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1. Introduction. In a series of articles ([l], [2], [3], [4]), Tilla

Klotz studied immersed surfaces by examining riemannian metrics

constructed as linear combinations SiI+s2II+s3III of the funda-

mental forms of the immersion. Here we study the Gauss curvature

of pseudo-riemannian metrics siI+s2II+s3III. If s, are constants,

and if mean and Gauss curvature satisfy si+s2H+s3K=0, then we

show that the metric SiI+s2II+SzIII is flat where it is nondegenerate.

In particular we prove that II is a flat Lorentz metric on the comple-

ment of the umbilic set of a minimal surface.

2. The structure equations. Let S he a pseudo-riemannian 2-

manifold with metric dv2. This means that Sis a 2-dimensional differ-

entiable manifold and dv2 is a smooth2 family of nondegenerate inner

products on the tangent planes of 5. If the inner products are all

positive definite, then 5 is a riemannian 2-manifold. Given x£5 we

write Sx for the tangent plane at x. If X(ESX, then dv% denotes the

inner product on Sx, and ||A^||2 denotes dv\(X, X). Let {Xi, X2} be a

moving frame on an open set UCZS. This means that the Xt are

smooth tangent vector fields on U which are linearly independent at

every point. Then the "dual co-frame" is the pair \6l, 82} of linear

differential forms on U defined by 8i(alXi+a2X2)=ai; the metric

has local expression dv2= ^,-,y gifii®8i where the "coefficients" are

the functions ga(x) =dv\(Xix, Xix).

The moving frame {Xi, X2} is called orthonormal if gi, = + 5i> This

means that ||Xt||2 = e; = +1 and dv2(Xi, X2)=0, and it says that

dv2= ^i e$i®Qi. An obvious modification of the Gram-Schmidt

process constructs an orthonormal moving frame from an arbitrary

moving frame.

Let \Xi, X2} be an orthonormal moving frame on an open set

UCZS. Then the dual coframe [81, 82} is also called "orthonormal,"

and we have the signs ei = ||Xi||2= +1. New forms are defined on U

by

(2.1) 8i = ejSi,
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and we define functions at(x) on U by

(2.2) dOi = afii/\62-

Now the connection forms are the linear differential forms co»,- defined

on U by

(2.3) — a>i2 = + co2i = e2ax6x + exa292,        con = 0 = co22.

They are characterized by the structure equations

(2.4) dd   =  2l 6   /\ coy, COy = eiCO.y, CO.y 4- coy, = 0.
i

The connection forms w,-y are specified by coi2, and the structure equa-

tions can be written

(2.5) ddi = e202 A ^12    and    dd2 = coi2 A ei#i-

Gauss curvature is a function £(x) on 5. In the notation above, it

is defined on the open set UES by the equation

(2.6) dwi2 = K6iA02.

One can check [5, Theorem 2.2.1] that this defines K independently

of the choice of orthonormal moving frame, and we will note in

Lemma 4.5 that it is equivalent to the classical definition for surfaces

immersed in i?3.

3. Metrics associated to quadratic differential forms. 5 denotes a

fixed riemannian 2-manifold with (positive definite) metric dv2, and

we study the geometry of a smooth family $= {$4>es of inner prod-

ucts on the tangent planes of 5. Eventually .S will be an immersed

surface and <£> will be a linear combination of its fundamental forms.

If xES, then we diagonalize Qx relative to dv\; so <&x has matrix

//i(x)       0  \

\  0      /,(*)/

in some orthonormal basis of Sx. Generalizing the case where <J> is the

second fundamental form of an immersion, we define

/<(x): the principle ^-curvatures at x,

77$(x): the mean ^-curvature § {/i(x) +/2(x)},

£$(x): the Gauss ^-curvature fi(x) -f2(x),

^-elliptic point: point x with £$(x) >0,

^-parabolic point: point x with £*(x) =0,

^-hyperbolic point: point x with £*(x) <0,

$-umbilic: point x with /i(x) =/2(x).
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The set of all $-umbilics, and the set of all <f>-parabolic points, are

closed in S. Thus the set

(3.1) 5* = {x G S: x is neither <I>-umbilic nor ^-parabolic}

is open in S, and $ restricts to a pseudo-riemannian metric ds% on

5*. We will study the pseudo-riemannian manifold 5* with metric

ds%.

