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1. Introduction. The compact simply connected complex homogeneous con-
tact manifolds M were studied by W. Boothby [1, 2]. He showed that the
manifolds M are in one-one correspondence with the compact centerless Lie
groups @, , the correspondence being given by M = G,/L where L is a certain
subgroup unique up to conjugacy. L is a local direct product L,-T where T
is a circle group which defines the complex structure.

The compact simply connected quaternionic symmetric spaces S can be
found in E. Cartan’s list [4] of all irreducible Riemannian symmetric spaces
by use of our Theorem 3.7. An examination of the list shows that the spaces S
are in one-one correspondence with the compact centerless Lie groups G, ,
the correspondence being given by S8 = G,/K where K is a certain subgroup
unique up to conjugacy. K is a local direct product K,-A, where 4, =2 Sp(1),
multiplicative group of unit quaternions.

A further look shows that K, and L, are locally isomorphic. This suggests
the possibility that K; = L, , that T' C A, , and that there is a fibering M — S
given by @,/L — G,/K with fibre K/L = A,/T isometric to the Riemann sphere.
In this paper we will give a priori proofs of the suggested relations between
manifolds M and spaces S. We also extend these relations to the noncompact
case. As a preliminary, we develop the theory of quaternionic structures on
Riemannian manifolds.

2. Preliminaries on complex contact structure. Let M be a complex manifold
of odd complex dimension, dim¢ M = 2n 4 1. (All manifolds will be assumed
Hausdorff, separable and connected.) A complex contact structure on M is a
family {(U;, w;)} where

(i) {U;} is an open covering of M,

(i) w; is a holomorphic 1-form on U; such that w; A (dw,)" * 0 at every
point of U, ,
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(iil) w; = fi;w; in U; M U; where §,; is a holomorphic function on U; N\ U; ,
and

(iv) the family is maximal for these properties.

The w; are called the (local) contact forms of the structure. A complex contact
manifold is a complex manifold together with a complex contact structure.

S. Kobayashi [5] has given a line bundle formulation of complex contact
structure. Let {(U; , w;)} be a complex contact structure on M, w;, = f;;w;
on U; N U; . The f7} are the transition functions of a complex line bundle
# : B— M. Let C* denote the multiplicative group of nonzero complex numbers,
so w : B — M is the associated principle C*-bundle where B is the complement
of the zero cross section of B and = = # |5 . Then n*w, is a holomorphic 1-form
on = X(U,) and n*w; = =x*w; on = *(U; N U;); in other words the =*w; are
restrictions of a holomorphic 1-form w on B. Furthermore

2.1)  (dw)™** * 0 at every point of B,

(2.2) the restriction of w to the fibres is zero,

and

(2.3) 7*w = 2w where 7, is the action of z ¢ C* on B.

Conversely, let = : B — M be a holomorphic principle C*-bundle, dime M =
2n + 1, where B has a holomorphic 1-form o which satisfies (2.1-2.3). If

0: 1 U; X C*— 77 '(U))

is the maximal family of coordinate functions of the bundle, then we define
local sections s; : £ — ¢;(z, 1) over U, and forms w; = s%won U, ;then {(U,, )}
is a complex contact structure on M.

Now M has a globally defined contact form if and only if = : B — M has a
global section. This is equivalent to triviality of = : B — M, so a theorem of
Kobayashi [5] gives us:

(2.4) Let M be a compact complex manifold. Then a complex contact structure on M
has a globally defined contact form if and only if the first Chern class
a(M) = 0.

Let M be a complex contact manifold. Then a complex analytic homeomor-
phism g : M — M is a complex contact automorphism if it preserves the complex
contact structure, i.e., if g*w; is a local contact form whenever w; is a local
contact form. The complex contact automorphisms of M are just the trans-
formations induced by bundle automorphisms of B which preserve w. M is
a homogeneous complex contact manifold if the group of complex contact auto-
morphisms is transitive on the points of M.

A structure theory for compact simply connected homogeneous complex
contact manifolds is given in Boothby’s papers [1] and [2]. Combining these
results with a theorem on parabolic subgroups, one has the following slightly
sharper structure theory.
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Let G be a complex simple Lie algebra, choose a Cartan subalgebra 3¢, and let
g=0+ > Ga

acy

be the root decomposition where ¥ is the set of all roots of G relative to 3C.
The Killing form is denoted (, ). Given « ¢ ¥, H, ¢ 3¢ denotes the element
defined by: (H, , H) = a(H) for all H ¢ 3¢. Choose a lexicographic ordering
on the roots and let p be the greatest root. Now define
u=5+ 2 G,
(a,p)z0

which can be proved to be the sum of the non-negative eigenspaces of ad(H,).
a is a subalgebra of G; let U be the corresponding analytic subgroup of the
adjoint group @ of G. Define

