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GENERALIZED CAYLEY TRANSFORMATIONS OF 

BOUNDED SYMMETRIC DOMAINS. 

By JOSEPfi A. WOLF1 and ADAM KORA2NYj.2 

1. Introduction. This paper is a continuation of [7]; its main subject 
is the study of the realizations of Hermitian symmetric spaces as Siegel 
domains of type III. The general definition of such a domain was given by 
Pjateckilf-apiro [9] as follows. 

Let bi, b2 and b3 be complex vector spaces. Let ul be a real form of 
bl, c an open cone in ult, and D a bounded domain in b3. Given any W C D 
let Awv': b2 X b2 -- tl be a bilinear form Hermitian with respect to u1, let 
AW(2): b2 X b2 -- bl be a complex-symmetric bilinear form, and define Alv 

A1v' + A4 TV. Then the domain 

{E1 +E2+E3C bl + b2 + b3: Im. El-Re. AE(E2,E2) C c} 

is called a Siegel domain of type III. 

Pjateckil-Sapiro [9] gave a case by case determination of the realizations 
of the classical irreducible Hermitian symmetric spaces as Siegel domains of 
type III. In this paper we will determine those realizations for all Hermitian 
symmetric spaces by a method which is independent of the classification theory. 
This is closely related to the study of the boundary structure of bounded 
symmetric domains. In the classical cases that study is due to Pjateckil- 
Sapiro [9]; in the general case most of the relevant results have been proved 
by C. C. AMoore [8], who combined our partial Cayley transform with the 
general theory of boundaries due to Furstenberg [3] and Satake [10]. In 
this paper (Section 4) we give an explicit direct description of the boundary 
structure. The greater simplicity of our methods, and the fact that many 
intermediary results from Section 4 are needed in subsequent discussions, are 
the reasons why those results are included in this paper. 

Our method is an extension of the technique of [7]. Making use of the 
embedding theorems of Borel and Harish-Chandra, we define partial Cayley 
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transformations which carry the bounded domain realization of Harisli- 
Chandra to the various Siegel domains of type III. 

In the case of a polycylinder U' C CG (where U denotes the unit disc 
in C) a partial Cayley transformation is simply the usual Cayley transforma- 
tion on some of the factors aind the identity transformation on the remaining 
factors. In the case of a general bounded symmetric domain D in Harish- 
Chandra realization, it follows from results of lHarish-Chandra and is explicitly 
pointed out by Hermann [5] that D contains a totally geodesic polycylinder 
U' with K- U= D; here n is the rank of D as a symmetric space and K is 
the isotropy subgroup at the origin of the connected group GO of holomorphic 
automorphisms of D. A partial Cayley transformation of D can be viewed as 
a natural extension to D of a partial Cayley transformation of uP. 

Sections 2, 3 and 4 contain a considerable amount of expository material, 
which is included so that the paper can be used by beginners in the subject. 
In Section 2 we introduce our notation and some definitions. In Section 3 
we collect some facts on parabolic subgroups of real Lie groups; these are due 
to A. Borel and J. Tits [2] and to a conversation between J. Tits and the 
first-named author. In Section 4 we give an explicit description of the 
boundary components of D (Theorem 4. 8) and compute them in the irre- 
ducible cases (Theorem 4.13). We do not reprove [8, Theorems 1 and 2] 
because Moore's proof is independent of the general theory of boundaries of 
symmetric spaces. 

In Sections 5 and 6 we show that the set of all analytically equivalent 
("same type") boundary components is, for each type, both a homogeneous 
space of K and of GO; we study the Riemannian geometry and topology of 
these spaces in some detail. The isotropy subgroup B" of GO is transitive 
on D; this fact is basic in Section 7 where we construct the image of D under 
the partial Cayley transformation; this C(ayley transform is an orbit of a 
certain conjugate of B", which we determine explicitly. The resulting domain 
is a Siegel domain of type III, and in the classical irreducible cases our 
results specialize to those of Pjateckif-Sapiro. 

The results of [7] are degenerate special cases of theorems in the present 
Sections 5, 6 and 7, but some of our proofs here depend on the results of [7]. 

2. Notations. As in [7], M will be a Hermitian symmetric space of 
non-compact type, GO its connected group of isometries, and K the isotropy 
group. GO is globally a product of simple Lie groups and M a product of non- 
compact irreducible Hermitian symmetric spaces. The Lie algebras of GO 
and K are g? and f, ge is the complexification of go, Gc the adjoint group 
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of gc. G? i? contained in GC as the analytic group corresponding to q?. 
The symmetry of g? is denoted by q; nnder a we have the splitting g? = f + p?. 
Let p = i?, g = f + p, G the corresponding analytic subgroup of GC. 

j is a Cartan subalgebra in f; then fc is a Cartan subalgebra in ce 
The roots of gc which are also roots of DC are called compact roots. Given 
a system of simple roots, if gc is simple, there is a unique non-compact simple 
root. To each root a we have the standard basis elements Ha, Ea. p+ and pT 
are the abelian subalgebras of gC spanned by the positive (resp. negative) 
non-compact root vectors Ea; P+ and P- are the corresponding analytic groups 
in Gc. 

Kc denoting the analytic subgroup corresponding to f C, Kc *P+ is a 
semidirect product. G/K is identified with GC/KC- P+ by the identity map 
of G into GC; this space is the compact dual of M11, and is denoted by M11*. 
x denotes the identity coset in M* = GCJ/IKG P+. The orbit G? (x) is the 
image of the holomorphic embedding gK -* g (x) of M into M'. The map 
t: p- -* M*, defined by t (E) = exp (E) * (x) is a holomorphic homeomorphism 
onto a dense open subset; e is ad (KC) -equivariant. D -(GO (x)) is a 
bounded symmetric domain in 4-; this is the Harish-Chandra realization of 111. 

The center a of f contains an element Z such that ad(Z)E =-+- iE for 
:Fp. J- adc(Z) is a complex struLcture on p0. A basis of p? is given by 

the elements 
Xo =Ea + E-a 

yao - i(Ea-E_a), 

where a is non-compact positive. For such a we have the relations 

JXao [Z, Xa0] Y_0 

JYaO [Z, ya0] Xao 

[Xa0, Ya0] = 2Ha. 

We define the elements Xa iXcx, Ya iYya; these form a basis of p. 
Two roots a and /3 of gC are called strongly orthogonal if a ? /, are not 

roots. There exists a set A of strongly orthogonal positive non-compact roots 
such that the real span a0 of the Xa0l (x E A) is a maximal abelian subalgebra 
contained in 4?. A {8i, * * *, 8r} is constructed in [4] as follows: For each 
j, Sj+1 is the lowest positive non-compact root that is strongly orthogonal to 
Si, * * , 3j. Thus, if g is simple, 31 is the non-compact simple root. In our 
proofs we shall calculate with a set A constructed in this way. Our results, 
however, do not depend on the construction of A. 
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For each a EA we define the 3-dimensional simple subalgebras g", 
spanned by {iHa, Xa, Ya}, and ga!?, spanned by {iILa, X",?, Ya!?}. The corres- 
ponding analytic subgroups of Gc are Ga! and Ga!?. We define fy = [aO, Ja0]; 
then y- C j. b+ denotes the orthogonal complement of Vy in Vj with respect 
to the Killing form; b+ is the centralizer of a0 in ), and f - + Qa is a 
Cartan subalgebra of g?, by [7, Proposition 3. 8]. We have Z = ZO + Z', 
where Z?O- E HoC Ey and Z'C E+. 

ae E A 

For every aC E we have Ca % exp(7/4)Xa G; c 17 ca is the Cayley 

transform of Mi. ad(c) has order 8 or 4. If it has order 4, Ml is said to be 
of htbe type. This is equivalent to the fact that Ml can be realized as a tube 
domain over a self-dual cone (Remark 1 after Theorem 6. 8 in [7]). In the 
general case in [7], Section 4, we described a construction leading to a 
symmetric subalgebra q = f1 + 41?Y of g? which is of tube type. In Section 
4 of the present paper we shall define certain subalgebras gr0 of g; the 
construction leading from g? to g,? can also be performed for gr0, and gives 
rise to subalgebras gr,1= kr,l + pr,10. All these objects will be precisely 
defined as they occur; here we only wanted to point out the reason for our 
later notations. 

In [7] we determined the Bergman-Silov boundary S of the bounded 
symmetric domain D. In the present paper we make a more detailed study 
of the boundary of D, and will show that it is a union of boundary components, 
which we describe explicitly. This notion was introduced Pjateckli-Rapiro 
[9] and is defined as follows: A subset F of the boundary OD of D is a 
bounidary component if (i) F is locally an analytic set, and (ii) F is minimal 
with respect to the property that any analytic arc colitained in OD and having 
a point in common with F must be entirely contained in F. From our result 
it follows at once that the Bergman-Rilov boundary of D is exactly the union 
of all 0-dimensional boundary components. 

INDEX OF NOTATIONS 

Lie algebras and their subsets 

go Lie algebra of GO, largest connected group of anialytic auto- 
morphisms of the hermitian symmetric space M1I G?/K 
of noncompact type 
Lie algebra of K 

PO (- 1) -eigenspace of the symmetry cr on go 
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t + p ip . g is the Lie algebra of G where Ali* = G/K 
is the compact dual of M 

3 center of f 
Cartan subalgebra of f, thus also of g? and g 

a0 real span of all Xa0 (cx C A), Cartan subalgebra of (gO, f) 
y;t+ ~[aO, Ja0]; orthogonal complement of ly in I 

t Jb+ + a?, maximally split Cartan subalgebra of g& 
gC complexification of g, thus also of g? 
If b is a real linear subspace of gC: 
J)e complex span of b in ge 

complex span of all positive, or all negative, root vectors 
in tC, except where t- , - r1 2r , n r"r or r 

b?Y e n go for b such that O =0j(b). 
if t0= (bO) C g? then t denotes bocn g. 
if a C A. then ga is the real subalgebra spanned by iH,, Xa and YO,. 
I f is an arbitrary subset of A: 
grc lderived algebra of c + E E6- C. 

iA-r 
fr; pr; cr; fjr intersection of gr with f, p, cipa, 
Pr,i; fr,1; 9r,1 (+ 1) -eigenspace of Tr2 on iPr; [Pr,i, Pr,iI; fI,l + Pr, 

Ir,1; qr,1; fr,1 ' (?4- 1)-eigenspaces of rr on fr,l; fr,1 + iqr,l 

gr;r jPr (+ 1)-eigenspace of Tr-r' on g;grn f ;gr n p 
f1r; plr5 g1r [rr, pr] ; pr; f,r + plr 

1l"; qr; f1 (? 11)-eigenispaces of Tm-r on flr; 11r + iqllr 

f2r celntralizer of g,r in gr 
q2r ;p2 (- 1)-eigenspace of TA-r2 on f; on p 
jr; 4r; f 11 f J + 12r; 1lr + q2 r; fr + i,1r 

r r-; rr" Cr2r + P2r-; ,P&-r,l' + t2r? 

h21r-;1r? ;nIr+? lrr n ad(cA-r)go; n-r,f n ad(CA-r)o; fl7r + n2 r+. 

br Lie algebra of Br 
Cr KArl*( ior) 

Mappings 

symmetry of g or of g? 

