SURFACES OF CONSTANT MEAN CURVATURE

JOSEPH A. WOLF

1. Introduction. Let S be a surface immersed in euclidean space \mathbb{R}^3 with constant mean curvature H. In a recent note [3] we proved that the quadratic differential form $-HI + II$ is a flat Lorentz metric on the complement of the umbilic set of S. Here the result is used to set up a certain type of isothermal local coordinate system on S. The main consequences are:

(i) an obstruction theory, which tells one when an isometry of connected surfaces of the same constant mean curvature is a congruence;\(^2\)

(ii) Gauss curvature on S is set up as a solution to a nonlinear elliptic boundary value problem; and

(iii) construction of local surfaces of any given constant mean curvature.

2. Notation. S denotes a surface with a fixed immersion $\nu: S \to \mathbb{R}^3$. If ξ is a smooth choice of unit normal defined over an open set $U \subseteq S$, then we recall the fundamental forms of the immersion:

$I = dv \cdot dv$, first fundamental form;

$II = dv \cdot d\xi$, second fundamental form;

$III = d\xi \cdot d\xi$, third fundamental form.

$I = dv^2$ is the riemannian metric induced on S by the immersion. The eigenvalues of II relative to I are the principle curvatures, denoted k_i. As usual we have functions H, K on S given by

$$H = \frac{1}{2} \{k_1 + k_2\}, \text{ mean curvature;}$$

$$K = k_1 k_2, \text{ Gauss curvature.}$$

They define the quadratic differential form

$$\Omega = -HI + II, \text{ modified fundamental form.}$$

The eigenvalues of Ω relative to I are $k_i - \frac{1}{2} (k_1 + k_2) = \pm \frac{1}{2} (k_1 - k_2)$. Thus Ω is a pseudo-riemannian metric of Lorentz signature (Lorentz metric) on the open subset

$$S_\Omega = \{ x \in S: k_1(x) \neq k_2(x) \}$$

Received by the editors January 16, 1966.

\(^1\) Research supported in part by National Science Foundation Grant GP2439, in part by an Alfred P. Sloan Research Fellowship.

\(^2\) In other words, when the isometry is the restriction of a rigid motion of the ambient euclidean space \mathbb{R}^3.

1103
of S. We view S_Ω as a Lorentz surface with metric Ω. Recall that a point $x \in S$ is called umbilic if $k_1(x) = k_2(x)$; thus S_Ω is the complement of the umbilic set of S.

3. Special coordinates on S_Ω. The results of this note are based on the following observation.

3.1. Theorem. Let S be a surface immersed in \mathbb{R}^3 with constant mean curvature H. Let K denote Gauss curvature and define\(^3\) a function

\[
\lambda = -\frac{1}{2} \log(H^2 - K) \text{ on } S_\Omega.
\]

If $x \in S_\Omega$, then x has a local coordinate neighborhood\(^4\) (U, u) with $U \subset S_\Omega$ and

\[
I = e^\lambda \left(du^1 \otimes du^1 + du^2 \otimes du^2 \right);
\]

\[
II = (He^\lambda + 1) du^1 \otimes du^1 + (He^\lambda - 1) du^2 \otimes du^2;
\]

\[
k_1 = H + e^{-\lambda}, \quad k_2 = H - e^{-\lambda}, \quad K = H^2 - e^{-2\lambda}.
\]

If (V, v) is another local coordinate neighborhood of x with these properties, then $v^i = \pm u^i + c^i$, c^i constant, on each component of $U \cap V$.

Proof. Let the principle curvature be numbered so that $k_1 > k_2$ on S_Ω. Given $x \in S_\Omega$ we choose a neighborhood $W \subset S_\Omega$ of x which carries an I-orthonormal moving frame $\{X_1, X_2\}$ such that X_i is a principle vector with principle curvature k_i. We have seen [3, Corollary 4.11] that the connection form of the Lorentz surface S_Ω is identically zero in the S^2-orthonormal moving frame $\{F_1, F_2\}$, where $F_i = \left\{ \frac{1}{2}(k_1 - k_2) \right\}^{1/2} X_i$. It follows that x has a local coordinate neighborhood (U, u) such that $U \subset W$ and $\partial/\partial u^i = Y_i$. Now

\[\Omega = du^1 \otimes du^1 - du^2 \otimes du^2 \text{ in } U.\]