U = {XeU: (X, H,) =0};

U, is a subalgebra of G, equal to the centralizer in U of any nonzero element
E, £G,, and the corresponding subgroup U, satisfies U/U, =2 C*. Let B = G/U,
and M = G/U, and define = : B — M by #(gU,) = gU;thenr:B— Misa
holomorphic principle C*-bundle. The projection p : @ — B given by g — gU,
has differential which maps
® = {H p} @ Z Ga
(a,p)<0

isomorphically onto the tangent space to B at p(1). X — (E,, X)is an ad(U,)-
invariant linear form on ®, so it defines a G-invariant holomorphic 1-form w
on B. Now w satisfies (2.1-2.3) where n is given by dim¢ M = 2n 4+ 1, so w
and 7 : B— M give M the structure of a homogeneous complex contact manifold.
Furthermore M is a compact simply connected Kihler manifold of restricted
type (Hodge metric, thus algebraic) because U is a parabolic subgroup of G.
Finally, we have

(2.5) Let A(M) be the group of all complex contact automorphisms of M, endowed
with the compact-open topology, and let A,(M) be the identity component.
Then G = Ao(M).

Proof of (2.5). As observed by Boothby [1, (3.2)], compactness of M implies
that A,(M) is a complex Lie group acting holomorphically on M. An argument
of H.-C. Wang [10] implies that a maximal semisimple analytic subgroup G’
of A,(M) is transitive on M, and M = G'/U’ for some parabolic subgroup U’.
Let A = Ao (M), express M as a coset space A/E, with U’ C E, and let N
be the normalizer of E in A. This gives an A-equivariant fibering M — A/N,
80 A/N = G'/U" where U"" = N M G’ contains U’. If g ¢ U" then g normalizes
both E and G, so g normalizes U’ = E M G'; then g ¢ U’ because a parabolic
subgroup is its own normalizer. Now U = U’, so M — A/N is one-one and
N = E. An argument of J. Tits [9, p. 116] shows that the radical R of A has



1036 J. A. WOLF

a fixed point on A/N; this proves that R acts trivially on M. It follows that A
is semisimple, A = @’, and now the proof of [1, (6.3)] proves A simple. As the
simple subgroup G is transitive on M = A/U’ and as U’ is parabolic in 4, we
must have ¢ = A.

g.ed.

Conversely, if M is a compact simply connected homogeneous complex
contact manifold, then M is a manifold G/U described above.

Let M be a compact simply connected homogeneous complex contact manifold.
Then we have the description M = G/U in terms of complex Lie groups. Let G,
be a maximal compact subgroup of @; in other words, its Lie algebra G, is a
compact real form of G. Then G, is transitive on /. We may assume @, chosen
(just replace by a conjugate if necessary) so that 3¢, = G, M 3C is a real form
of 3¢; then

G = 3, + ;;)gm Qe + G-0)-

We decompose U = U, + WU into the sum of the zero and positive eigenspaces;
then

U =34+ D> G and U = D, G,.

(a,p)=0 {e,p)>0
Define
(2.6) £ =, + Z G N Ga + G-a),
(ae.‘p)=0
and

£ = {Hese,: p(H) =0} D Z G N (Gu + G-)-

(a,p)=0

Then £ = U N G, , £ is a real form of U, , £ is the centralizer of H,in G, ,
&£ =U; NG,, L isareal form of U; N Uy, and £ = &, D {¢H,}.If Land L, are
the analytic subgroups of G, with Lie algebras £ and £, ,then L = G. N\ U
and L, = G, N\ U, . Now M = @G,/L, compact presentation. Furthermore
G./L, is a circle bundle over M, principle bundle corresponding to the reduction
of the group of G/U, — G/U from C* to the unimodular complex numbers.

3. Preliminaries on quaternionic structure. Let V be a real vector space.
Then a quaternion algebra on V is an algebra of linear transformation of V
which is isomorphie to the algebra of real quaternions, and whose unit. element
is the identity transformation of V. If A is a quaternion algebra on V, then we
may view V as a quaternionic vector space by viewing it as a vector space
over A. Then the quaternion-linear transformations are just the linear trans-
formations which commute with every element of A.

Let S be a Riemannian manifold. Given z & S, we have a group ¥, (the linear
holonomy group) consisting of all linear transformations of the tangent space S,
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obtained from parallel translation about curves from z to z. A set A, of linear
transformations of S, is called ¥ -invariant if gd,g™" = A, for every g e ¥, .
A set A of fields of linear transformations of all tangent spaces of S is called
parallel if, given z, y ¢ S and a curve o from z to y, the parallel translation =,
along o satisfies 7,4,7;' = A, . A, extends to a parallel set of fields of linear
transformations of tangent spaces, if and only if A, is ¥,-invariant; in that
case the extension is unique, being defined in the notation above by 4, = r,4,7;".