V; v? complex conjugation of gc over g; over g? 

J ad (Z) 
T; Tr a d (C) 

2 ; d ad(cr )2 

$ Harish-Chandra's map p --> M* given by E -> exp (E) (x) 
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Subgroups and submanifolds 

GC adjoint group of gc 
Capital roman corresponding analytic subgroup of Gc, with the following 
letter corres- exceptions 
ponding to a 
small german 
letter 
L1r; Lr; Er isotropy subgroup at xr of K1r; of K; of GO 
Br subgroup of GO preserving the set CA-rMr 

Mr; Mr1; MP submanifolds Gro (x); Gr,i (x) ; Gro (x) of M 
Mr; Mr, 1*; MP submanifolds Gr (x); Gr, i (x) ; Gr (x) of M* 
D; Dr M191) ;D n Jr 

Sr;SDr set of boundary components of type r of M; of D 
Ur; UDr union of boundary comiiponents of type P of M; of D 
?; SD Bergman-Silov boundary SO of M1 in M"; SD/ of D in v 

Group, algebra and manifold elements 

Ila) Ec... standard basis elements of gc 
maximal set of strongly orthogonal noncompact positiATe 
roots 

Xa?; X, WEa + E-E c po; iX.O c p 
Yco; Ya -i(Ea -E_a) c PO;iYa ?C p 
Z element of 3 such that ad(Z)E +?iE for E C p4 
Z? ; Z' -(0) E Ha ; Z -Z? 

ae E A 

XrO; YrO; ZrO E AXO; E yaO; -i/2 E Ha 
aEr aEr aEr 

Xr; Yr iXro; iYro 

cc.(a C A); c; cr exp( (7r/4)XO) C G; H c; HI ca 
aEA E r 

x identity coset in M*' = GC/KCP+ 
xr 

CA-r(X) 

zero elements t-1(x) of p-; t-1(xr) 

3. A theorem on real parabolic groups. We will classify a certaini 
family of real parabolic subgroups of the Lie groups which are the connected 
groups of analytic automorphisms of the bounded symmetric domains. In 
Corollary 6. 9 it will be seen that those parabolic subgroups are just the 
stability groups of the various boundary components. We will also need the 
notion of parabolic group in our proof of Theorem 6. 8. 

The goal of this section is Theorem 3. 4, which resulted from a con- 
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versation betweeni J. Tits and olne of the authors. All the other results of 
this section are special cases of theorems of A. Borel and J. Tits [2] on 
linear algebraic groups. 

3. 1. Parcabolic subgr oups of complex Lie groups. Let E be a comlplex 
connected Lie group. Then the maximal solvable subgroups of E are all 
closed, complex, connected and conjugate; they are called the Borel subgr oups 
of E and their Lie algebras are the Borel subalgebras of e. If a complex 
Lie subgroup of E contains a Borel subgroup, then it and its Lie algebra are 
called pacrabolic. Every parabolic subgroup F C E is connected, for every 
component of F containis an element which normalizes a Borel subgroup B 
of F0 (and thus of E), and it follows that this componenit must be F0 because 
it contains all elemiient which cenitralizes a Cartan subgroup of E which lies 
in B. Similarly every parabolic subgroup F C E is its own normalizer. As 
every Borel subgroup of E contains the radical of E, we mav pass to a quotient 
and restrict our study to the case where E is semisimple. 

Let E be a connected complex semisimple Lie group. Choose a Cartan 
subalgebra c of the Lie algebra c, let A denote the root system of e relative 
to c, and choose a simple system c of roots. If ex denotes the root space 
for A C A, and if A+ denotes the set of positive roots, then our choices amount 
to the choice of the Borel subalgebra 

b =c + E ex 

of c. Now let b C I, and define 

b+ ={A CA: A - a, with a> 0 for some a C b 
aE'J' 

b?= {A CA: A =aOga with cta =0 for every a C 41}, and 
aES' 

b* = b(DU b -- {A C A: A=Eaa, with a? 0 for every a E '}. 
a E 'I 

Then 

X E e4 > 

is a parabolic subalgebra of e which eontains b. f- , tp e, and fz C fr 
for r C X C I. Conversely, let f be a parabolic subalgebra of e which coni- 
tains b, and define 

-1= {E C I: aa? 0 whenever e> C f with A = ak8}. 

Theni it is routine to check that f - f. Now we can specify a conijugacy 

10 



906 JOSEPH A. WOLF AND ADAM KORANYI. 

class of parabolic suLbgroups of E by marking the elemenits of --b on the 
Dynkin diagram of e, where fj is the Lie algebra of an element of this class. 

Retaini the notation just above, and define (for every subset D C ) 

c == n (kernel of a), 

r4) c + E: e><, and 
X E V~ 

1 ex 
X E 4+ 

Then tb rn +4 t(, (semnidirect sum) and is the normalizer of um in e. 
it4 is nilpotent, rj is reductive in e because it is the centralizer of cp in e, 
and c, is the center of r+. Let Rp, U4, and F4 denote the analytic sub- 
groups of E for the subalgebras r<,, mp and ft of e. Then F RI, U4, semi- 
direct product. We may view E as a linear algebraic group becauise it is 
complex, connected and semisimple, and then this semidirect product decom- 
position of Pd1, is the Chevalley decomposition into reductive and iinipotent 
parts. 

3. 2. Parabolic subgroups of real Lie groups. Let E' be a connected 
semllisimple real Lie group embedded in its complexification. In other words 
there is a complex connected semisimple Lie group E and a real form e' of 
the complex Lie algebra e such that E' is the real analytic subgroup of E 
with Lie algebra e'. We will say that a subgroup ' C E' is a parabolic 
subgroup of E' if there exists a parabolic subgroup F C E such that (i) 
F' -=E' n F and (ii) f is the complexification of ft. If F' is a parabolic 
subgroup of E' and F0' denotes the identity component, then alny elemenit 
f C F' can be altered by an element of F0' to centralize a Cartan suhalgebra c' 
of e' contained in f', and it follows that F' - (C n E') * Fo' where C exp (c) 
and c is the Cartan subalgebra of e which is the complexification of c'. 

Let c' be a Cartan suibalgebra of e'. Then there is a canonical decom- 
position c'= ct + c, where the roots are real valued on c, and take pure 
imaginary values on ct. To obtain this decomposition, consider the Cartan 
subgroup C' = exp (c') C E'. C' has a unique maximal compact subgroup 
Ct, and ct is the corresponding subalgebra; it is clear that the roots take pure 
imaginary values on ct. Let c, be the orthogonal complement of ct in c' under 
the Killing form. Then C6 -- exp (c,) is a vector subgroup of C'. If c, and 
and C, were not diagonable in ad(e') on e', ct would not be maximal. Thus 
the roots are real valued on c,. Ct (resp. ct) aiid CQ (resp. c,) are the 
totally non-split and the split parts of C' (resp. c'). C' a-ad c' are maximally 
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split if dim. c, is maximal among the dimensions of the split parts of the 
Cartan subalgebra of e'. 

LEMMA. The parabolic subgroups of E' are just the subgroups 
F' = F n E' for which there exist (a) a maximally split Cartan subalgebra 
c' of e', (b) a system X of simple roots of e for c - c"c and (c) a subset 
(' C, such that (i) c'+ is a real form of c+, (ii) c'5 and its split part 
c' f c*. have the same centralizer in e, (iii) fl is the sum of the non negative 
weight spaces of ad(c',f n c,) on e, and (iv) F-Ft. 

Proof. Let v be conjugation of e over e'. Given c', I and Z satisfying 
(i)-(iv), we recall that the roots of e are real-valued on c,. Thus every 
weight space of ad (c'4 n cv) on e is stable under v. Now (iii) says that 
f (= (nf e')c, so (iv) tells us that F' Fn El is parabolic in E'. 

Let F' be a parabolic subgroup of E'. Then F'-=F E' for some 
parabolic subgroup F of E, and v(f) =f. v preserves the maximal nilpotent 
normal subalgebra u of f and we choose a v-invariant reductive complement r. 
If c* denotes the center of r, then v(c*) = c* so c'* c* n e' is a real form 
of ck. There is a lexicographic ordering on the dual space of the real form 
C*V + ic*t of c*, such that u is the sum of the positive weight spaces. We 
extend c* to a Cartan subalgebra c of e for which c' = c n e' is a real form, 
in such a manner as to maximize the dimension of the split part of c'; we 
then extend the ordering of weights on c* to an ordering of the c-roots of e. 
Let ' be the corresponding system of simple roots. Now F = F, for some 
subset 4 C I. 

We must check that the c', ' and 4 just constructed satisfy the con- 
ditionis (i), (ii) and (iii) and that c' is maximally split. Condition (i) is 
immiediate because c* = c<, from the construction of complex parabolic algebras. 
The split part c ,, - C'l, n c,, of c'4, is nonzero because the sum of the elements 
of 1 induces a positive linear functional on it. Now e D r* D r where r* is 
the centralizer of c*4 and r, the reductive part of f, is the centralizer of c+. 
If r* # r then uI n r* # 0, so u n r* is a nontrivial sum of root spaces. The 
roots which enter into this sum belong to 4)+, because u n r* C u, so their 
negatives do not appear. Thus the roots which enter the sum must vanish 
on c*t, anid thus on c'* = c*t + c.. That is impossible. Now r... = r and (ii) 
is proveed. (iii) follows by our ordering of roots so that c*, precedes iC*t. 

From (ii) we also see that r' contains a maximally split Cartan subalgebra 
of e', so the maximality condition in our choice of c implies that c' is maxi- 
mally split in e'. Q. E. D. 
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Lemnimia 3. 2 shows that real parabolic groups are determined by the split 
parts of the centers of their reductive parts. Let F' be any parabolic sub- 
group of B'. In the notation of Lemma 3. 2, let B' be the group B n E' 
where b is the sum of the non negative weight spaces of ad(c,) on e. Then 
B' is a parabolic subgroup of E', B' C F', and every parabolic subgroup of E' 
contains a conjugate of B'. B' is a minimal parabolic subgroup of B'. There 
is an Iwasawa decomposition E' = -K A . N such that B'- L . A - N where 
L C K is the centralizer of A. Furthermore there is a subset X C v defined 
by B = Fy, such that 1c C > whenever FR n E' is parabolic in B'. 