On the other hand, I and II are diagonalized by $\{X_1, X_2\}$, hence also by $\{Y_1, Y_2\} = \{\partial/\partial u^1, \partial/\partial u^2\}$. Thus

\[
I = \sum_{i=1}^{2} g_{i} du^i \otimes du^i \quad \text{and} \quad II = \sum_{i=1}^{2} b_i du^i \otimes du^i
\]

in U. This tells us

\[
b_i = k_ig_i, \quad -Hg_1 + b_1 = 1, \quad -Hg_2 + b_2 = -1.
\]

We compute

\(^3\) Here we must observe that $H^2 - K > 0$ on S_Ω; for $H^2 - K = \frac{1}{2}(k_1 - k_2)^2$.

\(^4\) U is the neighborhood and $u = (u^1, u^2)$ is the local coordinate.
\[2H = k_1 + k_2 = \frac{b_1}{g_1} + \frac{b_2}{g_2} = \frac{Hg_1 + 1}{g_1} + \frac{Hg_2 - 1}{g_2} = 2H + \frac{1}{g_1} - \frac{1}{g_2}. \]

Thus \(g_1 = g_2 \), which must be positive because \(I \) is positive definite. Now \(g_1 = g_2 = e^\lambda \) for some function \(\lambda \) defined on \(U \). We compute

\[
\begin{align*}
 b_1 &= Hg_1 + 1 = He^\lambda + 1, \quad k_1 = b_1 / g_1 = H + e^{-\lambda}; \\
 b_2 &= Hg_2 - 1 = He^\lambda - 1, \quad k_2 = b_2 / g_2 = H - e^{-\lambda}; \\
 K &= k_1k_2 = H^2 - e^{-2\lambda}, \quad \text{so} \quad \lambda = -\frac{1}{2} \log(H^2 - K).
\end{align*}
\]

This proves (3.3), (3.4) and (3.5).

For the uniqueness, observe that \(\{ \partial / \partial v^1, \partial / \partial v^2 \} \) diagonalizes \(I \) and \(II \) with first coefficient greater than second in \(II \). Thus \(\partial / \partial v^i \) is a principle vector with principle curvature \(k_i \) on \(S \). As \(\Omega(\partial / \partial v^i, \partial / \partial v^i) = \Omega(\partial / \partial u^i, \partial / \partial u^i) = \pm 1 \neq 0 \), now \(\partial / \partial v^i = \pm \partial / \partial u^i \), so \(dv^i = \pm du^i \). q.e.d.

4. The Mainardi-Codazzi equations. Let \((U, u)\) be a connected local coordinate neighborhood on a surface \(S \) immersed in \(\mathbb{R}^3 \). Suppose that the fundamental forms are given by

\[(4.1) \quad I = \varepsilon^i \{ du^1 \otimes du^1 + du^2 \otimes du^2 \} \quad \text{and} \quad II = \sum_{ij} b_{ij} du^i \otimes du^j. \]

Then the Christoffel symbols are easily computed:

\[(4.2) \quad \Gamma^1_{11} = -\Gamma^1_{22} = \Gamma^2_{12} = \frac{1}{2} \frac{\partial \lambda}{\partial u^1}; \quad \Gamma^1_{12} = -\Gamma^2_{11} = \Gamma^2_{22} = \frac{1}{2} \frac{\partial \lambda}{\partial u^2}. \]

Thus the Mainardi-Codazzi equations reduce to

\[(4.3) \quad \frac{\partial b_{11}}{\partial u^2} - \frac{\partial b_{12}}{\partial u^1} = \frac{1}{2} (b_{11} + b_{22}) \frac{\partial \lambda}{\partial u^2} \quad \text{and} \quad \frac{\partial b_{22}}{\partial u^1} - \frac{\partial b_{12}}{\partial u^2} = \frac{1}{2} (b_{11} + b_{12}) \frac{\partial \lambda}{\partial u^1}. \]

Now suppose that our surface \(S \) has constant mean curvature \(H \). Let \(z = u^1 + (-1)^{1/2} u^2 \), complex local coordinate, and define

\[\phi(z) = (b_{11} - b_{22}) + 2 (-1)^{1/2} b_{12}. \]