A quaternionic structure on a Riemannian manifold S is a parallel field A
of quaternion algebras 4, on the tangent spaces S, , such that every unimodular
element of A, is an orthogonal linear transformation S, . The latter condition
says that A is “hermitian” relative to the Riemannian metric. The holonomy
reduction theorem [6, p. 37] and the discussion above, show that a quaternionic
structure on 8 is just a reduction of the group of the orthonormal frame bundle
from the orthogonal group O(m), m = dim. S, to Sp(m/4)-Sp(1). Here Sp(m/4)
is the quaternion unitary group of S, (over A.) and Sp(l) is the group of uni-
modular A ,-scalar transformations.

Let S be a Riemannian manifold with quaternionic structure. Then S has
dimension divisible by 4, dim. S8 = 4n with n > 0. Every orientable Riemannian
4-manifold has quaternionic structure because its holonomy group is contained
in the rotation group SO(4) = Sp(1)-Sp(1). Thus the product S* X S* of
2-spheres has quaternionic structure while the factors do not. On the other
hand the product S* X S* of spheres does not have quaternionic structure
(this is proved below) although each factor does. With these curious facts
in mind, we will sketch a decomposition theory for quaternionic structure.

Choose z € S and let A be the quaternionic structure. Then A, is a ¥ -stable
quaternion algebra on S, . In other words, ¥, = &,- A/ where &, is the centralizer
of A, and A’ is the intersection with A, . ®, and A/ are the A-linear and A-scalar
parts of ¥, . Notice that ®, M A/ is either {1} or {31}. We will say that the
holonomy groups have real scalar part if the elements of A! are real scalars
(thus 1 or —1), complex scalar part if the A’ lie in complex subfields of the A4,
but not in real subfields, quaternion scalar part otherwise (this is the case
where A/ spans A.).

A Riemannian manifold is locally flat if it is locally isometric to euclidean
space, and is drreducible if it is not locally flat and has irreducible holonomy
group. According to de Rham [7] any complete simply connected Riemannian
manifold is isometric to a product S, X 8; X .-+ X 8, where S, is a euclidean
space and the S; are irreducible.

3.1. Lemma. Let S be a complete stmply connected Riemannian manifold
with quaternionic structure A and de Rham decomposition So X Sy X ++- X S, .
If the holonomy of S has real scalar part, then A tnduces a quaternionic structure
A; on each S; for which the holonomy of S; has real scalar part. If the holonomy
of S has complex scalar part, then S, is a single point; each S; is a Kdihler manifold
with nonvanishing Ricct tensor, and the de Rham decomposition is of the form
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S=X; X+ XX, XY XY) X X(Y.XY),

where (1) A induces a quaternionic structure on each X; and each (Y; X Y?%) for
which the holonomy has complex scalar part and (ii) each Y; and each Y! has
complex dimension 1. If the holonomy of S has quaternion scalar part, then S is
trreducible (S = S, for some © > 0).

Proof. Let z ¢ S and decompose S, = Vo @ -+ @ V,, where V, is the
tangent space of S; . The holonomy ¥, = ¥, X :-- X ¥, , where ¥; acts on V;
only, ¥, = {1}, and ¥, is irreducible on V; for ¢ > 0. We deompose ¥, = &,- A/
into A-linear and A-scalar parts. Sp(1) denotes the multiplicative group of
unimodular elements of 4, .

If the holonomy of S has real scalar part then A, centralizes ¥, . Thus 4,
permutes the V', ,s0 A, V; = V, by connectedness, and A induces a quaternionic
structure A; on S; . The scalar part ¥; M A, is central in A; because ¥ centra-
lizes A, so ¥, has real A ;-scalar part.

If the holonomy of S has quaternion scalar part then A generates A, . Thus
AV, C V.V, =V,,so A induces a quaternionic structure 4; on S; . As A’ is
a simple normal subgroup of ¥, it must lie in one of the factors ¥, , so 4, is
trivial on the other V; . Thus 8 is irreducible.

Now let the holonomy of S have complex scalar part. The element J ¢ A’ of
order 4 is parallel and preserves each V,; because A/ centralizes ¥, . Thus J
defines a Kihler structure on each 8; . The Ricci tensor of S; vanishes if and
only if ¥, is in the special unitary group (relative to J), and that would contradict
J & ¥. Thus S; has nonzero Ricei tensor, and in particular the euclidean factor
S, is a single point.