3. 3. The action of the Galois group. The Galois group of C over B 
acts on e as the conjugation v of e over e'. This is a real automorphism of 
e and induces a real automorphism of E. The fixed point set of v on E is E'. 
Let F be a parabolic subgroup of E. Now F n E' is parabolic in E' if and 
only if v(F) = F, and this is equivalent to v(f)-= 

Let c be a Cartan subalgebra of e which is the complexification of a 
maximality split Cartan subalgebra c' of e', and let ' be a system of simple 
roots. Then the Galois group {1, v} acts on I as follows. The subsets of ' 
are in one-one correspondence with the conjugacy classes of parabolic sub- 
groups of E, a subset i corresponding to the class of F,. Given b, vY(FY) 
is conjugate to some Fi, and we define E Y-,. This transformation on the 
subsets of I is induced by its restriction to the one-point subsets, so v acts 
on I. If E' n F1, is parabolic in E', then v (F4,) =-F-,, and so =4). 
The converse is: 

LEMMA. Let ' be a system of simple roots of e for the complexification 
of a maximally split Cartan subalgebra c' of e', and let $ be the subset of > 
such that E' n F, is a minimal parabolic subgroup of E'. Then the parabolic 
subgroups of E' are just the conjugates of the groups EB n F- for W.7hich 
4) C > and(D=-- 4 . 

Proof. The remark above and the results of ? 3. 2 show that (D C , and 
=4-( in case E' n F4, is parabolic in E'. 

Let 4) C Y and 4)V =4); we will check that E' n F4, is parabolic in E'. 
If two parabolic subgroups of E are conjugate and contain the same Borel 
subgroup, then they must be the same. Now if two parabolic subgroups of E 
are conjugate and contain Fy, they must be the same, for F; contains a 
Borel subgroup. v (Fx) =- F, and F], C F4, because 4) C E; thus F4, and 
v(F4,) contain F. (D _ 4V says that F4, is conjugate to v(F,)). Thus 
F., = v(F-). This proves that E' n F4, is parabolic in E'. Q. E. D. 
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In order to apply the Lemma, one must know the action of the Galois 
group on . 

COMUPLEMENT TO LEMMA. Let e' be a r eal simtple Lie algebra wvith 
simple coimplexification e, let v be the nonti-ivial element of the Galois group 
of C over R. and let I be a system of simple roots of e for the comnplexification 
of a ma.rimally split Cacrtan subalgebra of e'. Then the action of v on ' 
is trivial except in the following cases. 

action of v on Dynkin diagram 

,itl- ~ ~ ~ 
- 

(n)/ fo\ o r 

0 -0 * * 

o* (4n + 2) 

or 

0o2k(4n + 2) -- .* - 

or 

,,2k+1 (4n) 

C3 (-14) 

or K \o_ 
o oo 

'G (U2) 

Proof. c' has a maximal compactlv eml)edded subalgebra f such that, 
if o- denotes the symmetry of the symmlletric pair (e', ) and e' = f + p is the 
Cartan decomposition, f n c'-Ct and q n c'=c. The root vectors are in 
ict + ci, so v is - 1 on their ct projections anid is + 1 on their cv projections. 
o- is complex linear on e, + 1 on f alid -1 on p; thus a-v sends each root 
vector to its negative. Thus (i) if o- is an inner automorphism, then v is 
triAvial on I precisely in case I is in the WeAI group of e, and (ii) if a 
is an outer automorphism, then v is trivial on j precisely in case - I is 
not in the Weyl group. As - I is in the Weyl group in all cases except 
c= As (it > 1), D,,l+1 (n > 1), or E, [12, Theorem 4. 1], the result follows 
fromii the classificationi of the real simple Lie algel)ras. Q. E. D. 
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3. 4. THEOREM. Let ]I be an irrreducible hermitiant symmetric space 
of noncompact type; let GO be the connected group of analytic automorphisms 
of YE, embedded in its complexification GC; let u be a maximally split Cartan 
subalgebra of g? which is preserved by the sytmmetry at a point x C M, anld 
let * be a system of simple roots of gc for uc. If r is the rank of M, then 
there is a unique sequence {?, Dj1 - , @} of subsets of ' such that (i) 
F -,? GO n F, is a parabolic subgroup of GO, (ii) the reductive part of 

F+pQ has a simple normal subgroup G,0 such that G,0 (x) is a herrmitian sym- 
metric subspace of rank i in i1l, and (iii) the (G,, can be chosen so thtat 

Go? C Gi? C . * C Gr?. Furthermore, Gro= FPr = GO and (i consists of 
the elements of J number ed {i + l, , r-1, r} in the char-t below. 

90 D#vyniin diagrCain1 

r r-1 2 1 
2r(n) - a -a----o 

(2r?S: n) a a--1 
r r-1 1 

r r-1 3 2 a 
to (4r) 0 - - 0 0 0-0-.O . -a-a-ao 

~~02 (n + r-l2 0 

1 

~o'(n+2) ~ -~---a-... s- or .,. ___ 

(r=29) ( 

r r-I 2 1 
tp(r+2) a a-... 

(r 2) 1 a- 1 

C7 (-25) 

3 2 1 
0(-=3) a-/Oa- a-a 
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Proof. To satisfy (ii) and (iii) we must have (r C r-y C. . . * *Do. Let 

X C XI so that Go n FE is a minimal parabolic subgroup of GO. Then <Po C X 
by (i). The Galois group has exactly r orbits on X, and each ( is a union 

of orbits by (iii). It follows that we can number the orbits as E1, ,r 

so that (D +1 U U r; (Dr #f 0 and 1o E. Now a case by case check, 
using the fact that g? must be one of the algebras listed for the g? with i r, 
and using the fact that the Dynkin diagram of g? must be a connected comn- 
ponent of the complement of -i+, U * * U .r in the diagram of b?, shows 

that (ii) and (iii) imply that Zi must consist of the points numbered i ill 

the Dynkin diagram, and that then (i), (ii) and (iii) are satisfied. The 
Theorem follows. Q. E. D. 

4. The boundary components of a bounded symmetric domain. Let 
D be a bounded symmetric domain embedded in p- as described in ? 2. 
Retain the ilotation of ? 2, and let r be an arbitrary subset of the maximal 
set A of strongly orthogonal nonconipact roots. We will see that every r c A 
corresponds to a certain boundary component of D, the empty set q corres- 
ponding to a point of the Bergman-Silov boundary, and A corresponding to 
D. It turns out that two subsets of A give analytically equivalent boundary 
components if and only if they contain the same number of roots from each 
irreducible factor of Mll. 

4. 1. We have c,a exp (r/4).X, C G for every a C A, and the Cayley 
transform on 31 was defined to be c c Hc. We now define partial Cayleyl 

aEA 

transforms by 
Cr HCa, r c Q , 

aEr 

so cA =c and co = 1. Similarly we define 

Xro ' Xa and Xr =iXI7r 
aEr 

Yro-E YaO andYr l iYr0, and 
aEr 

Zr? - 1 E Ha and fr- ilil R. 
aEr a Er 

By definition of Hfi the centralizer of fA-r- in gC is 

(4.1.1) bJc + 
' 

E C. 
pjA-r 

The centralizer of g g in gC is 

/v~~~~~ a A_Tr 



912 JOSEPH A. WOLF AND ADAM KOR'ANYI. 

For this, it suffices to show that 1 iA - r implies [En, E,] =- 0 whenever 
a E A r- . Here we may assume 1 > 0; then the assertion is trivial for /3 
noncompact and known [4, Lemma 13] for /3 compact. 

The algebras (4. 1. 1) and (4. 1. 2) are reductive and have the same 
derived algebra. We denote this derived algebra by q,C, and g,-g n q,c 
aiid gro == o n grc are real forms of grC; thev are semisimple. We have 

gr fr + Pr aild gr?fr + pr? where =r rpgr n = g.0 n , Pr-grn 
PTr =- gr?0 n,p, and pro ipr. Pr+ denotes prc n P. Gr and Gr? denote 

the respective analytic subgroups of GC with Lie algebras qr and gro, anl 
Kr denotes their common intersection with K. 

Further, we define lr = Gr?(x), ilir* = Gr(x), and xr - cA-r(x). In 

the special case where r is empty, Mr anld Jr* are just {x} and xr is the 
point c(x) on the Bergman-Rilov boundary. More generally, we will even- 
tually see that cA-r (MIr) = Gr? (xr) anld is a typical bouLindary component 
of M in ML*. 

Finally define Dr = D n pr- and or - 6 (xr) ; o will denote the origin, 
O OA 0, of - 

4. 2. LEMMA. M1r is a complex totally geodesic submanifold of i1, 
thus being a sub hermitian symmetric space of M1; the same is true for AIr: 
in AIP, and ilir C iIr' is the Borel embedding. ir is a maximal set of 
strongly orthogonal noncompact roots of qr0, {XA'o)} ar spans a Cartan sub- 
algebra a,o = a n gro of (gro, fr) Iand Cr is the Cayley transform of i1hr. 
Let -': M-* rp- be the Harish-Chandra embedding as a bounded domain 
D = -' (Ml); then Dr = e-1 (1r) and 4-1: Mr M > Pr- is the Hfarish-Chandr-a 
embedding. CAr (Mllr) C (lp), $1CA acts on Dr by E - E + i Y EO. 

,lIA-r 
Proof. The algebras 4. 1. 1 and 4. 1. 2 are preserved by ad(f), and thus 

by ad(Z), so ad(Z) preserves grC; as ad (Z) preserves g and g?, it must 
preserve gr and gro; now ad (exp (tZ)) pr-eserves GQ and Gr,? SO Ml'r* C MI* 
and Mr C 1l are sub hermitian symmetric spaces. Mr C Mr" is the Borel 
embedding by construction. 

The definitions of gr? and gA-ro give us 

E Xa R C CO0. ( 
' 

Y,Xa I?) n CtA-ro 0, and Xao 0R C na-r?; 
aEPr aEr aEA-r 

linear independence of the Xa now showvs that ar? has {Xao} a r for a basis. 
If tro is not a Cartan subalgebra of (gro,fr), then it is properlv contained 
in one, say in e. [e. a-r?l = 0 by definition of gro, so we have 

= Ctr + Ct?-ro C e + tIFro Cf 
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where f is a Cartan subalgebra of g,$. Then dim. f dim. a0, which is a 
contradiction. Now Car? is a Cartan subalgebra of (gro, fr), and the asser- 
tions on r and Cr follow. It also follows that the Harish-Chandra embedding 
of 3I as D C p4 induces that of Mr as Dr C Pr-. 

\s CA-r Commutes with every element of Gro, the proof of the last state- 
ment reduces to proving that $-'cA-r$: o -> E YE-, i.e., that $(i E E_a) 

aEA-r aEA-r 
- xr; this is a calculation contained in the proof of [7, Lemma 4. 2]. Q. E. D. 

The following is the first step toward relating the Mr to the boundary 
comiiponents of D. 

4. 3. LEMMI1A. OD is the uinion of all sets of the form 

4.3. 1. ad (k)[ - CA - _IT~71l]E K~, c +A. 

anid every boundcary component of D is a utnion of sets of that fornm. 

