 with con-

stant mean curvature. If some point of Sis not umbilic, then the umbilics

of S are isolated.

{The function <f> of §4 is holomorphic, and the umbilics of 5 in the

domain of <p are just the zeroes of <p.}

Now the surfaces 5, S' and 5" have all umbilics isolated; for an

all-umbilic surface is an open subset of a plane or a sphere. Thus 5a

(resp. S'a, resp. S"a) is arcwise connected and dense in 5 (resp. 5',

resp. 5"). Let K, K' and K" denote their Gauss curvature functions

and let/: 5—>5' be an isometry. Then/(5a)=5a because P'(/(x))

= P(x),5a={xG5:P2-P(x)>0} and 5«= j/(x)G5': P2-P'(/(x))
>0J. Similarly, the functions X= — £ log (P2 — K) on 5a and X'

= -\ log iH2-K') on 5a are related by X=X'/.

Let xG5a and choose a connected local coordinate neighborhood

(P, u) according to Theorem 3.1. Then I = ex\dul ®du*+du2 ®du2}

and II =iHex+l)du1®du1 + (Hex-l)du2®du2. Let W=fiU), w'ifiz))

= m'(z) for zEU; then iW, w) is a connected local coordinate neigh-

borhood of fix). PC 5a implies W E 5a2 •/*/' =/ because / is an isom-

etry, so/*P = e^ldu1 ® du1 + du2 ® du2} = ex'^{diw1-f) ® diwl-f)

+diw2-f)®diw2-f)\; thus I' = ex' {dw1®dw1+dw2®dw2}. Applying

Theorem 4.4 to 5', we have a number «/(x) such that II' —

Hex'+cos2afix))dw1®dwl + 2 sin2afix)dwidw2 + iHex' — cos2afix))dw2

®dw2. Thus /*//' = (Pex+ cos 2afix))dux®du1 + 2 sin 2asix)duxdu2

+ (Pex —cos 2afix))du2®du2. This specifies oj/(x) up to an integral
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multiple of tt. The uniqueness part of Theorem 3.1 says that a/(x)

is well defined up to an integral multiple of t.

Let C be the circle which is the real numbers modulo tt. We have a

map a/: Sa—*C. If xG5q then a/ is constant on a neighborhood of x.

As Sa is connected, now as is constant. Let a(f) denote its value. We

have proved the existence of a number a(f) defined modulo ir and

specified by f*II' as required.

If a(f) =0 mod ir if and only if cos 2a(/) = 1 and sin 2a(/) = 0, which

is equivalent to f*II' = 11. In that case/: 5—>5' is a diffeomorphism

of connected surfaces in R3 such that f*I' = I and /*II'=11, and a

classical theorem says that / extends to a rigid motion of R3. This

proves (i).

For (iii) we have a local coordinate v on WES' given by (af=a(f))

v1 = cos(a/)w1A-sin(af)w2 and v2=—sin(a/)w1A-cos(a/)w2, and II'

= (HeyArl)dv1®dv1A-(He*-l)dv2®dv2 on W. Let X = g(W)ES"a

and let x be the local coordinate on X with x-g = z>. Define y on X by

y1 = cos(aB)x1+sin(a„)x2 and y2= — sin(a9)x1+cos(a0)x2; then II"

= (He*"Arl)dy1®dy1A-(Hex" — l)dy2®dy2 on A. We compute

u1 = cos(af A- a„)(yx-g-f) + sin (a/ + a„)(y2-g-/).

M2 = - sin (a/ + a0)(y1-g-f) + cos (a/ + ag)(y2-g-f).

Thus ag.f = agArar.

Now (ii) and (iv) are immediate.

Let xESa and bER- Choose a local coordinate neighborhood

(U, u) oi x as in Theorem 3.1. D = u(U) ER2 is the parameter domain.

We define functions gu(u(z)) =g22(u(z)) =eX(*>, g12 = g21 = 0, bn(u(z))

= Hex<*>+cos(26), &22(«(z)) = P*ex<*> - cos(2&) and bi2(u(z)) =ba(u(z))

= sin(2&). Then the forms

To = 22 ga(u)du* ® du'    and    i70 = Y,bij(u)du* ® du'

satisfy the Mainardi-Codazzi equations (4.3). As 5 satisfies the Gauss

equation a priori, and as I0 = I and det (&<;•) = PPe2X — 1 as for 5, now

Jo and Ho satisfy the Gauss equation. Thus Bonnet's existence theo-

rem says that every mED has a neighborhood V(m) ED which is

parameter domain for a local surface WER3 with first and second

fundamental forms P and II0. Let w be the coordinate on W, m

= w(x), V = u~1(V(m)). Then h = u~x-u\r is a diffeomorphism of V

onto W such that h*I0 = Io = I (so ft is an isometry) and h*Ho = H0

(so a(h) =b).    q.e.d.

Theorem 5.1 requires Sa to be nonempty. Thus we remark:

5.3. Complement to Theorem 5.1. Let S and S' be connected all-
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umbilic surfaces in R3. Then any isometry f: S—+S' extends to a rigid

motion of R3.