View ¥; as a group of complex-linear (relative to J) transformations of V;
and choose K ¢ Sp(1) of square —1 which anticommutes with J. K centralizes
&, and sends complex subspaces of V to complex subspaces; thus K permutes the
V:.As K* = —1 the decomposition

S=X; X - XX, XYy XY) X X(YuXVY))

results; there the X; are S, for which KV, = V, , and the {Y, , Y} are pairs
{S, , S;} for which K interchanges V, and V, . Assertion (i) is immediate.
Now let {S,, S.} be a pair {Y;, Y!}. Then ¥,, = &,,-E’, , where &,, is the
centralizer of A, in ¥, . It follows that E’, is the circle group of unimodular
complex scalar transforms of V, . Thus the action of &,, on V, is complex-
irreducible where the complex structure comes from J, for ¥,, is real-irreducible
on V, . As A centralizes ®,, on V, it preserves the trivial representation space.
The latter is D ixa V. if ®,. + {1}, s0 A, preserves V, if &,, + {1}. Thus &,, =
{1} and ¥,, is E’, . Now irreducibility implies dim¢ V, = 1. Thus dim¢ ¥V; =
dim¢ Y} = 1. g.e.d.

3.2. Remark. Let S, and S, be Kihler manifolds of complex dimension 1
which are not flat. Then the S; are irreducible and have holonomy ¥, = U(1),
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unitary group. S, X 8; has two quaternionic structures because it has real
dimension 4, and Lemma 3.1 shows that the holonomy has complex scalar
part in each of these structures.

3.3. Lemma. Let S be a complete simply connecled irreducible K dhler manifold.
Assume that S has nontrivial Ricci tensor, so the holonomy ¥ = &-E' where E'
s the group of unimodular complex scalar transformations of the tangent space
and ® is in the special unitary group. Then S has a quaternionic structure A for
which E' is the (necessarily complex) scalar part of ¥, if and only if S has complex
dimension dime S = 2.

Proof. If dim¢ S8 = 2, then &, = SU(@2) = Sp(1) by irreducibility of S,
and the centralizer of ®, (in the algebra of all real-linear endomorphisms of S,)
is a quaternion algebra A, on S, ;then A = {4, :z ¢ S} is a quaternion structure
on S for which ¥ has complex scalar part E’.

Conversely, let A be a quaternion structure on S for which ¥ has complex
scalar part E’. If S is not symmetric, then [0, Théoréme 3 of Ch. III] Berger’s
classifications shows first that ®, = Sp(n) where dim¢ S = 2n, and then that
n = 1. Now we may assume S symmetric. Given z ¢ S we have S = G/K where
@ is the largest connected group of isometries and K = {g ¢ @ : g(x) = z},
and ¥, is just the linear isotropy action of K on S, . Furthermore K = K, -T
where T is a circle group, center of K, and K, is semisimple; thus &, = K,
and E' = T. K, is complex linear and complex irreducible on S, , and has
an invariant antisymmetric complex-bilinear invariant form on S, because
it centralizes A, . In particular K, has real character on S, and has center of
order 1 or 2. According to E. Cartan, S = G/K is one of the spaces

@ ad(E)/EeT

(® ad(E,)/Spin (10)-T,

M S0@m)/Uw), n> 2,

(0 Spm)/Uwm),

© SOm + 2)/50(m) X SO2),

@ SU@m + n)/{SUMm + n) N [Um) X U]},

or a noncompact ‘“dual”’ which has the same holonomy. We eliminate ()
because there K; = Eq has center of order 3, (8) because there the representation
of K, = Spin (10) is a half-spin representation which has no bilinear invariant,
(v) because there K; = SU(n) acts by antisymmetrisation (which has no
bilinear invariant) of the usual representation of degree n, (§) for n > 2 as
for (v), (8) forn < 2 by dimension, (¢) because there K; = SO(n) has a symmetric
bilinear invariant (the representation is by real matrices) and thus no anti-
symmetric one, and () unless m, n £ 2 because the representation of K, has
no bilinear invariant, () for m = n = 2 because there the bilinear invariant is
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symmetrie, and (¢) for m = n = 1 by dimension. Thus S has complex dimension
2, being given by (8) for n = 2, (¢) for m = 1, n = 2, or the dual to one of
these. q.e.d.

Our results so far, allow analysis of quaternionic structure. The following
lemma allows the synthesis.

3.4. Lemma. Let {S,} be a finite collection of complete simply connected
Riemannian manifolds where S, has quaternionic structure A . and holonomy ¥, ,
and let S be the product of the S, . If each ¥, has real (resp. complex) A .-scalar
part, then S has a quaternionic structure A which induces A, on S, and for which
the holonomy has real (resp. complex) A-scalar part. If there is more than one S, ,
and if some ¥y has quaternitonic Ag-scalar part, then S does not have a quaternionic
structure which induces A, on S, for each a.