Proof. AO exp(aO) consists of transvections of AI, so 1 is the only 
element of $'A0d with a fixed point on D. Fromn the action of the latter 
on a- [7, Lemma 3. 5] it follows that OD n a- consists of all E baE--, with 

1 < a! < 1 where at least one I ba = 1. In particular, every E E-a C OD; 

as e- exp (tZ) $ acts on D and OD by unimodular complex scalars, we have 
= Ei C ED. Applying G20, -1ca-301 - (e-lGX0$) (oys) C OD. Thus 

AD conitains every set of the form (4. 3. 1). 

We wish to show that OD is the union of the sets (4. 3. 1). As 
aD= ad(K) [OD n ia-], it suffices to show that every point of OD n ia- lies 
in a set of that form. Every such element has expression E' - i E + E-a 

+ i z baE-a where -1 < ba < 1 and : $ A; applying an element of 

ad(Kflnexp E ga) we bring it to E=i E EXa +i E baEJi, which is in 
aEA-1 aEA-E a E 

t-1cA-1i3I by Lemma 4. 2. This completes the proof that OD is the union of 
all the sets (4.3.1). 

As Mvi is a hermitian symilmetric space of noncompact type by Lemma 4. 29, 
anyv two of its points can be joined-by an alnalytic arc. It follows that any 
two points of ad(k) ['-1cA_xMx] can be joined by an analytic arc in OD. This 
completes the proof. Q. E. D. 

4. 4. LEMMA.3 The restriction, of ad(ZA_,0) to pc hais otly -th7e eigeni- 

3This lemma and a sharpened form (Lemma 6. 3) wvill be used repeatedly. The 
apparently elaborate notation will be re-introduced and motivated in ? 5. 4. 
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values 0, ? i and ? i/2; the respective eigenspaces are p,c, the ceittralizer 

V^-r,Sc of C&-r4 in vPA-rC and the (-1)-eigenspace of ad(cP-r)4 i?1 pC. 

Proof. Let c and f be the + 1 and 1 eigenspaces of ad(c&-r)4 oll PC. 

As CA-r is a transvection of order 4 or 8 in 1i*, SO (CA-r4)2 1 I annd 
a (cA- r4) (CA 4) -1, it follows that ad( cQ- r ) 4 preserves pc ancl that 
tc =--e ED 

We have ad(Z ro) Prc =0 and prC C e, by definition of gr. An 
application of [7, Lemma 5. 3] to (gA-r0, -r) shows that PA r,lc is spanileld 

lby (? i)-eigenvectors of ad(ZA-r0), that At-rcn fl is spanned by ( . i12)- 
eigenvectors, and that pA-rC =- PAr,lC - (f n pA-rC). Let b be the Ceior- 

plexification of the orthogonal complement of Pr + PA-r in P; it remains 

only to show that b C f and that b is spanlned by (? i/2) -eigenlspaces of 
ad(ZA0r?). As e (resp. f) is the intersection with pC of the sum of the odd 
(resp. even) dimensional irreducible representation spaces of 

ad( {XA-r, YA-r, ZA-ro} ), 

we nieed only prove b to be spanlned by (? i/2)-eigenspaces, anld then b f 
will follow. 

b is spanned by root vectors E+,, p positive nonconipact; thus -e nieed 
only prove that ad(Z,&-r?) = E: + (i/2) E: for every nonconiipact positiv-e root 
fi with E:6 C b. By definition of Z,-r0 and b, this is equivalent to the proof 
that, for every noncompact posi-tive root J6 which is orthogonal neither to P 
nor to A - r, we have Y <c,,l1> = 1. This has been proved by if avish- 

aEA-r 

Chandra [4, Lemmas 13-16]. Q. E. D. 

4. 5. Let v0 be conjugation of gc over g?. As p? is spannied by the 

X6?- E + E_ anid the Y = i (E6 - E_) for the noncompact roots , 

v? exchanges E,6 and E_:, so (I + vo)iE_ = Y0 and (I + vo)E =e X5. 
Let v be the conjugation of gc over g and observe that <U, V>, 

- <U, vV> is a positive definite hermitian form on gc where < , > denotes 
the Killing form. Let 11 denote operator norm relative to < >^ for 
linear transformations of gc 

The following result is included for completeness. It was provecl by 
C. C. Moore [8, Lemma 4. 5] in a somewhat different maniner. The idea of 
using operator norms is due to R. I-Iermann. 

4. 6. LEMMA. Let p4 be given the complex structur e defined by ad (Z) 
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and define f: p- -* p by + (E) - I(E + v0E). Then p is an isomorphism of 
comitplex vector spaces, and 

g(D) {UcEP: IIad(U)l 1<1}. 

Proof. The first statement is clear. V is ad (K) -equivariant because 
K C exp(g), and + (a-) =a0. Thus we need only prove EC D if and only 
if 11 ad+j'(E) 11 < 1 for every E C a-. As a- consists of all E =E baE_a with 

C! E A 

ba real, and E C D if and only if each Ib | < 1, we need only prove that 
ad(2 I baXao) < 1 is equivalent to the condition that each ba < 1. 

Each g,, 1l C A, has a nonzero element W~ with [X,, Wfi] = 214wj; 
l1OW ad(2 1 baXao) V6 bf6Wp. Thus 11 ad(t - baXa0) < 1 implies that 
each I ba I< 1. 

Suppose that each Iba| < 1; we will see that 1 ad(2 baXa0) 11 < 1. 
As YE g, ad (exp (-r/4) Y) preserves operator norm; that element sends each 
X? to Ha as seen by calculating in gaC, so we need only prove 11 ad(Q E boHat) 11 
< 1. In other words, we need I Y ba<, /3> < 2 for every root ,X. This 

aE A 

now follows from [4, Lemmas 13-16] which say that, if <a, ,f> 7& 0 for some 
a C A, then either <c#, ,8> +? 1 and <0', I8> + 0 for at most one other a' E A, 
or <c, b>=-+ 2 and <c-',,3> =O for a: a c' C A. Q. E. D. 

We can now take the main step toward relating Mli, to the boundary 
components of D. Here p- is endowed with the positive definite hermitian 
form <, >, 

4. 7. LEAMMA. Let r C A, and define erR and erC to be the respective 
real and complex hyperplanes 4 in jp in which or is the point nearest to the 
origin. Then 

4. 7.1. 1D n [or Pr-] n erC n OrR 

this set is the closure of 4-$C,-rMr in OD and is a union of boundary com- 
ponents of D; it is the union of all sets of the form 

4. 7. 2. ad(k) [lce iiIz], k C Kr, > C r. 

Proof. This proof is close to an argument of Moore. = --1 (I +vo) is 
a unitary transformation of p- onto 4?, so f(erR) consists of all 

v -2 E Ya?+-U 
aEA-r 

where U is real-orthogonal to the first summand. Now decompose U 

4real (resp. complex) affine subspaces of real (resp. complex) codimension 1. 
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= U1 + U2 where U1 is real-orthogonal to Ya!? for every a C A - r, and where 
U2 == ua,Ya. The condition on U1 gives 

a EA-r 
U1 a,Xfl + boYfo 

where the sum runs over all positive noncompact roots /3, and where b 0 
in case ,3C A - r. As each Y,j? has the same length, the condition on U 
implies 'Y, = 0. Finally, by Lemma 4. 6, V E 0 (D) if and only if 

a EA-r 
ad (V) 1 ::-:1. 

Let V E 7 (D). We define IVT YXa0- 2Za0? and W- E W,. Now 
CaE A-P 

[ 2Yao W] = Wa. This gives 

ad (V) W= V== + [U1, W], 

and [U1, W] is Teal-orthogonal to IV b-v definition of WV and( by bo = 0 for 
,8 C A r. As 1 ad (I') ?1. we must have 11ad (V) = 1 an(d 

0 = [U1, V] = 2 ad (Z^_r0) U1 + F 

where F E . This yields ad(ZA 0?) U, - 0; llOW U1 E O by Lemma 4.4. 

As U2 C 4pr? by construction, this proves U C p,?. Thus V C + (or + pr-). 

We have just proved D n erR C D n [or + Pr-] ; therefore (4. 7. 1) follows 
immediately. Lemma 4. 2 shows that this set in the im-lage by t-1cACrd of 
the closure of 4$11lir in pr_, and the set lies in OD by the observationi 

ad(V) 11 = 1 above; it follows that the set is the closuLre of C-FMF in OD. 
Let b be the complex linear f unctional on p- such that b (E) = 1 is the 

equation of erC, and notice from the above paragraph that erC does not 
meet D. As D is preserved by the rotations e800 we then have I b (E) I _ 1 

for every EC E. Now let M: U >' p- be an analytic arc in OD stich that 
% ( U) meets erC. Then the holomorphic f unction b o p on U is boundled by 1 
and this bound is achieved; thus b o u is constant by the maximulm mnodulus 
principle; in other words, i (U) C erC. This proves that the set (4. 7. 1) 
is a union of boundary components of D. 

The last statement follows by application of Lemmia 4. 3 to aDr, 
Dr= -1(310), and byr the observatioln that cA-ct =C- CAr for every N, C r. 

Q.E.D. 

4. 8. THEOREM. The boundary components of D in p- care just the sets 

ad(k) [$-'cA-r-FMr]. k C K, r c A. 

The boundary components of 7lY in 371* are the sets 

k(CA-r(Mllr)), k C , r CA. 
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Proof . The two statements are equivalent because t is aii ad (K) - 
equivariant complex analytic homeomnorphism of a neighborhood of D in 4 
onto a neighborhood of M in 111*, carrying D onto M1. 

Evrery boundary component of D is a union of sets ad(k)[d1cA Afz], 

k EK, Y. C A, and every such set lies in a boundary component of D, by 
Lemma 4. 3. Thus it suffices to prove, given an analytic are ,u: U - in 
OD such that /u(U) meets t-1CA rMIr, that ,4A(U) C -1C&-rMIr. Lemmiia 4. 7 
says that the closure of 41CArir is a union of boundary comlponents of D, 
so p (U) is contained in that closure. Now define /3 = - CA-r-1 - ; then 
,(: U - Pr- is an analytic are in -Dr which meets Dr :== (Mr), and we wish 

to prove that ,B(U) C Dr. 
Suppose that /3 (U) contains a point E of aDr. Applying Lemma 4. 3 

to Dr we see that E is contained in a set ad(k) [$-1cr-?M?1, 1 C Kr, Y c r. 
Applying Lemma 4. 7 to Dr, we obtain a complex linear functional b on Pr- 
whose restriction to Dr attains its maximum at E; b is the linear functional 
speeifying ad (k)e)C. Now b o,8 is a holomorphic function on U which 
attains its maximum, so b oa is constanit by the maximum imodulus principle, 
whence 

/3(U) C {FCDr: b(F)=b(E)} CaDr. 