3.2. Theorem. Let xES$. Then x has an open neighborhood UC.S*

which carries linear differential forms 6* such that

(3.3) dv2 = 01 ® 01 4- e2 ® B2    and    ds*2 = fx&1 <g> 01 + f2B2 <g> 02 in U.

Define functions r,->0 in U by r2i=tifi, e,= +l, so the <pi = rjSi are

ds%-orthonormal. Let «i2 and @X2 be the respective connection forms for

dv2 relative to {d1, 62} and ds% relative to {cp1, <p2}. Then

(3.4) fix, = - |/i/2!-"«{(Jxax - i/iis)©1 + (/V». + hhi)B2}

where dfi= ^2,jfi.fi' and wi2= — (aidl+a262).

Proof. For the first assertion we choose an orthonormal frame

{Xi, X2} on a neighborhood U of x such that 4>z is diagonal relative

to IXi,, X^} for every zEU. Then (3.3) follows with {01, 62} dual

to {Xi, X2} because J 5^/2 throughout S$.

Define etj and &,- by d<j>i = biff>iA<p2 and dBi = afii/\d2. Then (2.3) says

coi2 = — (aiBx + a2B2)    and    012 = — (e2bx<px + tib24>2)-

Now compute

dipt = d(ei<t>{) = udtf = u(dri A 0* + r,cf0''),

adri A Bi = arid (log r^ A Bi = <7(log r.) A 4>*

2 _2

= J<7(log n) A & = in <7(e,/,) A <Pi

= hfTl(Ji;$l +J-.2B2) A & = — {—fi;l<t>l + — /«t#i|  A <*>,,
2/< In n        J

e,-n^0' = e,-n<f0< = e.r.-aA A 02 = €jeie2-<£i A 02-
nn

Thus
e2   I /1;2| ei j /2;1|

61 = — \ai - —->     and    t>2 = — <<z2 4->,
n I 2/J n I 2/J

so
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UiTi /2/iai — /1;2\   i       e2r2/2f2a2 + f2A\    )

UT\    ~2fi       / ~n\       2/a       ))

^-^{(^-T^^ + ^ + T^1)62}-

The assertion follows from /, = €,r2. q.e.d.

A pseudo-riemannian 2-manifold is called flat if its Gauss curvature

is identically zero.

3.5. Corollary. If 2ai/i=/i;2 and 2o2/2+/2;i = 0, then St is flat.

4. Metrics defined by immersions. An immersed surface is a pair

(S, v) where 5 is a two dimensional differentiable manifold and

v: S—+R3 is a differentiable map with nowhere vanishing Jacobian

determinant. Thus v(S) is a smooth surface in R3 which has no singu-

larities but may have self intersections. The inner products on the

tangent planes of v(S) define a riemannian metric dv2=dvdv on S,

and we view 5 as a riemannian 2-manifold with that metric.

Let £ be a smooth choice of unit normal to v(S), defined over an

open set UCZS. Then we recall the classical quadratic differential

forms

I = dv-dv, first fundamental form;

II = dvd£, second fundamental form;

III = d£-d£, third fundamental form.

Of course II is only defined up to sign unless we have an orientation

on S. Principle, mean and Gauss curvature of (S, v), and elliptic,

parabolic, hyperbolic and umbilic points, are classically defined as in

§3 for the case €> = //.

Let [vi, v2, v3} be a Darboux frame on an open set UCZS. This

means that {z>i, i>2} is a moving orthonormal frame and v3 is a smooth

unit normal. Viewing v as position vector, now

(4.1) dv = Bhi + 82v2 where  [d\ 82}  is dual to  {vu v2}.

We define forms <x>) on 5 by

3

(4.2) dvj = 2Z uivi-

Writing out 0 = d(dv) and 0 = d(dvj), one has
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2 2 . 3

(4.3) <fe* = H «' A s     0 = X) ^ A 0),-,    dcuy = 2 CO,- A CO*.
,-1 ,= 1 k=l

As ||^i]|2 = 1 now coij = u/j, and differentiation of v(-Vj = 5,-,- gives «,-,-+«,•<

= 0. Now (4.3) yields

(4.4) tft?l = 82 A C012,      tif?2 = C0l2 A 01,      ^coi2 = C032 A W13 5

and (2.4) shows that coi2 is the connection form.

4.5. Lemma. Let ki be the principle curvatures on (S, v) and suppose

that x£5 is not an umbilic. Then x has an open neighborhood UCZS

which carries a Darboux frame {Vi, v2, v3} in which

2      . . 2 . . 2 .