Proof. The first statement is proved by embedding a quaternion algebra
A*in (J]. A.). by means of an isomorphism on each factor. For the second
statement, observe that no element of a quaternionic structure on § inducing
Ap could centralize ¥y ; thus the existence of the structure would imply irre-
ducibility of S by Lemma 3.1. g.ed.

We can now prove our decomposition theorem for quaternionic structure.

3.5. Theorem. The building blocks for complete simply connected Riemannian
manifolds with quaternionic structure are the following classes of spaces:

1. Euclidean spaces of dimenston 4n, n > 0.

2. Complete simply connected Riemannian manifolds of dimension 4n, n > 0,
with holonomy® Sp(n).

3. Products S, X S, of complete simply connected Kihler manifolds of complex
dimension 1 which are not locally flat.

4. Complete simply connected vrreductble Kihler manifolds of complex dimension
2 with Ricci tensor not identically zero.

5. Complete stmply connected irreducible Riemannian manifolds with holonomy
¥ = &-E where E' = Sp(l) generates a quaternion algebra on each tangent space.

A complete stmply connected Riemannian manifold has a qualernionic struclure
if and only if (a) it is @ product of spaces from classes 1 and 2, or (b) it s a product
of spaces from classes 3 and 4, or (¢) it s a space from class 5. The scalar part
of the holonomy is real, complex, or quaternion, respectively, in cases (a), (b) and (¢).

Proof. Let S be irreducible with a quaternionic structure A for which the
holonomy ¥ has real scalar part. Then S is not Riemannian symmetric [11,
Lemma 2.4.3]. Thus z ¢ S implies transitivity of ¥, on the unit sphere in S,
[8, Theorem 4]. Now ¥, C Sp(n), dim. 8 = 4n, implies ¥, = Sp(n). With
this in mind, the theorem is immediate from the lemmas and remarks above.

g.ed.

2 No examples are known, nor are examples known for n > 1, even if the condition of
completeness is dropped. But some 4-manifolds with holonomy Sp(1) = SU(2) are known.
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3.6. Remark. Let S be a Riemannian 4-manifold with holonomy ¥ = U(2),
unitary group acting in the usual way. Then S plays a dual role, being in classes
4 and 5 above. More precisely, S has distinct quaternionic structures 4, and 4,
where A4,, is spanned by the derived group [¥, , ¥,] = SU(2) and 4., is the
centralizer of SU(2) in the algebra of real-linear endomorphisms of S, . The
A;-scalar part of ¥ is complex while the A,-scalar part of ¥ is quaternion.

This also explains the dual role of the complex projective and hyperbolic
planes in the following corollary to Theorem 3.5.

3.7. Theorem. The complete simply connected Riemannian symmelric spaces
with quaternianic structure are the following:

(a) Euclidean spaces of dimension 4n, n > 0. Here the holonomy has real
scalar part.

(b) Products S, X --+ X S, where each S; is either (bl) the complex projective
or hyperbolic plane with the quaternionic structure for which the holonomy has
complex scalar or (b2) a product S; X S}’ where each factor is either a complex
projective or hyperbolic line. Here the holonomy has complex scalar part.

(¢) Complete simply connected irreducible Riemannian symmetric spaces with
holonomy ¥ = ®-E' where E' = Sp(1l) and E’ generates a quaternion algebra
on each tangent space. Here the holonomy has quaternion scalar part. {These
spaces are completely described in Theorem 5.4 below.}

Proof. Theorem 3.5 and Remark 3.6 show that the spaces listed have the
requisite quaternionic structures. Referring to the five classes of Theorem 3.5,
now, we need only check (i) no space of class 2 is symmetric, (ii) the complex
projective and hyperbolic lines are the only hermitian symmetric spaces of
complex dimension 1, beside the Gaussian plane and (iii) the complex projective
and hyperbolic planes are the only irreducible hermitian symmetric spaces of
complex dimension 2. Assertion (i) follows from [11, Lemma 2.4.3], (ii) is a
triviality, and (iii) is both classical (via constant holomorphic sectional
curvature) and proved in the proof of Theorem 3.5. g.ed.

Although we have used classification in the proof of Theorem 3.7, our proofs
of our main results will remain independent of classifications, for they will not
depend on Corollary 3.7. More precisely, we will work directly with symmetric
spaces with quaternionic structure for which the holonomy has quaternion
scalar part. The next step is to describe those spaces in terms of maximal roots,
which were the key to the description of homogeneous complex contact manifolds.