This contradicts the fact that A(U) meets Dr. This shows ,3(U) C Dr, and 
the Theorem is proved. Q. E. D. 

4. 9. COROLLARY. The boundary componentts of D in jp are bounded 
symmetric domnains in Harish-Chandra embedding, where the ambienlt space 
is a complex affine subspace of p- and the domain is the interior of the inter- 
section of the ambient space with A. The boundary compontents of 11 in M11* 
ar-e herntitian symnmetr ic spaces of noncompact type in Borel embedding, 
where the ambient space is a complex totally geodesic submanifold of M-:" 
and the noncompact space is the interior of the intersection of the ambient 
space with M. 

The first statement is immediate from Theorem 4. 8 and Lemmas 4. 2 
and 4. 7; the second statement follows upon mapping by 6 and applying 
Lemma 4.2. 

4. 10. COROLLARY. Let D D1 X X Dr be the decomnposition1 of 
D as a product of irreducible donmains. Then the boundary components of D 
are just the sets F = F1 X . . . X FrT; D with Fj either equal to Dj or a 
boundary component of Dj; each of the bounded symmetric domains Fj is 
irreducible. The analogous result holds for the boundary comaponentts of 11I. 
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Proof. Let F be a boundary component of D; then without loss of 
generality we may assume F = $1c rMr with P CA. Let g? =- g (D D 0 

be the decomposition as a sum of simple ideals, ordered so that the analytic 
subgroup of GO for gj? is the connected group of analytic automorphisms of Dj. 
Then A Al1 U *U A, (disjoint) where Aj is a maximal set of strongly 
orthogonal noncompact roots of qj?. Define 

rj=-rnAj and Fj 1-'CMj -rj1(i nlllr) 

Then F F1 X X Fr, Fj Dj if rj = Aj, and Fj is a boundary com- 
ponent of Dj if rj =l Avj. 

Let F= F1 X X F, # D where Fj is Dj or a boundary component 
of Dj. The last part of the proof of Theorem 4. 8 consisted of showing that 
Dr is an analytic arc component of Dr; thus Fj is an analytic arc com- 
ponent of Dj, so F is an analytic arc component of B. Now F C OD by 
construction, so F is an analytic arc component of OD, i. e., a boundary 
component of D. 

To prove Fj irreducible we mav assume D irreducible and Fj- == -cA _rHr 
with r c A, and we nieed only prove that the effective part of gro is simple. 
It suffices to prove that the effective part of gr is simple. For this, we define 
WA to be the subgroup of the Weyl group of G relative to f consistinlg of the 
elements which preserve A as a set, and we define Wr to be the subgroup of 
WA consisting of the elements which fix every element of A-r. A result 
of C. C. Moore [8, Theorem 2] says that WA induces the full group of 
permutations of A; thus Wr is transitive on r. Let U be the centralizer 
of b6-r- in G. exp(b,-r-) is a torus because it is closed in exp(b), so U is 
the centralizer of a torus. Now U is connected, the Weyl group of U relative 
to j contains Wir (by definition of U), and Gr is the semisimple part of U 
(hy definition of gr); it follows that the Weyl group of Gr relative to f n fr 
is tranisitive on r. This proves that gr is simple. Q. E. D. 

4. 11. COROLLARY. If M1/ is of tube type, then eacht of its boundary 
components is of tube type. If Ji is irreducible and has a positive-dimen- 
sional boundary component of tube type, thten M is of tube type. 

Pr-oof. If 1I is of tube type, then the Cayley transform c= cA has 
order 4. As c=- cr -C rand ad(c,-Pr) ar 1-, this implies ad(cr)4 ar 1, 
and it follows that Mr is of tube type. Thus each boundary component is 
of tube type. 

Before proving the second statement, we must check that ill is of tube 
type whenever, for some F C a, both Mlr and MA-r are of tube type. To see 
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this, we write P Pr + t-r + b where b is the orthogonal complement of 

Pr 1 tl-r. By Lemma 4.4, both ad(cA- )4 and ad(cr)4 are -1 1on b, so 
ad (c)4 I 1. By hypothesis and the argument of the preceding paragraph, 
ad(c) is 1 on Pr and on ta-r. Now ad(c)4 is 1 on p, and thus also on 

f= [p ,p], so c4 and M is of tube type. 
Let 317 be irreducible with a positive-dimensional boundary component 

of tube type. Then some Jlr, p +7 r c A, is of tube type. Let E A- 

and p C P, anid define b ~ r u {} and iI=-{,8}. A result of C. C. 

Moore [8, Theorem 2] shows that an element of the subgroup preserving b- 
in the AV,eyl group of g? send P to I; thus l3v is of tube type. Applyiing the 

first part of this Lemma to M4i, we see that M{a} is of tube type. Applying 

the above paragraph to llI, with the decomposition 1 r u {X}, now M; is 

of tube type. Iterating the argument, MA= M is seen to be of tube type. 
Q.E.D. 

4. 12. COROLLARY. For a bounded symmetric domain in HIarish-Chandr a 
embedding, a boutndary component of a boundary component is a boundary 
co mnpo0l ent. 

This is immediate from Theorem 4. 8 and from (4. 7. 2) in Lemma 4. 7. 

Lemma 4.4, Theorem 4.8 and Corollaries 4.11 and 4.12 allow us to 
list the boundary components. HIere we say that two boundary components 
are of the same type if an element of GO sends one to the other. 

4. 13. THEORE1f. Let D be an irreducible bounded symmetric domain 

of ran1k m in Harish-Chandra embedding. For each integer r, 0 r < m, 
there 'is just one type Dr of boundary component of D which has rank r as 

a symmnetr-ic space. Do is a single point and the other Dr are given as follows. 

4.13.1. D=SU'n(2m+71)/S(U(M) X U(mM + k)), kc?O. Then 

D? -SU" (2r + k)/S(U(r) X U(r + k) ). 

4.13.2. D-5SO(4m)/U(2m). Then D.=SO *(4r)/U(2r) 

4.13.3. D=SO*(4m+2)/U(2m+1). 
Then Dr SO* (4r + 2)/U(2r + 1). 

4.13.4. D =Sp(m,R)/U(m). Then Dr Sp(r,R)/U(r). 

4.13.5. D=S02(n+2)/SO(2)XSO(n),n>2;herem=2. D,is 
the unit disc in C'. 

4. 13. 6. D = EG/SO (10) . SO (2); here m = 2. 311 is the open, unit 
batll iii C0. 
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4.13.7. D=E7/E SO(2) ; here in-3. D1 is the unit disc in LY1, 
and D2-S02 (12)/SO (2) X So (10). 

Remark. For the classical domains the statement is due to L. K. Hua 
and K. H. Look [6], and the proof is due to Satake [10]. The result is 
new for the exceptional domains. 

Remark7. There are some duplications. For example S`O (8)/U (4) 
S02(8)/SO(2) XSO(6) and SO*(4)/U(2) is the unit disc in Ci. 

Remnark. The classification is iiot iiecessary for the first assertion. That 
assertion follows from Theorem 4. 8 and tranlsitivity of the snmall Weyl group 
on the collection of all subsets of r elements in ad (c) 2. 

Pr-oof. The domains D listed exhaust the class of irreducible nioncompact 
nonl-Euclidean hermitialn symmetric spaces, according to E. Cartanl. Here the 
domains of tube type are (4.13.1) for k =O, (4.13.2), (4.13.4), (4.13.5) 
and (4.13. 7). Now assertion (4.13. 5) is immediate from Corollarv 4. 11 
because the unit disc is the only tube-type domain of rank 1. 

Let a C A and define r =A-{c}. The fixed point set of ad(ca)4 
on g is of the form g{a},i e T(D ) a where the second sumumand is in f aiid 
the first is equal to [P{a},i, P{ajt},] + Ptalj- Part 4 of [7, Theorem 4. 9] shows 
that 9{a'i is of Cartan classification type a1. Now Lemma 4. 4 gives a direct 
sum decomposition P = , + i + f where ad(ca)4 is + 1 oni the first two 
summands and -1 o01 the third. Conlsider the decomposition g =ui +u 
into + 1 and -1 eigenspaces of ad(ca )4; it follows that it A a e g- 
(direct sum of ideals) with i C f. As ad(ca ) is an inner automorphisi 
of g, we have proved: g hias a sysnunetric subalgebra it of maximial ranlk w.7hich 
has a1 and a, as distinct simnple ideals. 

Let D=-SU" (2?n + k)/S (U (in) X U (n1 + k) Then g=a2,+1, so 

the only possibility is Ut = 1 0 2m+7c-3 0 (1-dimensional abelian). Thlus 
= 2(1)+k-1. As Dr has rank ?n-i, (4. 13. 1) follows. 

Let D = SO* (2n)/U(n) where n = 2rn or 2n + 1. Then = b,, anld 
u b2 0 bn-2 is the only possibility; here observe that b2 = 0 a1. If 

=r a1, then rn 1 = 1, anld n = 2m by Corollary 4. 11, so n = 4 and 
D1 (unit disc) SO" (4)/U(2) ; conversely, if n = 4, theii b-2 = a1 ? 
so b b2-2. We must check that 

Dr SO*(2[nf 2])/U(nf 2). 

If n - 1 > 2 then this is true because the rank of Dr is too large to allow 

Dr to be of type (4.13. 5); it is true if rn- 1= 2 and n 2tn + 1. for tlien 
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Dr cannot be of type (4. 13. 5) by Corollary 4. 11; it is true for mn - 1 2 
and n = 2m because SO*(8)/U(4) = S02(8)/SO(2) X SO(6). Now (4. 13.2) 
and (4.13. 3) are proved. 

Let D =Sp (m, R) I/U (m). Then g =cm so U =- c -i c, and gr = cm-i. 

Thus Dr=Sp(m-1,R)/U(m-1). This proves (4.13.4). 
LetD D E6/SO(1O) -SO(2). Then g=e6 soU =a1 E a5; thus gr Ct5. 

As Dr is of rank 1, (4.13.6) is proved. 
Let D=E7/E6-SO(2). Then g=e7 so =a, E b6; thus gr= b6. 

As Dr is of tube type, or because SO*(12)/U(6) has rank 3, now Dr must 
be S02(12)/SO (2) X SO(1O). This proves the statement on D2; the state- 
ment on D1 follows either from Corollary 4.11 or from Corollary 4.12. 

Q.E.D. 
The following result shows how the boundary componeilts are related to 

the limit poinits of geodesic rays. We work in M1 and -.11 for convellience, 
but the result traiislates immediately to D and 4-. 

4. 14. THEOREM. Givent yC Ell antd a boundary component F of 31 in 
M,", thter e is a unique point f E F such that somiie geodesic r'ay of ,1 fromi y 
tends to f. 