As \(2H = b_{11}e^{-\lambda} + b_{22}e^{-\lambda} = (b_{11} + b_{22})e^{-\lambda} \) is constant, \((4.3) \) says that \(\partial / \partial z = \frac{1}{2} \{ \partial / \partial u^1 + (-1)^{1/2} \partial / \partial u^2 \} \) annihilates \(\phi \); thus \(\phi \) is a holomorphic function of \(z \). Let \(f \) be the function on \(U \) defined by

\[b_{11} = He^\lambda + f, \quad b_{22} = He^\lambda - f. \]

Suppose that Gauss curvature satisfies
\[K = H^2 - e^{-2\lambda}, \text{ i.e., } \lambda = -\frac{1}{2} \log(H^2 - K). \]

Then
\[
H e^{2\lambda} - 1 = K e^{2\lambda} = b_{11}b_{22} - b_{12}^2 = H^2 e^{2\lambda} - (f^2 + b_{12}^2),
\]
so \(f^2 + b_{12}^2 = 1 \). But \(\phi = 2(f + (-1)^{1/2}b_{12}) \) is holomorphic; now the maximum modulus principle says that \(\phi \) is constant; thus \(f \) and \(b_{12} \) are constant.

Notice that \(P \in \Omega \) by the assumption \(H^2 - K = e^{-2\lambda} > 0 \). Cutting \(U \) down if necessary, Theorem 3.1 gives us a local coordinate \(v \) on \(U \) in which \(I = e^\lambda \{ dv^1 \otimes dv^1 + dv^2 \otimes dv^2 \} \) and \(II = (He^\lambda + 1)dv^1 \otimes dv^1 + (He^\lambda - 1)dv^2 \otimes dv^2 \). If \(\alpha \) is the oriented angle from \(\partial/\partial u^1 \) to \(\partial/\partial v^1 \), the two expressions for \(I \) give
\[
dv^1 = \cos \alpha \, du^1 + \sin \alpha \, du^2 \quad \text{and} \quad dv^2 = -\sin \alpha \, du^1 + \cos \alpha \, du^2.
\]
Equating coefficients of \(du^1 \otimes du^1 \) in the two expressions for \(II \),
\[
He^\lambda + f = b_{11} = (He^\lambda + 1) \cos^2 \alpha + (He^\lambda - 1) \sin^2 \alpha = He^\lambda + \{ \cos^2 \alpha - \sin^2 \alpha \}.
\]
Thus \(f = \cos^2 \alpha - \sin^2 \alpha = \cos (2\alpha) \). Similarly \(b_{12} = 2 \cos \alpha \sin \alpha = \sin (2\alpha) \). Now \(\alpha \) is constant, and \(v^1 = \cos \alpha u^1 + \sin \alpha u^2 + c^1 \) and \(v^2 = -\sin \alpha u^1 + \cos \alpha u^2 + c^2 \) for some constants \(c^i \). We summarize as follows.

\textbf{4.4. Theorem.} Let \(S \) be a surface immersed in \(\mathbb{R}^3 \) with constant mean curvature \(H \), and define \(\lambda = -\frac{1}{2} \log(H^2 - K) \) on \(S_\lambda \). Let \((U, u) \) be a connected local coordinate neighborhood such that \(U \subset S_\lambda \) and
\[
I = e^\lambda \{ du^1 \otimes du^1 + du^2 \otimes du^2 \}.
\]
Then there is a constant \(\alpha \) such that
\[
II = (He^\lambda + \cos 2\alpha)du^1 \otimes du^1 + 2 \sin 2\alpha \, du^1 du^2 + (He^\lambda - \cos 2\alpha)du^2 \otimes du^2.
\]
Let \(c^i \) be constants, \(v^1 = \cos \alpha u^1 + \sin \alpha u^2 + c^1 \) and \(v^2 = -\sin \alpha u^1 + \cos \alpha u^2 + c^2 \). Then \(v = (v^1, v^2) \) is a local coordinate on \(U \), \(\alpha \) is the angle from \(\partial/\partial u^1 \) to \(\partial/\partial v^1 \), and
\[
I = e^\lambda \{ dv^1 \otimes dv^1 + dv^2 \otimes dv^2 \} \quad \text{and} \quad II = (He^\lambda + 1)dv^1 \otimes dv^1 + (He^\lambda - 1)dv^2 \otimes dv^2.
\]

\textbf{5. Obstruction to a congruence.} The following result generalizes the fact that an isometry of small patches of a right circular cylinder is a congruence only when it preserves the direction of the axis of the cylinder.