4. Characterization of the maximal root. We will need to be able to recognize
a maximal root in a simple Lie algebra.

Let G be a complex simple Lie algebra. We choose a Cartan subalgebra 3¢
and have the decomposition

.9=3(3+0§9a,
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where ¥ is the set of roots of G for 3¢ and G, is the one-dimensional space cha-
racterized by

[H, E] = «(IDE forall Hes, Eeg,.

The Killing form on G is denoted {, ), and H,(a ¢ ¥) denotes the element of 3¢
characterized by: (H, , H) = a(H) for all H ¢ 3C. Finally, we will say “ordering
of the roots” for an ordering defined by a lexicographic ordering on the real
span of ¥ in the dual space of 3C.

We will abbreviate (H, , Hg) by {a, B) for a, 8 ¢ ¥. An a-chain from Bis a
series of roots B -+ ta where ¢ ranges over a set of consecutive integers, say
—r £ t £ s where r and s are positive integers. The chain is maxrimal if it
cannot be enlarged, <.e., if neither 8 — (r + 1)a nor 8 4+ (s + 1)a is a root.
It is standard that:

“.1) 2<‘<f—’;>2 =r —s,

where the maximal a-chain from B runs from 8 — ra to 8 + sc.
We can now characterize the maximal root.

4.2, Theorem. Let 3 be a root of a complex simple Lie algebra G relalive to a
Cartan subalgebra 3. Then B is the maximal root for some ordering, if and only if
the eigenvalues of ad(Hg) are —% |8|°, 0 and % |B|° off of Gs + G-s . In that case
the centralizer of Hg in G is a direct sum &, @ {Hgy} of ideals where 3, centralizes

Gs + G-s -

Proof. Let B be maximal for some ordering of the roots. If « is a positive
root, @ + (3, then: @ 4+ B is not a root, o is a root, @ — B might be a root and
a — 28 is not a root. Now (4.1) says 2{a, 8)/{8,8) = 0or 1,50 (o, B)isOorc
where ¢ = %|8|°. Thus ad(Hz)E, is 0 or }|8°E, and ad(Hg)E_, is 0 or
—1 |B’E-. . As ad(Hg)3e = 0, our eigenvalue assertion is proved.

Let —2 |8]%, 0 and 3 |8|* be the only eigenvalues of ad(Hg) off of Gs + G5 -
We order the roots so that Hj is in the closure of the positive Weyl chambre;
in other words, a(H) = (a, B) = 0 for all roots & > 0. If 8 is not maximal
then we have a root « > 0 such that 8 + ais a root, and ad(H,) is multiplication
by 0 or % |8]° on Gass . If {a, B) * O then ad(Hg)E..+s = % |8]°E 45 , which is
impossible. If {a, 8) = 0, then ad(Hg)E 445 = |B|°E o+s , which is also impossible.
Thus 8 is maximal.

Let 3 be the centralizer of Hp in G. Then

3=+ 2.
where ® consists of all roots a with (@, 8) = 0. Now 3 = 3, @ {H,} direct sum
of ideals where

3 =3 + 2.Ga,

aed
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and 3¢, is the orthocomplement of Hgin 3C. 3¢, centralizes Gs + G_z by definition.
Now suppose that 8 is maximal and let o ¢ . We may assume @ > 0,50 8 + «
and —@ — « are not roots. Now (4.1) says that 8 — « and @ — 8 are not roots..
Thus [, + G-o, G + G- = 0, proving that 3, centralizes G5 + G4 .

g.ed.

5. Characterization of quaternionic symmetric spaces. Theorem 4.2 allows
us to prove the following Theorem 5.4, which completes our decomposition of
quaternionic symmetric spaces (Theorem 3.7) to a structure theorem.

Let G, be a compact centerless simple lie group. Choose a maximal torus T
and let G, and 3 be the respective Lie algebras. Let G and 3C be the respective
complexifications of G, and J; 3€ is a Cartan subalgebra of the complex simple
Lie algebra G. Order the roots and let 8 be the maximal root. We now define

(5.1) & = {He3:8(H) =0} + g SN Gu + G-,
(a,B)=0

(5.2) @& =GN ({Hg} + G + G-9),

and

5.3) XK=& + @, .

Theorem 4.2 says that £, @ G, M {H,} is the centralizer of Hg in G, , and
that & = £, @ @, direct sum of ideals. Let L, , A, and K = L,-A, be the
corresponding analytic subgroups of G, .

5.4. Theorem. G,/K 1s a compact stmply connected irreducible Riemannian
symmetric space. The holonomy K = L,-A, where A, =2 Sp(1) and A, generates
a quaternion algebra on the tangent space. This quaternion algebra parallel trans-
lates over G,/K to give a quaternionic structure A in which the holonomy has qua-
ternion scalar part.