Pro of. Let U {k(xr): c E K, rJc A}, and define T' to be the set of 
all limit points in -31 of geodesic rays of A1 with initial point r. If 
X'= taX,, E a0, then the geodesic ray {exp (sX') x7}80 is givell by 

aY E A 

exp (sX') x x ( E tanh (t,s) E-,,,). Thus the limit point of the geodesic 
YE i 

A 

ray is 4( , eaEa) where E,, is 0, 1 or 1 as ta is 0, positive or negative. 
a EA 

We can find lc E K such that ad(k)X' Xt X ; now the limit poilt 
is ad(k)-' xl where r =={ac A: ta=--}. This proves U V. 

We have g C GO with g (y) =x, and le C K with k (gF) = CA-r,Fr for 
some r c A, so we may assume that y = x anid F = cA-rMPr. Now we need 
only prove that CAF-rMr n {k (xX}: xl' is the only element of k EC K, $ 
If k(xl) C cari1l,r, thei cCZlirr 111USt coincide with kcA -ZMZ, for both are 
boundary components containing k (xi). Lemma 4. 7 shows that ol t-' (x" ) 
is closer to the origin of p- than any other point of -'c,A-riMIr, and -' (kxl) 
is closer to the origin of p- than any other point of tikcA 11Iz. Thus 
k (x-) xr. Q. E. D. 

5. The space of boundary components of a given type. 

5.1. We say that two boundary components of D (or M1) are of the 
sacmie type if aii element of GO carries oiie to the other, and we say that a 

11 
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boundary component is of type r (r c A) if it is of the same type as 

(WACArO)Dr (Or CA -rMr). Here we remark 

LEMMA. Let r CA and :$ C A, and suppose that F is a boundary com- 
ponent of type r. Then the following statements are equivalent. 

(i) F is of type X 

(ii) ad(c) 2> is equivalent to ad(c)2r under the small Weyl group of 

(gO, f) rel. a0 

(iii) For every simple ideal of g?, both :3 and r contain the same 
number of roots of that ideal. 

Proof. Corollary 4. 10 reduces the proof to the case where D is irre- 
ducible. Then (i) implies (iii) because Lemma 4. 2 shows that the symmetric 
space ranik of a component of type r is the number of elemients of r. 
(iii) imliplies (ii) by [8, Theorem 2], and it is obvious that (ii) implies (i). 

Q.E.D. 

Let r a. We define Sr to be the set of all boundary components of 
M of type r, and we define Ur C AM to be the union of all boundary com- 
ponents of type r. Similarly, SD r denotes the set of boundary components 
of D of type rP and UDr C OD is the union. These two notions coincide in 
the case where r is the empty set 0; there we have 

S0 U0 = S, Berginan-Milov boundary of M in MLL 

SD0 = UD0 =D, Bergman-Silov boundary of D in p-. 

Theorem 4. 8 and the Lemma above show that K acts transitively on Sr 
(resp. SDr). Let Lr denote the isotropy subgroup of K on C,-rMAr C Sr (resp. 
on 1CA rilIir C SDr; it is the same subgroup). Then Lr is the set of all 
elements of K which preserve the closure of cA-rMr in the compact set 

amX, ancd it follows that Lr is closed in K. Now we have identifications 
SI K/L" -SD, so SI and SDr are real analytic manifolds, homogeneous 
spaces of K. 

As a final preliminary remark we observe that K cannot be transitive 
on Ur or UDr for r # +, because any, orbit of K is compact and Lemina 4. 7 

gives us the closures 

Ur- U UX and UD"r U UDY. 
XcPr EC 

5. 2. LEMMA. Let 7 CE K. If k preserves CA-rlMr, then 7c (xr) = xr. 

Proof. Lr is a compact group of isometries of CArlMr, so it has a 
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stationary point. But K, C Lp, and xl' is the unique stationary poilnt of 
Kr onC-rMr. This proves that xl' is stationary under Lr. Q. E. D. 

5. 3. Let 7r: U" -r SI be the natural projection. This is a differentiable 
bundle with fibre M, and group G,0, and K is transitive on the base. Lemma 
5. 2 may be paraphrased as: kec,rM,r- 1k(xr) is a K-equivariant global section 
of the bundlle UP-- SP. Lemma 5. 2 also allows us to identify SI with K (xr). 

5. 4. Definitions. We will decompose g? under CA-r in order to study 
Sr. Let TA-rPad(CA_,)2. We define: 

1': the set of all elements of q fixecl under rm_r2 

fr =gr n 

pllr: qr n p 
= 

[pr p1F]; 

ai: fir + pip; 
I J: the centralizer of g1' in gr'. 

Here gr is a subalgebra of g, and gr fr + ? il because mr-r2 preserves both 
f and p. f21' is the centralizer of pil in g1', by the Jacobi identity; the decom- 
position theory of orthogonal involutive Lie algebras now implies that 
f- fl_ + f2P and gr_ gil 0D 21', direct sums of ideals. 

7A-r preserves and has square I on f1r; its square preserves and has 
square I on f and p. Thus we define: 

Tf": the (+ 1)-eigenspace of -rA-r on f,r; 
q11': the (-1)-eigenspace of rA-r on fir; 
q92: the (-1)-eigenspace of TA-r2 on f; 

J2r: the (-I)-eigenspace of T- r2 on p; 

fr fir + 12' and q"rq1 qlp + q2p 

Now we have -fr 1r + qjT, f" P P+ q1`, f T + qr, and P Plr + 2r. 
AWe finally define some related subalgebras 

al P' - fP + iplrp 

IF,o _ fi+ ? lr 

flr' - fir + ,qlr 

Ir r + iqlr _= 12r D fir*1 
of a. 

Latin letters denote the corresponding analytic subgroups of Gc, except 
that L"r wsas already defined to be the isotropy subgroup of K at xl' and 
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Lip will be the isotropy subgroup of Kip at xl'. We will justify this exception 
by checking that fP is the Lie algebra of Lr. As Lr c G and Ca-rSCA-r-' 

is the symmetry of 11* at xr , this check is reduced to seeing that Ir is the 

fixed point set of ad(c-rSCar-1) on f. To prove the latter, we first observe 
that f1' is the fixed point set of Ta-r 0ll f, for the fixed point set is in IT 
by definitioln of qr, the fixed point set contains 11" by definition and the 
fixed point set contains Lp as a consequelnce of CA-r C Gil. Now let T' C f 
and observe that 

ad (CA-rscA-r-1) 1 V ad (cA -rscCA-r-1) * ad (s-1) V 

ad (cA -r) ad (ad (s) CA-r) V - 
TA-r (TV) 

Our assertion follows. 

5. 5. LEMMA. MpIN - Gp0(x) is a h ermitian symmetric subspace of Il. 
L,p is the identity component of the ker nel of the action of Gp'0 on 3llr, 
G1p'0 is (locally) the connected group of analytic autornorphisms of MlYr, 
and g11 and q1pho are semisimple. The Cayley transfornm on li' is c - cA C Gil, 
Ml is of tube type if r +, and ill' is of tube type if and only if Mr is of 
tube type when r . 

Proof. g g, c gr by collstruction. Z is the sum of its projections Z' 

and ZO on b+ and t, t C Y gag, and b+ is cen-tralized by each c,,. This prov,es 

Z C gr, so Z C gPo and it follows that Ml' is a sub hermitian symmetric space 
of M. The statement on L2r is immediate from the definition Of I r, alnid 
the assertions on G1i'0, q1P'o and 1l' follow. The next statemeint follows frolml 
ao C E gao c 01rFo which is a consequence of E ga C gC and the fact that 

a EA aE A 

ga n p generates ga. The remaining assertions are immediate froimi Leiia 
4.4. Q.E.D. 

5.6. LEMAMA. r,-r interclhoanges Pj21' and q2j; ad(cA-r) interchanges q2' 

with the (-1)-eigenspace of TA-r on P1i; Pi]== ?r+ P-r,i where Tao-r iS 

+ 1 o; Pr and has square 1 011, PA-r,1, anzd where 1J ad Z inzterchaniges the 

(? 1)-eigenspaces of TA-r on pA-r, 

Proof. Let V C P2" and R C q21'. Theni 

(TA-rV TA-r = -1T , T-r-r TA-r 2V = TA-rPV 

and 
''TA-rR =TA-r l(- R 1 Ta-r11R = TA-r TZ-r 2R =-TA-rR. 
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Thus 7m-r(p2j) C f and i-A-(q2r) C P. Now T,-r comutes with its own 
square, and this implies `r-r(P2r) C q2r and TrA-F(q2r) C 42r. Equality 
follows from dimension considerations. This proves the interchange state- 
ment for rT-r. The proof of the interchange statement for ad(cA-r) is 
similar. 

Lemma 4. 4 shows P -Pr 4 P-r, +P2 r, direct sum; thus we need only 
check that J-= ad(Z) interchanges the (+ 1) -eigenspaces of 4AP,1. This 
follows from the fact that Lemma 4.2 allows us to apply [7, Lemma 4.7] 
to ]IAr. Q.E.D. 

5. 7. THEOREM. Let Lr acnd Llr be the iso/topy subgroups of K and 

Kir at xr= CA-r(X). Then: 

5. 7. 1. Sr K(xr) - K/LIc and dim. Sr-dim. ,2r+ 2 dim. PA-r,l. 

5. 7. 2. Ur - GO (xr) and dim. Ur - dim. ,2r' 2 cdim 4J-r 1 + dim. pr. 

5. 7.3. a K(C -r ()) is a complex totally geodesic submtnifold of M'*, 
and is thu1st a compact hterimitiaa1 symmetric space; Kr is the isotropy sub- 

group of K at aC-r_2(X), so K(CA-r2(X)) _K/sKI. 

5. 7. 4. Thte iap _(__) -(Ck(cA_(.r)) is a fibering of SI over K(cr 2(X)); 
the fibr-e over 7k(CA-r2(X)) is kKjr(x.), ithich is totally geodesic in Jl`: 

Rierac(nnian synmnmetric and isometric to KjP/L1P. 

5. 7. 5. Thle followving statements are equivalent: 

(i) The partial Cayley -Iransform) c,-, has order 4, i.e., g - , i. e., 
K(cA-r2(X)) is a single point. 

(ii) SI' i a totally geodesic subinanifold of AP (in wvhiclh case it is 
Riemnaniani .sygiimetric and K q)lduces the iargest connzected group of 
isometfries). 

(iii) Let if = .111 X X-iIr be llie deco inpositiot into irreducible 
faclors, (antd let cA -rjlr = F1 X X Fr. be thte corresponding decomposition 
of the boundary comnponent C,&rlIr. Then, for eachl j, either Fj~-7j= or 3j 
is of litbe type actd Fj is a point on its Bergrgman-ilov boundary. 

Proof. Sor - K(x") was observed in ? a. 3, anid K(.r ) _ K/LI by defi- 
nition of Lr. NOow dim. SI - dim. K - dim. LI'- dim.f -dim.Id clim. qr 
-= dim. q1l+ dim. q2j. Lemma 5. 6 shows that dim.q 2- -dim.P2r and 
dim. q "--dinm.A r,,. This proves (5.7. 1). 