\textbf{5.1. Theorem.} Let \(S, S' \) and \(S'' \) be connected surfaces embedded in
R^3 with the same constant mean curvature H, which are not open subsets of a plane or a sphere. Then to every isometry \(f: S \to S' \) we have a real number $\alpha(f)$, defined up to addition of an integral multiple of π, specified by the property: if $x \in S$ and (U, u) is a local coordinate neighborhood of x given by Theorem 3.1 then $f^* II' = \{ He^\lambda + \cos 2\alpha(f) \} du^1 \otimes du^1 + 2 \sin 2\alpha(f) du^1 du^2 + \{ He^\lambda - \cos 2\alpha(f) \} du^2 \otimes du^2$ in U.

α has the properties:

(i) f extends to a rigid motion of R^3, if and only if $\alpha(f) \equiv 0 \mod \pi$;
(ii) $\alpha(f^{-1}) = -\alpha(f)$;
(iii) if $g: S' \to S''$ is an isometry, then $\alpha(g \cdot f) = \alpha(f) + \alpha(g)$;
(iv) two isometries $f, g: S \to S'$ differ by a rigid motion of R^3, if and only if $\alpha(f) \equiv \alpha(g) \mod \pi$.

Given $x \in S$ and a real number b, there is a neighborhood V of x, a surface W of constant mean curvature H, and an isometry $h: V \to W$, such that $\alpha(h) = b$.

The proof is based on the standard fact [2]:

5.2. Lemma. Let S be a connected surface immersed in R^3 with constant mean curvature. If some point of S is not umbilic, then the umbilics of S are isolated.

The function ϕ of §4 is holomorphic, and the umbilics of S in the domain of ϕ are just the zeroes of ϕ.

Now the surfaces S, S' and S'' have all umbilics isolated; for an all-umbilic surface is an open subset of a plane or a sphere. Thus S (resp. S', resp. S'') is arcwise connected and dense in S (resp. S', resp. S''). Let K, K' and K'' denote their Gauss curvature functions and let $f: S \to S'$ be an isometry. Then $f(S) = S'$ because $K'(f(x)) = K(x)$, $S = \{ x \in S: H^2 - K(x) > 0 \}$ and $S' = \{ f(x) \in S': H^2 - K'(f(x)) > 0 \}$. Similarly, the functions $\lambda = -\frac{1}{2} \log (H^2 - K)$ on S and $\lambda' = -\frac{1}{2} \log (H^2 - K')$ on S' are related by $\lambda = \lambda' \cdot f$.

Let $x \in S$ and choose a connected local coordinate neighborhood (U, u) according to Theorem 3.1. Then $I = e^u \{ du^1 \otimes du^1 + du^2 \otimes du^2 \}$ and $II = (He^\lambda + 1) du^1 \otimes du^1 + (He^\lambda - 1) du^2 \otimes du^2$. Let $W = f(U)$, $w^i(f(z)) = u^i(z)$ for $z \in U$; then (W, w) is a connected local coordinate neighborhood of $f(x)$. $U \subset S$ implies $W \subset S'_{f*} \cap S''_{f*} \equiv I$ because f is an isometry, so $f^* I' = e^w \{ dw^1 \otimes dw^1 + dw^2 \otimes dw^2 \} = e^{\lambda'} \{ d(w^1 \cdot f) \otimes d(w^1 \cdot f) + d(w^2 \cdot f) \otimes d(w^2 \cdot f) \}$; thus $I' = e^{\lambda'} \{ dw^1 \otimes dw^1 + dw^2 \otimes dw^2 \}$. Applying Theorem 4.4 to S', we have a number $\alpha(f)(x)$ such that $II' = He^\lambda + \cos 2\alpha(f)(x) dw^1 \otimes dw^1 + 2 \sin 2\alpha(f)(x) dw^1 dw^2 + (He^\lambda - \cos 2\alpha(f)(x)) dw^2 \otimes dw^2$. Thus $f^* II' = (He^\lambda + \cos 2\alpha(f)(x)) du^1 \otimes du^1 + 2 \sin 2\alpha(f)(x) du^1 du^2 + (He^\lambda - \cos 2\alpha(f)(x)) du^2 \otimes du^2$. This specifies $\alpha_f(x)$ up to an integral.
multiple of π. The uniqueness part of Theorem 3.1 says that $\alpha_f(x)$ is well defined up to an integral multiple of π.