For/ is a diffeomorphism with/*/' = 1, and we need only check that

f*II' = II. An all-umbilic surface is an open subset of a plane or a

sphere.  In the first case 11 = 0 and P = 0. In the second case II

= (l/r)J and K = l/r2 where r is the radius of the sphere. As/ pre-

serves Gauss curvature, now f*II' =11.    q.e.d.

6. The Gauss Equation. The Gauss equation for a surface 5 with

first fundamental form ex\du1®du1+du2®du2} says that Gauss

curvature is given by6

1 d2 d2
(6.1) K =-e"xAX,        A =-1-

2 duldul       du2du2

Now suppose that 5 has constant mean curvature H and that our

local coordinate neighborhood (£/, u) is given by Theorem 3.1. Then

K=H2 — e~2X, so (6.1) becomes a nonlinear elliptic equation

(6.2) AX = 2(e-x - P2ex).

We view this as an equation6 for K = H2 — e_2X.

We regard (6.2) as a boundary value problem on a disc D of radius

r>0 in R2. Let b be a continuous function on the boundary dD of

the disc; we look for a solution X(m1, u2) to (6.2) on D, continuous on

the closure and with values b on dD. Let hiu1, u2) be the harmonic

function on D with boundary values b. Then we write (6.2) in the

form (this defines P)

(6.3) AV = 2(e-<"+''> - H2e"+h) = P(»»),        v = X - h,

and we want a solution 77 on D vanishing on dD.

Following Courant-Hilbert ([l, Appendix to Chapter 4]), such

solutions 77 exist provided that certain bounds c, m satisfy ir+r2)cm

^ 1/4. Here c and m are defined as follows. Let C2(P) denote the set

of all continuous functions on the closure of D which are twice con-

' We remark that this has an interesting expression in complex notation. There

z = i*1 + (-l)1/2«2 is the variable, so ds = du1 + i-l)uidu1 and de = du1~i-l)1iidus,

and the vector fields dual to these forms are d/ds= (1/2) [d/du1 — ( — l)lltd/du*} and

d/dz=il/2)[d/du1 + i-iyiid/dui}. The exterior derivative d = d'+d" where by

definition d'(f) = (df/dz)dz and d"(f) = (df/ds)ds on functions. In particular d'd"f

= \&f dzf\dz. The element of area on 5 is given by dA = exdux/\du2 = (1/2)( — l)1,2ex

■dz/\dz. Thus (6.1) can be written in coordinate free form KdA= — ( —1)1,2<Z'<Z"X.

« Writing it out in terms of K, one obtains AK= { (dK/du^y + idK/du2)1} {H2-K)

+4iH*-Kyl*-4HiiH*-K)in, K<H\ which is more difficult to study than is (6.2).
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tinuously differentiable in D. Then c is specified by

df i      i
max -   g cr l.u.b.    A/       for/ G C2(P),

and c is independent of choice of r or D. Define the norm

ll/H = max |/|   + X max -
du'

on C2(D). Then m is any common bound for all |p(/)| and all

|oP/a/| with 11/11 ^1. A glance at the form of P in (6.3) shows now
that m is any common bound for 2(e~l~hArH2e1+h) and 2(e1-*+Pz'2e''-1)-

As h achieves its maximum on 3D, now we may take

(6.4) m = max{2(e~1^ + PV+"),   2(e^ + PV^i)},   0 = max\b\.

In summary, and using the fact that solutions to elliptic equations

are analytic,

6.5. Theorem. Let D be a disc of radius r>0 in R2, let b be a con-

tinuous function on 3D, and let B = maxaD\b\. If

(6.6)       (r + r2)-1 ^ 8c-max{e~1-» Ar PV+", e1"" + PV*-1},

then there exists a continuous function X on the closure of D, real analytic

on D, which satisfies (6.2) and has values b on dD.

The usual uniqueness condition for an equation Af=A(f, u) for

given boundary values is dA/df^O. But in our case (6.2) we always

have dA/df<0.
We can now describe the construction of umbilic-free local surfaces

of constant mean curvature. Such a surface is specified up to congru-

ence by its first and second fundamental forms, and the condition for

two candidates

I = X gudu* ® du'    and    II = ^ bijdu* ® du'

to give a surface, is that the g„- and 6,-y satisfy the Mainardi-Codazzi

equations and the Gauss equation.

If H is the mean curvature of the desired surfaces, then Theorem

3.1 allows us to take / and II in the forms

I = ex{dul ® du1 + du2 ® du2}    and

II, = {Pex + cos^Ojow1 ® du1 Ar 2 sin(2t)du1du2

Ar {Pex - cos(2t)}du2 ® du2
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for t = 0. For any constant /, the Mainardi-Codazzi equations (4.3)

are satisfied for I and lit, and the Gauss equation (6.2) is

AX = 2(e~x - P2ex),        K = H2 - e-2X.

Theorem 6.5 gives the existence of many solutions. Given a local

solution X, there corresponds a well defined congruence class of local

surfaces 5x,j with I as specified and II = Ht; Theorem 5.1 shows that

the natural map7/«.«: 5x,„—>5x,« is an isometry and a(f,,t) =t — s.
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