(I = GI (lIr) GI (Gr (X)) - GO (x), and Lemma a. 2 shows that 
dim.T _ U" dim. SI' dim. Mr = dim. pr. Now (5. 7. 2) follows from (5. 7. 1). 

The isotropy suhalgebra of f at C_-r2(,x.) is the fixed piont set in f of 
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conjugation by the symmetry C&-r 2SCZ-r -2 = C&-r4s there; thus f' is the 

isotropy subalgebra of f at C,-r2 (x). On the other hand, f _ fp + q2F, and 
conjugation by the symmetry is 1 on q2"; thus the orbit K(Ca r2 (X)) is 
totally geodesic in 11*. The complex structure operator at C-r2 (X) is Ta-r(Z). 

LTh-rZT q2P] -= m-r-1 [Z, Tm-rq2"] T%-r-1 [Z, P2"] == 7r-1 (W2P) 
= q2. Thus 

K(cA-r2(X)) is a complex submanifold of M*. K(C&-r2(X)) is simply con- 
nected; this is seen in the irreducible case because a local toral factor would 
be a coset space of the (one real dimensional) center of K, and the assertion 
follows in general. Now the isotropy subgroup of K at C&-r2 (x) is connected; 
as its Lie algebra is fr, it must be the analytic group K". This proves (5. 7. 3). 

The map SP->K(C&-r2(x)) is given by the map kL -4 kKr of K/Lr 
onto K/K"; to prove it to be well defined, we must check that Lr C KI 
(although we do not yet know that L" is connected). Kri is the iden- 
tity component of V, where V is the full centralizer of T- _2 in K. As 

KIV is hermitian symmetric without locally euclidean factor, as checked 
in the paragraph above, it is simply connected. Thus V is connected, and 
flow K" - V. On the other hand, LIr- K n ad(cAr)K is contained ill the 

centralizer of Th&-r in K. Thus Lr C K". Now SI- K K(CAr 2(X)) is a well- 
defined fibering. The fibre over k(c-r 2(x)) is kKI(xI) =- K1" L1'(xaY) 
-IkK "(xI3). K1"I(xI) is totally geodesic in Ikl*, because CA-rSCA-r-1 is the 

symmetry at xi, and because ad(cA rscA 'r-)Kl_"r^-rK_" '=Ki. Now 

kKK1" is totally geodesic in l11*. We have proved (5. 7. 4). 

Let Ce&r= 1. Then g =g so in particular f fI aiid K (A r2()) 

_K/KI is a single point. If f fI, then q2 o=, so Pj2I-O by Lemma 
5. 6, whence g - gr and CA- 4 = 1. Now the conditions of (i) of (5. T. 5) 
are equivalent. 

Assume (i). Then s commutes with CA-r2 because CA =r 1, so 
a-r(f) =f. As - r coincides with ad(cA-rscA r-1) on f, Sr-K(xr) is 

totally geodesic in M*, which is (ii). Assume (ii). If 11f is irreducible then 
K is the largest connected subgroup of G which preserves K (x"), by maxi- 
mality of f in g; now f =ad (c -rscA r-1) =T, -r(f) by (ii), and (i) 
follows via Lemma 5. 2 froM q2I=r 0 = P2. Now (i) is equivalent to (ii) 

in (5.7.5). 

For the equivalence of (i) and (iii) we may assume 11 irreducible. 

Assume (iii), then Mr is a point and -il is of tube type, so CA-r = c and 

[7, Theorem 4. 9] C4 = 1, proving (i). Assume (i). Then i3 =-- _ll". As 
-I'== Mr X MA-r,1 by PI"= Pr -I+- t-r,i, and as I11 is irreducible, wve must 



BOUNDED SYMMETRIC DOMAINS. 927 

have r o 0 r r = A; (iii) follows. Now (i) and (iii) are equivalent in 

(5.7.5). Q.E.D. 

5. 8. COROLLARY. The fundamental group 7ri(S.) is the direct product 

of a finite abelian group and a group which is free abelian with one generator 
for each tube type i?reducible factor of Mi whose Bergman-Silov boundary is 
a direct factor of CA-rMr. In particular the first Betti number of SI' is the 
numnber of irreducible tube type factors of Mi wvhose Bergman-Silov boundary 
is a factor of cA-ArMr. 

Proof. We may assume M irreducible. Now Z C c{J if and only if 31l 
is of tube type and P = , for Z =Z' + Zro + ZA-r where Z' + Zr C II', 
ZA-r C qlr, and Z' = 0 if and only if Mi is of tube type. Let f,, be the 
derived algebra of f. As dim. f - dim. f. == 1, f., I Z unider the Killing 
form of g, and Tr I q1, it follows that 

(i) if -il is of tube type and r 4 then Ir C f,,, and 

(ii) otherwise f, I-r P . - 

We also have 

(iii) 7r,(SI) is abelian 

as in [7, Theorem 4. 11] because SI' is fibered over a hermitian symlmetric 

space of a semisimple group with synmmetric fibre. Now our assertion follows 
from some honiotopy sequences as in [7, Theorem 4. 11]. Q. E. D. 

6. The stability group of a boundary component. GO is transitive 
both on the set SI' of boundary components of type F and on the union Ur 
of these boundary components. Let Br be the set of all elements of GO 
which preserve ca rMr C SI' and define EI' to be the isotropy subgroup of GO 
at xr -cA (x). Now 

srI-=GO/BI' and UI' GO/EP. 

We will study SI' and UI' by examining Br and Er. 

6. 1. We have LI' C EI' C Br because LI' is the isotropy subgroup of K 
at xr and xi'C CAPrMrP and LI== K n Br by Lemma 5. 2. K is transitive 

on SI' so GO KBI; now G= BIr K and Br is traiisitive O0l M11, BI'/LP-- M. 

1M being connected and acyclic, it follows that LI' is a maximal compact 
subgroup of B". 

EI' is in general not transitive on M. For if El (x) ==M, then 
dim. EI- dim. Bi' because K n BI=- LI== K n Er, whence EIr BI' because 

it meets every component. Then cA-rMr = xI' because Gro C Br and so r-' . 

Now LI' is maximal compact both in BI' and Er, and these groups are 
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generated by Lr and their respective identity components Bo" and Eo0. 
This brings the study of Br and Er down to the study of their Lie algebras 
br and e'. We will need some definitions in order to calculate these Lie 
algebras. 

(6.1.1) If it is a subspace of g or g? and uc is the sum of 1C-root 
spaces, then Wt (resp. u-) denotes the sam of the positive (resp. negative) 
root spaces in 1Ct. This defines jpiI+, q2 r?, p? and pj? (i=1, 2; E r, A-r). 

(6. 1. 2) +rj+ q2r+ + t~2'? and rI ? + r,rA complex subspaces of l 

( 6. 1. 3 ) rr+? = - n ad (cA -r) go, Pt A -r, 1= n ad (cA - r) g? and 

- 
n=i+ + r1 1'? , real subspaces of gc. 

(6.1.4) Recall fj-* - f_, + iqjr and f"r - {r + iq r. 

Convention. From now on we assume that a > ,B for a C r and ,B C A r. 
This causes no loss of generality because [8, Theorem 2] on each irreducible 
factor of MI the small Weyl group induces all permutations on the strongly 
orthogonal roots. 

6. 2. LEMMA. ad(Z,-rO) coincides with I ad(Z) on P2I'c and TrA-r 

interchanges p2F? with q2F? 

Pr0oof. Z = (Z' + Zro) + Z1-ro where TA-r is + 1 on the first summand 
and - 1 on the second. Now 7--rZ = Z - 2ZA-r?. Let E C P2rC; E TA-rQ 

with Q C q2FC by Lemma 5. 6, and 

(ad(Z) -- ad (ZA-ro) )E -cad(TA-rZ) (TA-rQ) TA-r ad(Z) Q 0. 

This proves the first statement. 

We may now assume g? simple. Let A * * *,} with 8 < 82 < 

< sr, so r = {8+41 * * * 7 Sr} by hypothesis on the ordering of roots. It is 
known [8, Theorem 1] that the compact simple roots have restrictions 0, 

-82 ,81)* 2(. r - Sr-1), and perhaps also -18r, to t-. Thus ad(ZA ro) 0E 

is 0 or (i/2)E,. It follows that ad(ZA-ro) Ey iayEy with ay O for 

every compact positive root y. The first statement says that ad (ZA-rP) is 

+ i/;? on P2r?. As TA-ro(ZA-r0) Z--Z-r? it follows that ad(ZA-r0) is ? i/2 
on TA-r(P2r?). Thus TA-r(P2 r) C q2r? and the interchange statement fol- 

lows. Q.E.D. 

6. 3. LEMMIA. The eigenvalues and eigenspaces of ad(- Y,-r?) are: 

eigenvalue eigenspace on gc eigenspace on g? 

0 ad(cA -r) -ltfC + prC ad(cA -r) -lf* + Pro 

4- ad(cA -r)-ltrr? ad (CA-r)-1112r? 

+'--- 2 ad (cA-r) -1PA-rl? ad (cA -r) -1n1l,r 
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In particular, fP* I2r' 0 flr* --rc f ad (Ca-r) gO and is a real form of frc, 

irs' i, (t r-eal form of 2r? , and n1r? is a real form of pv-r,i?. 

Proof. ;c - frC + q2Irc + p2rc + PrC + p,-r,ic. ad(Za-r0) is T+ i on 
P,-r,1 by Lemma 4. 4, i i/2 on q2r? + P2r-P by Lemma 6. 2, and 0 on Prc by 

definiitioni of gr. frC I2FC + (frC + zf,r,lC) for pr = prC+ P&-riC by 

Lemiima 4. 4. Now ad(ZAro)frC O0 because Z-ro is central in L_ri1c, 

centralizes frc by construietion, and centralizes f21rc by [I2, f lr] 0 and 
-rC c fl. Now we know the eigenvalues and eigenspaces of ad(ZA ro) 

on c1, and the assertions for ad(-YA-r0) follow from 

ad ( cA r) -1 (2iZA-r0) =- Y,-r?. 

As - YA-r0 E g? and ad (- YA-r0) is a semisiniple linear transformation 

with all eigenvalues real, every eigenspace of ad(- YA-r0) on gc is the com- 
plexification of its intersection with go. Thus we need only prove that 

ad (CA -r)-P- r, 1 n g= ad(C- r)-1t1r? 
that 

ad (cA,r -)1rj"? n g- =-ad (C,&-r) -lt r 
and that 

(ad (cA) -f rC + PrC) n gO ad (0C& - r) -ifr* + Pr? 

The first two equalities are immediate from the definitions of the irt and 

P C n -I tr by construction. Thus we need oinly prove that 

ad ( C,&-r) -ifrc n gO = ad (c,&-r) -lr*. 

