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TRANSLATION-INVARIANT FUNCTION
ALGEBRAS ON COMPACT GROUPS

JOSEPH A. WOLF

Let X be a compact group. $(X) denotes the Banach
algebra (point multiplication, sup norm) of continuous complex-
valued functions on X A is any closed subalgebra of d(X)
which is stable under right and left translations and contains
the constants. It is shown, by means of the Peter-Weyl Theorem
and some multilinear algebra, that the condition (*) every
representation of degree 1 of X has finite image is necessary
and sufficient that every possible A be self-ad joint. If X is con-
nected, then (*) means that X is a projective limit of semisimple
Lie groups; if X is a Lie group, then (*) means that X is
semisimple. The Stone-Weierstrass Theorem then gives a quick
classification of all possible algebras A on an arbitrary con-
nected semisimple Lie group X.

In an earlier paper we characterized the compact groups on which
every closed translation-invariant(1) function space is self adjoint [1,
Theorem 4.1]. An application of the Stone-Weierstrass Theorem [1, § 7]
resulted in a classification of the closed translation-invariant function
algebras on the connected Lie groups which satisfied the conditions of
the characterization. Those Lie groups are the compact connected
semisimple Lie groups with no simple component locally isomorphic to
SU(n) (n > 2), to S0(4n + 2), nor to EQ.

In this paper we give a direct characterization of the compact
groups on which every closed translation-invariant function algebra is
self adjoint. For compact connected Lie groups, the characterization
is that the group be semisimple. Many of these groups have closed
translation-invariant function spaces which are not self adjoint. Finally
we classify the closed translation-invariant function algebras on compact
simple simply connected Lie groups, as an example of a general enu-
meration procedure.

2. Notation. Let X be a compact group. D denotes the set of
all (equivalence classes of) irreducible finite dimensional representations
of X. Let β e D; then Wβ denotes the representation space, and β*
is the representation of X on the dual space of Wβ induced by β. β*
is called the contragredient of β. Eβ — Wβ 0 Wβ* is identified with
the space of matrix functions (coefficients) of β. Let C(X) denote the
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set of continuous complex-valued functions on X with sup norm and
point multiplication. Then C(X) is a commutative Banach algebra.
The Peter-Weyl Theorem says that every element of C(X) has a Fourier
development along {Eβ}βeD9 i.e.,

(*) C(X) - Σ £ β .
βeD

The translation group T(X) of X is the group consisting of all
transformations

(u9 v): x —* uxv~x, u, v, x e X,

of X. A subset S c C(X) is called translation-invariant if T(X) S =
S. The closed translation-invariant subspaces of C(X) are just the
subspaces spanned by sets of the form {Eβ}βeF with FczD.

If X is a compact connected Lie group endowed with a Riemannian
metric invariant under both right and left translations, then X is a
Riemannian symmetric space and T(X) is the largest connected group
of isometries.

A subspace of C(X) is called self-adjoint if it is closed under
complex conjugation of functional values.

Let a and β be representations of a group Y, with finite dimensional
representation spaces V and W. Then F(g) W denotes the tensor
product. If {Vi} is a basis of V and {Wj} is a basis of W, then {vι (g) Wj}
is a basis of F(g) W. We have matrix functions defined by

Now let α(g)/3 be the representation of Y on F(§) TF given by

(a (g) /S)(y).ι; (g) w = {α(ί/).^

a (g) /3 is given on the basis {ΐ̂  0 Wy} by

Let α be a representation of a group F on a finite dimensional
space F. The symmetric group Sr on r letters acts on V (g) (g) F
(r times) by permutation of the factors. The alternation Λr(V) consists
of all elements pe F ® (g) F (r times) such that σ(p) = (sign σ)p
for all σeSr. If {vlf

 β ,vw} is a basis of F, then J r ( F ) has a basis
consisting of all ^ Λ ^ Λ Λ viγ where 1 ^ iλ < ΐa < < ΐr ^ n
and

vh/\'» Λ vir = Σ (sign 0> ί σ ( 1 ) (g) (g) ̂ ί c r ( r ) .
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For example, if r = 2 then v1 A v2 — vλ 0 v2 — v2 0 ^ ^ Λ Λ ^w

spans ./ίw(F). The action of α ® ®α:on F 0 0 V commutes
with the action of Sr. Thus α 0 0 α (r times) preserves the
subspace J r (F) of V 0 0 V. The representation on that subspace,
the so-called rth alternation of a, is denoted Λr(a). If a(y) Vi —
Σi3^ij(y)'V3Ί then one checks that Λr(ay)-v{i) = Σ<;> AiHiίίί/)^) where
*><*> =Vi1Λ Λ \ and

air31

 air32 ' * # a i r

3* The characterization* Our main result is:

3.1. THEOREM. Let X be a compact topological group. Then
every closed translation-invariant subalgebra of C(X) is self adjoint,
if and only if, every representation of degree 1 of X has finite image.