Let C be the circle which is the real numbers modulo π. We have a map $\alpha_f: S_\varnothing \to C$. If $x \in S_\varnothing$ then α_f is constant on a neighborhood of x. As S_\varnothing is connected, now α_f is constant. Let $\alpha(f)$ denote its value. We have proved the existence of a number $\alpha(f)$ defined modulo π and specified by $f^*I' = II$ as required.

If $\alpha(f) \equiv 0 \mod \pi$ if and only if $\cos 2\alpha(f) = 1$ and $\sin 2\alpha(f) = 0$, which is equivalent to $f^*I' = I$. In that case $f: S \to S'$ is a diffeomorphism of connected surfaces in R^3 such that $f^*I' = I$ and $f^*II' = II$, and a classical theorem says that f extends to a rigid motion of R^3. This proves (i).

For (iii) we have a local coordinate v on $W \subset S'$ given by $(\alpha_f = \alpha(f))$

$v^1 = \cos(\alpha_f)w^1 + \sin(\alpha_f)w^2$ and $v^2 = -\sin(\alpha_f)w^1 + \cos(\alpha_f)w^2$, and $II' = (He^{\lambda'} + 1)dv^1 \otimes dv^1 + (He^{\lambda'} - 1)dv^2 \otimes dv^2$ on W. Let $X = g(W) \subset S''_\varnothing$ and let x be the local coordinate on X with $x \cdot g = v$. Define y on X by

$y^1 = \cos(\alpha_g)x^1 + \sin(\alpha_g)x^2$ and $y^2 = -\sin(\alpha_g)x^1 + \cos(\alpha_g)x^2$; then $II'' = (He^{\lambda''} + 1)dy^1 \otimes dy^1 + (He^{\lambda''} - 1)dy^2 \otimes dy^2$ on X. We compute

$u^1 = \cos(\alpha_f + \alpha_g)(y^1 \cdot g \cdot f) + \sin(\alpha_f + \alpha_g)(y^2 \cdot g \cdot f)$.

$u^2 = -\sin(\alpha_f + \alpha_g)(y^1 \cdot g \cdot f) + \cos(\alpha_f + \alpha_g)(y^2 \cdot g \cdot f)$.

Thus $\alpha_{g \cdot f} = \alpha_g + \alpha_f$.

Now (ii) and (iv) are immediate.

Let $x \in S_\varnothing$ and $b \in R$. Choose a local coordinate neighborhood (U, u) of x as in Theorem 3.1. $D = u(U) \subset R^2$ is the parameter domain. We define functions $g_{11}(u(z)) = g_{22}(u(z)) = e^\lambda(z)$, $g_{12} = g_{21} = 0$, $b_{11}(u(z)) = He^{\lambda(z)} + \cos(2b)$, $b_{22}(u(z)) = He^{\lambda(z)} - \cos(2b)$ and $b_{12}(u(z)) = b_{21}(u(z)) = \sin(2b)$. Then the forms

$I_0 = \sum b_{ij}(u)du^i \otimes du^j$ and $II_0 = \sum b_{ij}(u)du^i \otimes du^j$

satisfy the Mainardi-Codazzi equations (4.3). As S satisfies the Gauss equation a priori, and as $I_0 = I$ and $\det (b_{ij}) = H^2e^{2\lambda} - 1$ as for S, now I_0 and II_0 satisfy the Gauss equation. Thus Bonnet's existence theorem says that every $m \in D$ has a neighborhood $V(m) \subset D$ which is parameter domain for a local surface $W \subset R^3$ with first and second fundamental forms I_0 and II_0. Let w be the coordinate on W, $m = u(x)$, $V = u^{-1}(V(m))$. Then $h = u^{-1} \cdot u|_V$ is a diffeomorphism of V onto W such that $h^*I_0 = I_0 = I$ (so h is an isometry) and $h^*II_0 = II_0$ (so $\alpha(h) = b$). q.e.d.