/ = 2>' ® 0*, ii = 2 W' ® 0l and Jr// = X) */ ®0'-
«-l i=l »=1

7« J/w frame co3< = £.0;, so Gauss curvature K = feife2.

The result is standard, x has a neighborhood (Vi of nonumbilics,

which contains a smaller neighborhood U carrying a smooth unit

normal v3. Order the &,-on t/with &i>£2, and let {jji, v2} give the cor-

responding principle directions. That constructs the Darboux frame,

and I and II have the required form. It follows that dv3= XXi fc«0*fli,

so oi3i = kjdi and III has the required form. Now the structure equa-

tions give

Kdi A 02  =   d(i3l2  =   C032 A COIS  =  C031 A C032  =   klk28l /\ 02

so K = kik2. q.e.d.

4.6. Theorem. Let (S, v) be an immersed surface with principle

curvatures kit mean curvature H =5(^1+^2) and Gauss curvature K = kik2.

Let Si be differentiable functions on S and define <1> to be the quadratic

differential form SiI+s2II+s3III. Choose a Darboux frame {vi, v2, v3}

satisfying Lemma 4.5 and define functions a4, &t;,- and Si-j by dd'

= ai01A02, dki = ki;101 + ki.20i and dSi = si.i81+Si-282. If

2
2ai(si + s2H + s3K) — (si-2 + s2;2ki + s3:2ki) = 0

and

2
2a2(^i + s2H + s3K) + (si-! + s2iik2 + s3;ik2) = 0,

then S& is flat.

Proof. Following Corollary 3.5, we find the condition for 2ai/i
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—/i;2 = 0 = 2o2/24-/2;i. Here Lemma 4.5 shows that f{ = si+s2ki+s3k2;

thus

2

(4-7) J;j   =   Sl;j +  S2;jki  +  S3;jki   +   S2ki;j +   2s3kiki;j.

To evaluate this we compute

(ai&i — £i;2)0i A 02 = dki A 0i + kiddx = d(kx6x) = dun = w23 A coi2

=   £202 A C012  =   01&201 A 02

and similarly

(o2/e2 + *2:i)0i A 02 = d(k262) = a2£i0i A 02,

so

(4.8) £i;2 = ax(ki — &2)    and    k2;i = a2(ki — k2).

Combining (4.7) and (4.8) we have

2

flit =  Sl;2 + S2-2kl + S3;2£l +   (s2 4"  2s3kl)ai(kl  —  k2),

i
/2;i = si-i + 52;i^2 4- s3;1£2 + (s2 4- 2s3£2)a2(&i — k2).

It follows that

2

2ai/i — fi-,2 = 2ai(si 4- s2H 4- s3K) — (s1;2 4- s2-2ki 4- s3;2kx),

2

2a2/2 +/2-,i = 2a2(^i + s2H 4- s3K) + ($i;i + s2lik2 + s3;ik2).

Now our assertion follows from Corollary 3.5. q.e.d.

The most tractable special case is when the s,- are constants. Then

st-;y = 0 and Theorem 4.6 simplifies to:

4.9. Theorem. Let (S, v) be an immersed surface with mean curva-

ture H and Gauss curvature K. Let Si be constants and suppose

(4.10) si + s2H + s3K = 0 on S.

Then S8li+,ji+,3M is flat.

Condition (4.10) specifies an interesting class of Weingarten sur-

faces, including the surfaces of constant mean curvature and the

surfaces of constant Gauss curvature. For those surfaces we have:

4.11. Corollary. Let (S, v) be an immersed surface of mean curva-

ture H and Gauss curvature K, and let b be a nonzero real number.
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1. S-bHl+bll is the set of nonumbilic points of S. If H is constant

then S-bHl+bII is aflat Lorentz3 2-manifold.

2. S-bKi+bHI is the set of nonumbilic nonparabolic points of S where

H 5*0. If K is constant then S-bl+bHI is flat.

Recall that minimal surface means an immersed surface with mean

curvature H=0.

4.12. Corollary. If (S, v) is an immersed minimal surface, then

Sn is a flat Lorentz 2-manifold.

In the context of Corollaries 4.11 and 4.12, we note that one com-

bines (3.4) and (4.8) to see that 5// has connection form

H
(4.13) /j12 = ___Wl2.

3 Here, Lorentz signature means that the pseudo-reimannian metric is neither posi-

tive definite nor negative definite.
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