3.2. COROLLARY. Let X be a compact connected group. Then
every closed translation-invariant subalgebra of C(X) is self adjoint,
if and only if, X is an inverse limit of semisimple Lie groups.

3.3. COROLLARY. Let X be a compact connected Lie group. Then
every closed translation-invariant subalgebra of C(X) is self adjoint,
if and only if, X is semisimple.

The proof of Theorem 3.1 is based on two simple lemmas.

3.4. LEMMA. Let X be a finite dimensional representation of a
group Y. Then λ* is equivalent to the representation

where n + 1 is the degree of λ.

Proof. Let V be the representation space and choose a nonzero
element eeΛn+1(V). If g is a linear transformation of V, then the
determinant of g is given by Λn+1(g)-e = (det βr)e. If weAn(V), we
define a linear functional fw on V by w A v = fw(v)-e; w —* fw is an
isomorphism of An(V) onto the dual space F* of 7. Let v be the
representation y —> (det λ^))-1- An(Xy). Then

My)v

. J +1(λy)(w Λ v)

= w A v — fw(v)-e .
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Thus the isomorphism w —> fw induces an equivalence of v with λ*.

3.5. LEMMA. Let λ and μ be finite dimensional representations
of a group Y. Then every matrix function of Λr(X) is a linear
combination of products of r matrix functions o/λ, and every matrix
function of λ ® μ is a linear combination of products of matrix
functions of λ with matrix functions of μ.

Proof. Obvious from the definitions of Ar(X) and λ (g) μ.

3.6. Proof of Theorem 3.1. Suppose first that Xhas a represen-
tation π of degree 1 with infinite image. Then π(X) is a circle group
consisting of the unimodular complex numbers, and πn: x —* π(x)n is
another representation of degree 1. Let A be the subalgebra of C(X)
spanned by the Eπn, n ^ 0. Then A is a closed translation-invariant
subalgebra of C(X);πeA and π & A, so A is not self adjoint.

Now suppose that every representation of degree 1 of X has finite
image and let A be a closed translation-invariant subalgebra of C(X).
Then A is spanned by subspaces EβaC(X), say for β running over a
subset DAaD, and we must prove that A contains the adjoint of Eβ

for every βeDA. In orthonormal dual bases of the representation
spaces, β(x) = ^{x)~x for every xe X; thus Eβ* is the adjoint of Eβ.
Now we need only prove that βe DA implies β* e DA.

Let <xe DA and define y(x) — det α(cc). Then 7 = Λr(a) where r is
the degree of a, so 7 e DA by Lemma 3.5. 7(X) is finite by hypothesis;
thus Ύ(X) is cyclic of some finite order n, consisting of the numbers

e**iki»m Now 7 = 7-1 = 7* = r ! e 4 , so j-'eD^ Λr-\a) e DA and DA

is closed under (g), by Lemma 3.5; thus 7"1 ® Ar~\a) e DA. Lemma 3.4
says α* = 7"1 ® Λr~\a)\ thus α* e DA.

3.7. Proof of corollaries. If X is compact connected Lie group,
then X=X' T where Xr is the derived group, T is the identity
component of the center of X, and Γ f l Γ is finite. T is a product
of circle groups, X' is semisimple, and the following conditions are
equivalent: (i) X is semisimple, (ii) X = X', and (iii) T =• {1}.

Let X be semisimple and let a be a representation of degree 1.
a(X) is commutative, so the kernel of a contains X' — X. Thus a(X)
is finite. •

Let X be not semisimple. Then S — T/T Π Xf is a torus of positive
dimension, so there is a nontrivial representation β oϊ S oί degree 1.
If TΓ: X—* X/X' = S is the projection, then a — β π is a representation
of degree 1 of X and α(X) = /S(S) is infinite.

Corollary 3.3 is proved.
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Let X be a compact connected group. If π is a finite dimensional
representation, we have the Lie group π(X); {π(X)} is an inverse system
of compact Lie groups with X as inverse limit, and {π(X)} is maximal
for this property. A representation a is of degree 1 with infinite image,
if and only if a(X) is a circle group. If each τι(X) is semisimple,
then none is a circle group. If some π(X), say ct(X), is a circle group,
thien β(X) is not semisimple for β > a, so X cannot be an inverse
limit of a subsystem of {π(X)} which consists of semisimple groups.
Corollary 3.2 follows.