Theorem 5.1 requires S_\varnothing to be nonempty. Thus we remark:

5.3. Complement to Theorem 5.1. Let S and S' be connected all-
umbilic surfaces in \(R^3 \). Then any isometry \(f: S \to S' \) extends to a rigid motion of \(R^3 \).

For \(f \) is a diffeomorphism with \(f^* I' = I \), and we need only check that \(f^* I'' = I'' \). An all-umbilic surface is an open subset of a plane or a sphere. In the first case \(II = 0 \) and \(K = 0 \). In the second case \(II = (1/r)I \) and \(K = 1/r^2 \) where \(r \) is the radius of the sphere. As \(f \) preserves Gauss curvature, now \(f^* I'' = I'' \). q.e.d.

6. The Gauss Equation. The Gauss equation for a surface \(S \) with first fundamental form \(e^\lambda \left\{ du^1 \otimes du^1 + du^2 \otimes du^2 \right\} \) says that Gauss curvature is given by

\[
(6.1) \quad K = \frac{1}{2} e^{-\lambda} \Delta \lambda, \quad \Delta = \frac{\partial^2}{\partial u^1 \partial u^1} + \frac{\partial^2}{\partial u^2 \partial u^2}.
\]

Now suppose that \(S \) has constant mean curvature \(H \) and that our local coordinate neighborhood \((U, u) \) is given by Theorem 3.1. Then \(K = H^2 - e^{-2\lambda} \), so (6.1) becomes a nonlinear elliptic equation

\[
(6.2) \quad \Delta \lambda = 2(e^{-\lambda} - H^2 e^{\lambda}).
\]

We view this as an equation\(^6\) for \(K = H^2 - e^{-2\lambda} \).

We regard (6.2) as a boundary value problem on a disc \(D \) of radius \(r > 0 \) in \(R^2 \). Let \(b \) be a continuous function on the boundary \(\partial D \) of the disc; we look for a solution \(\lambda(u^1, u^2) \) to (6.2) on \(D \), continuous on the closure and with values \(b \) on \(\partial D \). Let \(h(u^1, u^2) \) be the harmonic function on \(D \) with boundary values \(b \). Then we write (6.2) in the form (this defines \(F \))

\[
(6.3) \quad \Delta \eta = 2(e^{-(\pi \lambda + \pi)} - H^2 e^{\pi + \lambda}) \equiv F(\eta), \quad \eta = \lambda - h,
\]

and we want a solution \(\eta \) on \(D \) vanishing on \(\partial D \).

Following Courant-Hilbert ([1, Appendix to Chapter 4]), such solutions \(\eta \) exist provided that certain bounds \(c, m \) satisfy \((r + r^2)cm \leq 1/4 \). Here \(c \) and \(m \) are defined as follows. Let \(C^2(D) \) denote the set of all continuous functions on the closure of \(D \) which are twice con-\(^5\)

\(^5\) We remark that this has an interesting expression in complex notation. There \(z = u^1 + (-1)^{1/2} u^2 \) is the variable, so \(ds = du^1 + (-1)^{1/2} du^2 \) and \(\partial \bar{z} = du^1 - (-1)^{1/2} du^2 \), and the vector fields dual to these forms are \(\partial / \partial z = (1/2) \{ \partial / \partial u^1 - (-1)^{1/2} \partial / \partial u^2 \} \) and \(\partial / \partial \bar{z} = (1/2) \{ \partial / \partial u^1 + (-1)^{1/2} \partial / \partial u^2 \} \). The exterior derivative \(d = d' + d'' \) where by definition \(d'(f) = (\partial f / \partial z) dz \) and \(d''(f) = (\partial f / \partial \bar{z}) d\bar{z} \) on functions. In particular \(d'd''f = \frac{1}{2} \Delta f dz \wedge d\bar{z} \). The element of area on \(S \) is given by \(dA = e^\lambda du^1 \wedge du^2 = (1/2)(-1)^{1/2} e^\lambda \cdot ds \wedge d\bar{z} \). Thus (6.1) can be written in coordinate free form \(K dA = -(1)^{1/2} d'd''\lambda \).