Conversely if S is a compact stimply connected Riemannian symmetric space
with a quaternionic structure As in which the holonomy has quaternion scalar
part, then there is an tsometry of S onto a manifold G./K described above, which
carries Ag to A. Furthermore, the noncompact Riemannian symmelric spaces
with quaternionic structure tn which the holonomy has quaternion scalar part,
are just the noncompact duals of the spaces G,/K described above.

Proof. Let 8 = G,/K. Then 8§ is compact because G, is compact, and S
is simply connected because K is connected and of maximal rank. ad(H,) has
only —c, 0 and c for eigenvalues off of G + G4, ¢ > 0, by Theorem 4.2. Define
X = (i/c)Hs £ 3,7 = —1. Now s = exp 7X ¢ A, has order 2 and our con-
structions imply G, = X + ®, where

®= 2 6N G+ 8-a)
BEa>0

(a,B)*F0
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and ad(s) = —1 on @®. ad(s) = 1 on K, by construction, and ad(s) = 1 on @,
because ¢ = 3(8, B) and ad(H;) has eigenvalues =4=(8, 8) on Gz + G ; thus
ad(s) = 1 on K. Now Sis Riemannian symmetric with symmetry s. Irreducibility
of S follows from simplicity of G, .

A, =2 Sp(1) by a glance at the eigenvalues of ad(X). Now all elements of
order 4 in A, have square s and are conjugate to j = exp iwrX. This gives
4, k € A, such that ad(j) and ad(k) restrict to an anticommuting pair of trans-
formations of square —1 on @. In other words, ad(4,) |, generates a quaternion
algebra on ®. As ad(K) |¢ is the holonomy as a linear group, our assertions
on S are immediate.

Let S be a compact simply connected Riemannian symmetric space with a
quaternionic structure A in which the holonomy has quaternion scalar part.
Then S = G,/K, G, compact semisimple and K connected, where K = L,-Ay
and A, generates a quaternion algebra on the tangent space. S is irreducible
by Lemma 3.1. If G, were not simple, S would be a simple group manifold of
the group K. Simplicity of K would give L, = {1} and dim S = 3; thus G, is
simple. Conjugation by the element of order 2 in A, is the symmetry because
it is central and of order 2 in K. Now K contains the symmetry, so rank G, =
rank K; in other words, K contains a maximal torus T of G, . In particular G,
is centerless.

Script denotes Lie algebras. Let G and 3¢ be the complexifications of G, and
3. 3 normalizes @, , so the complexification

G = {Hg} +Gs + G5,

for some root 8. Let ¢ = 1(8, B and X = (4/c)Hge 3 N @, . Then exp tX is a
rotation through an angle of { on every plane ®@,, ;here G, = X + ® with ad(s) =1
on @, and @ is a sum of planes ®, = G, M (G, + G-.). exp tX is rotation by 2¢
on G, M (Gs + G-p) and by 0 on £, . Thus ad(Hs) has only —c, 0 and ¢ for
eigenvalues off of G + G_;, and K9 + {Hj} is the centralizer of Hzin G. As &,
centralizes G + G-5 , we may apply Theorem 4.2 and assume the roots ordered
so that 8 is the maximal root. Now £, , @, and X are given by (5.1), (5.2)
and (5.3), so S has the form asserted. A s goes to A under this realization because
we chose A, to generate the image of Ag .

For the last remark we observe that a pair of dual symmetric spaces have
equivalent linear holonomy groups. q.e.d.

We now have precisely one compact space and one noncompact space for
each compact simple Lie algebra, in class (¢) of Theorem 3.7.

6. The correspondence between contact and quaternionic structures. Com-
parison of Boothby’s structure theorem for homogeneous complex contact
manifolds with Theorem 5.4 yields our main result.

6.1, Theorem. There is a one to one correspondence M <> S between the
compact simply connected homogeneous complex contact manifolds M and the
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compact simply connected Riemannian symmetric spaces S with quaternionic
structure in which the holonomy has quaternion scalar part. The correspondence
s given by a bundle ¥ : M — S where the fibres are 2-spheres. More precisely,

\I,:Gu/Ll‘Tl—') “/L1°A1 y

where G, is a centerless simple compact Lie group, L, and A, are the analytic
subgroups with Lie algebras given by (5.1) and (5.2), and T" is a circle subgroup
of A, ; T" defines the complex contact structure on M = G,/L,-T" and A, defines
the quaternionic structure on S = G./L, A, .