4* Enumeration of self adjoint function algebras* The enu-
meration of closed translation-invariant self adjoint function algebras
on a compact group is based on the following combination of the
Peter-Weyl Theorem and the Stone-Weierstrass Theorem.

4.1. THEOREM. Let X be a compact topological group, let D be
the set of equivalence classes of the irreducible representations of X,
and, given π e D, let Eπ denote the space of matrix functions of π.
Then there are one-to-one correspondences between

( i ) closed self adjoint translation-invariant subalgebras A of
C(X) which contain the constants,

(ii) subsets FaD with the properties (a) lx e F, (b) if βe F then
/3* e F and (c) if a, β e F then F contains every irreducible summand
of α(g)/3, and

(iii) closed normal subgroups Γ c X.
The correspondences are given by

A ~ Σ Eβ and A = C(X/Γ)

where C(X/Γ) c C(X) by defining f(x) = f(xΓ) for fe C(X/Γ).

4.2. COROLLARY. If X is a compact group for which every
representation of degree 1 has finite image, then the closed translation-
invariant subalgebras of C(X) which contain the constants, are just
the algebras C(Y) where Y is a quotient group of X.

Corollary 4.2 is an immediate consequence of Theorems 3.1 and 4.1.

4.3. Proof of Theorem 4.1. Let J P C D and define AF to be the
subspace of C(X) spanned by {Eβ}βeF. Then AF is a closed translation-
invariant subspace of C(X). Condition (iia) says that AF contains the
constants, condition (iib) says that AF is self adjoint, and condition
(iic) says that AF is an algebra. Thus A ~ Σ β e 2 , Eβ gives a one-to-one
correspondence between the classes (i) and (ii).
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Let FczD satisfy conditions (iia, b, c), and define ΓF to be the
intersection of the kernels of the elements of F. Then ΓF is a closed
normal subgroup of X. Let p: X—•> X/ΓF be the projection and define
DF to be the set of irreducible representations of X\ΓF. Then DFaD
under σ-+σ-p. Now AFczC(X/ΓF) under f(xF) = f(x), and AF =
C(X/ΓF) by the Stone-Weierstrass Theorem. It follows that Z^ = JF7.
Thus Γ <-> {βe D : Γ c Kernel. /S} is a one-to-one correspondence between
the classes (iii) and (ii), and the composition of this with our other
correspondence is given by Γ *-+ C(X/Γ).

4.4. Application to compact simply connected Lie groups. Let
X be a compact simply connected Lie group. Then X — Xt x x Xr

where the X{ are compact simply connected simple Lie groups. By
Corollary 3.3 and Theorem 4.1, the closed translation-invariant subalge-
bras of C(X) containing the constants are enumerated by the enumeration
of the closed normal subgroups Γ c l . X has center Z = Zx x x Zr

where Z{ is the center of Xif and the closed normal subgroups of X
are just the groups Γ — X' Zf where

(i) Xf is a product of zero or more of the groups X{ and
(ii) Z' is a subgroup of Z.

Thus our enumeration problem is reduced to a knowledge of the centers
of the groups X{. This information is known; it is summarized in the
following table for the convenience of the reader. Here Z{m) denotes
the cyclic group of order m and the groups listed are all the compact
simple simply connected Lie groups.

For example, the number of closed translation-invariant subalgebras

TABLE 1

group

SU(n)
(w>l)

Spin (n)

Sp(n)

G2

F*

E6

En

E8

description

special unitary group
in n complex variables

two sheeted covering
group of the rotation
group in n real variables

unitary group in n
quaternion variables

automorphism group of
the Cayley algebra

elliptic group of the
Cayley protective plane

center

Z(ϊ) (n odd),
Z(2 ) X Z<$) (n = 4/c),
Z(o (n = 4/c + 2)

z<?>

{1}

{1}

z<n

{1}
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of C(X) properly containing the constants is one (just C(X)) for X =
G?2, F, or E8; it is two for X = Spin (2k + 1), Sp(n), E6 or 2^; it is
three for X = Spin (4fc + 2) and five for X = Spin (4fc); for X = SU(n)
it is the number of divisors of n, counting both 1 and n.

REFERENCE

1. J. A. Wolf, Self adjoint function spaces on Riemannian symmetric manifolds,
Trans. Amer. Math. Soc. 113 (1964), 299-315.

UNIVERSITY OF CALIFORNIA, BERKELEY