\(^6\) Writing it out in terms of \(K \), one obtains \(\Delta K = \left\{ (\partial K / \partial u^1)^2 + (\partial K / \partial u^2)^2 \right\} (H^2 - K) + 4(H^2 - K)^{3/2} - 4H^2 (H^2 - K)^{1/2}, K < H^2 \), which is more difficult to study than is (6.2).
tinuously differentiable in \(D \). Then \(c \) is specified by
\[
\max \left| \frac{\partial f}{\partial u^i} \right| \leq c r \text{ l.u.b.} \quad |\Delta f| \quad \text{for} \quad f \in C^2(D),
\]
and \(c \) is independent of choice of \(r \) or \(D \). Define the norm
\[
\|f\| = \max |f| + \sum \max \left| \frac{\partial f}{\partial u^i} \right|
\]
on \(C^2(D) \). Then \(m \) is any common bound for all \(|F(f)| \) and all \(|dF/df| \) with \(\|f\| \leq 1 \). A glance at the form of \(F \) in (6.3) shows now that \(m \) is any common bound for \(2(e^{-1-h} + H^2 e^{+h}) \) and \(2(e^{1-h} + H^2 e^{h-1}) \).

As \(h \) achieves its maximum on \(\partial D \), now we may take
\[
(6.4) \quad m = \max \{2(e^{-1-\beta} + H^2 e^{1+\beta}), \quad 2(e^{1-\beta} + H^2 e^{\beta-1})\}, \quad \beta = \max |b|.
\]
In summary, and using the fact that solutions to elliptic equations are analytic,

6.5. Theorem. Let \(D \) be a disc of radius \(r > 0 \) in \(\mathbb{R}^2 \), let \(b \) be a continuous function on \(\partial D \), and let \(B = \max_{\partial D} |b| \). If
\[
(6.6) \quad (r + r^2)^{-1} \geq 8c \cdot \max \{e^{-1-\beta} + H^2 e^{1+\beta}, \quad e^{1-\beta} + H^2 e^{\beta-1}\},
\]
then there exists a continuous function \(\lambda \) on the closure of \(D \), real analytic on \(D \), which satisfies (6.2) and has values \(b \) on \(\partial D \).

The usual uniqueness condition for an equation \(\Delta f = A(f, u) \) for given boundary values is \(\partial A/\partial f \geq 0 \). But in our case (6.2) we always have \(\partial A/\partial f < 0 \).

We can now describe the construction of umbilic-free local surfaces of constant mean curvature. Such a surface is specified up to congruence by its first and second fundamental forms, and the condition for two candidates
\[
I = \sum g_{ij} du^i \otimes du^j \quad \text{and} \quad II = \sum b_{ij} du^i \otimes du^j
\]
to give a surface, is that the \(g_{ij} \) and \(b_{ij} \) satisfy the Mainardi-Codazzi equations and the Gauss equation.

If \(H \) is the mean curvature of the desired surfaces, then Theorem 3.1 allows us to take \(I \) and \(II \) in the forms
\[
I = e^\lambda \{du^1 \otimes du^1 + du^2 \otimes du^2\} \quad \text{and} \quad II = \left\{ He^\lambda + \cos(2t) \right\} du^1 \otimes du^1 + 2 \sin(2t) du^1 du^2 \]
\[
+ \left\{ He^\lambda - \cos(2t) \right\} du^2 \otimes du^2
\]
for \(t=0 \). For any constant \(t \), the Mainardi-Codazzi equations (4.3) are satisfied for \(I \) and \(II_t \), and the Gauss equation (6.2) is

\[
\Delta \lambda = 2(e^{-\lambda} - H^2 e^{\lambda}), \quad K = H^2 - e^{-2\lambda}.
\]

Theorem 6.5 gives the existence of many solutions. Given a local solution \(\lambda \), there corresponds a well defined congruence class of local surfaces \(S_{\lambda,t} \) with \(I \) as specified and \(II = II_t \); Theorem 5.1 shows that the natural map\(^7\) \(f_{*,t} : S_{\lambda,s} \rightarrow S_{\lambda,t} \) is an isometry and \(\alpha(f_{*,t}) = t - s \).

References

\(^7\) \(f_{*,t} \) is given by \(u^t(f_{*,t}(x)) = u^t(x) \).