Proof. Given M, let G be the identity component of the group of all complex
contact automorphisms of M. Then G is a centerless simple complex Lie group
by (2.5), and M = @G,/L as described in §2. Now 8 = @,/K is determined
by Theorem 5.4. Given 8, let G, be the largest connected group of isometries.
Then S = G,/K as described in Theorem 5.4. Now M = @,/L is determined
as described in §2. g-e.d.

We will now extend this theorem to the noncompact case.

Let S = G,/K be a compact simply connected Riemannian symmetric
space with G, simple. Then the Lie algebra decomposes as G, = X + @ where X
is the (+1)-eigenspace of the symmetry and is the Lie algebra of K, and where @
is the (—1)-eigenspace of the symmetry. Then G, = X + ¢®, * = —1, isa
Lie algebra whose complexification is the complexification G of G, . Let G, be
the centerless group with Lie algebra G, and let K be the analytic subgroup
for ®. Then S, = G,/K is a noncompact Riemannian symmetric space.
S and 8, are dual. As remarked in Theorem 5.4, S and S, have the same (if any)
quaternionic structures. For their holonomy groups are equivalent, being
ad(K) on @ and ¢® respectively.

We must now find a suitable notion of duality for complex contact manifolds.

Retain the notation above and let V be a toral subgroup of G, with centralizer
L contained in K. Then V C T C L for some maximal torus T of G, . The
complexification 3C of 3 is a Cartan subalgebra of the complex simple Lie algebra
G. Ordering the roots of G relative to 3¢, we order the real linear forms on 0.
Let U be the sum of the non-negative weight spaces of U, in this ordering,
for the adjoint representation of V¢ on G, and let U be the analytic subgroup
of G with Lie algebra . Then U is a parabolic subgroup of G. We view G,
and G, as real analytic subgroups of G. Then

6.2) GNU=L=GNTU.
Now =, : G,/L — G/U and =, : G,/L — G/U are defined by
(6.3) m(9L) = gU and =, (gL) = gU.

w, and m, both are local homeomorphisms by (6.2). , is surjective because G./L
is compact; it follows that =, is a covering. As G/U is simply connected, we have

6.4) e : G./L — G/U s a diffeomorphism.
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Now G/U gives complex structures to G,/L and G./L by the embeddings
=, and 7, , and
6.5) #7y om, : G./L — G,/L embeds G,/L as an open set in G,/L.

If we repeat the construction of G,/L from G./L, starting with G, /L, then
we come back to G./L. Thus we will say that G./L and G, /L are dual (relative
to K). This duality is due to A. Borel [3]; it generalizes duality of hermitian
symmetric spaces. In the hermitian symmetric case, (6.5) is the celebrated *“ Borel
embedding’’, generalizing the embedding of the disc as a cap on the Riemann
sphere.

Now let M = G,/L be a compact simply connected homogeneous complex
contact manifold. The associated quaternionic symmetric space S = G,/K
satisfies L C K. As Lis the centralizer of a toral subgroup V C K (here L = L,-V
and K = L,-A, where V is a circle subgroup of 4,), we have the dual M, = G, /L
of M relative to K as constructed above. The Borel embedding ¢ : M, — M
given by (6.5) embeds M, as an open submanifold of M/ and sends G, to a group
of complex contact automorphisms of M. Thus M, inherits a complex contact
structure from M which is homogeneous under G, . We will say that M, and M
are dual complex contact manifolds.

Let M, = G,/L be the dual complex contact manifold to a compact simply
connected homogeneous complex contact manifold M = @,/L. We have the 2-
sphere bundle ¥ : M — 8 of M over the associated quaternionic symmetric space.
Here S = G,/K and ¥(gL) = gK. We now have a bundle

(6.6) v, :M,—S,, by gL— gkK,

where S, = G,/K is the noncompact dual of S. ¥, has fibre L/K, which is
a two-dimensional sphere.
Nevertheless in the diagram

8y ~1-s 8

where ¢ is the inclusion given by Borel embedding of M., we can never define 7
so that the diagram is commutative. For the condition for existence of 7 is
that ¥,z = ¥,y imply V& = V&y; the latter is equivalent to the requirement
that K normalize U, while K C U and U is its own normalizer in G. In particular,
in the cases where S is hermitian symmetric, £ does not cover the Borel embedding

8, C 8.

6.7. Theorem. There is a one to one correspondence M, <> S, between the dual
complex contact manifolds M, to the compact simply connected homogeneous
complex contact manifolds, and the noncompact Riemannian symmetric spr~-~8,



MANIFOLDS AND SYMMETRIC SPACES 1047

with quaternionic structure in which the holonomy has quaternion scalar part.
The correspondence is given by a bundle ¥, : M, — S, whose fibre is a 2-sphere.

This is immediate from the preceding discussion, Theorem 6.1, and the
fact that S. is automatically complete, simply connected and irreducible.
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