As fIl: is a real form of frc, it suffices to check that ad(cA r)-lfr* C go. 

fr*c 
- r + iq_r and ad(cA r) is trivial on Ir. Thus ad(cA-r)'1V 

_Ir C f C go. Lemma 5. 6 says that ad (cA-r) -1 (iqlr) C iplr C po C go. Now 

ad(CA r)-1f1' C gO and the Lemma is proved. Q.E.D. 

6. 4. LEMMA. [q_ 2 P? P,&-] r,l r is a complex nilpotent sub- 

algebra of degr-ee 2 whltich1, is unipoteidt in Ihe cadjoit r-epresentation of cic, 
and ir?- is a r-eal for-m of trr. 

Proof0 [q2rPt, P21?] C - by addition of eigenvalues of ad(ZA-r?) and 

because [fC,p?] C p=. [p2J?, P2?] 0 and [qV'P, q2P;] =0 now by Lemma 
6. 2. Finally [tr?,,&-rj?] = 0 by addition of eigenvalues of ad (Z&_rO). Thus 

rrF is iiilpotenit of degree 2. 

Itt> is a real form of tr", and ad(r]+) is unipotent on gc by additioni 
of eigelnvalues, by Lemmiia 6. 3. Q. E. D. 

6. 5. THEOREMr. Vr = t)ro + ad (cA r)1 (fFr + l1-) ; bl is the stm of 
the non ossitive eigenspaces of ad(-YAP-,) on g? anld is the normalizer of 

ad(rA-r)- -'- in go. er is tlhe sutbalgebra ad(cA,r)-1 (fr + ir-) of br. 
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Pr-oof. The isotropy subalgebra of gc at xl' is ad(cA -) (-C T+ p+), 
which we decompose as 

ad(c&-,)fc + ad(c,-,)q2PC 

+ ad(CA-r) P2r+ + ad(CA-r)PA-r, 
+ + Pr+ 

As -r-rtrfr=-fr we have ad(c^-r)frc ad(CA r)-lfrc. Lemma 6.2 give; iis 

ad(c&-r)-1r2r- _ ad (cA r) V21+ C ad (cA-r) q2rC + ad (c& -r) P2P+. 

Finally ad(cA-r)-14^-r = l--ad(CA-r)PA-r,,+. Thus the isotropy subalgebra 
of gc at xl contains ad(cA -)-1 (IPc + tr-). Now Lemma 6. 3 say that 
ad(cA-r)-1 ( + nr-) lies in the isotropy subalgebra of g? at xr. 

The isotropy subalgebra of g? at xl' has dimension dim. G -dim. l'r. and 
this is equal to dim. f + I dim. 4A-r,j by Theoreml- 5. 7. Now 

dim. f + 2 dim. PA-r,1 = dim. fr + dim. q2r + dim. n1r- 
-dim. f :' + diim. 'r- = dim. ad (CA-r) -' (f'r + u") 

The fiiial assertion of the Theorem is proved. As Pro C b", as 

pro n ad(cA r)-1 ( Pr* + nP-) 0, 

and as dim. pro =- dim. Mr = dim. Ur dim. Sr, it follows that 

br =-J r? + ad (CA -r) -1 *r + nXr-) 

which is our main assertion. 

The eigenspace assertion now follows fronm Lemma 6. 3, anld the nor- 
malizer assertion is immediate. Q. E. D. 

6. 6. Remarks on br. The linear transformation ad (ZA-r?) is 0 o1 Pr 
and ? On 0 A-r,1; thus [Pr,^P-ri] is in the (? 'i)-eigenspace of ad(Z,-r?) 
on f, which is zero. We conclude that 

(6. 6. 1) [urC, g-1C] _ 0. 

Recall that 

plr Pr + PA-rj n flr -L plr, p1r] fr = prn Pr] 

and -rj= [PA-r,1PA-r,1]. Witth (6. 6. 1) this gives flr_ 0fr E f-r,l (direct 
sum of ideals) ; now it follows that 

(6. 6. 2) flT --fr (D fA-r,l*. 

Now (6. 6. 2) and gr _r + pr T12r C glr yield 

(6. 6. 3) fP*+ Pro lro (D 12 (D f -r,l 

The algebra (6. 6. 3) is a reductive subalgebra of ad(cA-r) g which is a 
complement to nr- in ad (CA-r)br. It follows that 
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(6. 6.4) nI- is the nilradical of adc(c-r)b", 

(6.6.5) gro0I2" DfA-r,l is a reductive complement to n-r in ad (cA-,) br, 
and 

(6. 6. 6) ad(cA-r) b"= (ro D I02 e f0-r,l*) + nr, semidirect suni. 

er denotes the isotropy subalgebra of g? at xr. As above we see that 

(6.6.7) nr- is the nilradical of ad(cA-r)eCr 

(6. 6.8) fr 0 f2r D f-r,l0 is a reductive complement to utr- in ad(ca-r)er, 

and 

(6.6.9) ad(cA- r)=- (fr D0I2r 0fD -r,i0) +?ll-, semidirect sum. 

6. 7. In order to describe Br we define 

(6. 7.1) P,-r,l+ = exp (pa-r,i?) C Gc and N, ==ad (cA-r) Go n PF-r,,+, 

(6.7.2) B"r exp(rr+) c Gc and Nr?=ad(c&-r)GOnfRr . 

Lemma 6.4 says that every element of ad(ri) is a nilpotent linear trans- 
formation of gc. Thus PF-r,j+ and RI" are unipotent subgroups of GC, and 

exp: 4X-rf*FA-r and exp: rr?-*Rr? 

are one-one onto. In particular, the groups PA-Pr,? and RrB are connected 
simply connected nilpotent Lie groups. Now let - be conjugation of Gc over 
ad(c,-r)GO; -q induces involutive automorphisms of the real groups PAPr,i? 

and Rr? with respective fixed point sets N1r+ and Nr?. It follows that 

(6. 7. 3) N1"r and Nr- are the analytic subgroups of ad(ca-r)GO with Lie 
algebras ttlrt and nr. 

In particlar, Nlr+ and Nr? are connected simply connected nilpotent Lie 
groups. 

6. 8. THEOREM. Br is a parabolic subgroup of GO and is the normalizer 
of ad(cA-r)-1Nr- in GO. The identity component of Br is given by 

Bo" = { Gro L2r ad (cA-r) lKA-r,l*} ad (cA-r) -1N"- 

semidirect product; this is the Chevalley decomposition into reductive anld 
unipotent parts. 

Remark 1. G0/B"- Sr is a real projective variety defined over the 
rational number field. For B" - Brc n GO for a parabolic subgroup Brc of 
Gc, GC/BrC is a complex projective variety defined over the rationals, and 
a result of Borel [1, Proposition 3. 7] gives the conjugation of Gc over GO 
defined over the rationals. 
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Remarkc 2. The reductive part of Bor admits 

Gro X L2r X ad(cA-Pr)-1KA-r,j 

as a covering group. 

Remark 3. Br is the subgroup of GO which preserves the boundary com- 
ponenit -1cA-rMr= (6cA-lcrg)Dr of D ill P-. 

Proof of Theorem. Let BrC denote the analytic subgroup of GC whose 
Lie algebra is the complexification1 brc of br. As - YA-r? is a basis of the 
Lie algebra of a split algebraic torus of GO, and as brc (resp br) is the sum 
of the nonpositiv-e weight spaces of ad(- YA-r) on gC (resp. on go), BrC 
is a parabolic subgroup of Gc and BrC n GO is parabolic in GO. 

Let B1r denote Go n BrC. Now Bo" is the identity component both of 
Br and B1j, and ad( cA -r ) -r- is the llnil)otent radical of all three by 
(6. 6. 4) and (6. 7. 3). Bj" is the full normaliser of ad(cA r)-1Nr- in GO 
because BrC is the full normialiser of ad (cA-P)-1Rr- in GC; now B" C B1j. 
On the other hand brC C ad(cA) (fC + p+) as in Theorem 6. 5 so 
BrC C ad (cA r) (KC. P+) ; thus B" == BrC n GO C ad (cA- r) ((KC J)+) n GO) 
=-Br. Now Br" Blr, parabolic subgroup of GO which is the nornmalizer of 
ad(cA-r))-1-Nr- in GO. 

The assertions on Bor now follow frolmi Theorei 6. 5, (6. 6. 5) and 

(6. 6. 6). Q. E.D. 

6. 9. COROLLARY. If JI is irreducible and of ran/c1 r, atnd if IF htas 
precisely t elemnents, thten B" is con jugate iin (GO to thte group F k-,0 of 
Theorem 3. 4. 

Remadark 1. This corollary identifies B"' for redlucible 1i In- mlleans of 
Corollary 4. 10. 

Remark 2. It is instructive to compare Corollary 6. 9 with Theorem 4.13. 

l'Poof of Corollary. Recall the maximally split Cartan subalgebra 
t= - + a of go. :Now n =ty- + Ja? ad (exp (7r/4)Z)f is a maximally split 

Cartan subalgebra of g?; Ja0, the span of {Y601}6,EA is the split part of it. 

A {81, , 38r} with 81f < . <r. Define A (a) to be the last a 
elements of A so =-A(t). Let Y(a) ==- YA-,a)0; {Y(1), ,Y(r)} is 
a basis of the split part Ja0 of it. We order the dual space of Jao lexico- 
graphically by values on this basis. Let ,8 be a iC-root of gc. Then 
ad( cA) *,8 = l'is an t)C-root. If /3* is noncompact positive, then 13 (ZA-A(a)?) 
is 0, i/2 or -i; as 

acd(c1-1) (2iZ,,A((,)0) = ad(cA A(a,))l(2iZA (()) 17 (a). 
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we then have /3(Y(a)) equal to 0, 1 or 2. If /3' is a compact simple root 
we similarly have ,8(Y(a)) equal to 0 or -1, so ,3(Y(a)) ?0 if /3* is 
comiipact negative. Now ,8 I Jo > 0 implies either 38'* is noncompact positive 
or /3* is compact negative. ad (cA -A(a) ) bU1)c contains every nioncompact 
negative and every compact positive jC-root space; thus the bA(a)c are para- 
bolic for the split torus Jac. Now our assertion is the content of Theorem 
3.4. Q.E.D. 

7. The partial Cayley transforms of D. In this sectioni we shall apply 
the partial Cayley, transformation CA-r, where r is a subset of A of the type 
considered in Section 6, to the domain D embedded in 4-. It will turn out 
that the result of this transformation is a Siegel domain of type III, which 
we shall describe explicitly by determining the action of ad(CA-r) B" on Wr. 

7. 1. v, anid v? denote the conijugation of gC with respect to g anid g?, 

respectively; < , > denoting the Killing form, we define a positive definite 
Hermitian form by <U, V>1, - <U, vV> on gC. The adjoint of a linear 
transformation ad (V) (V1C gC) with respect to this form is given by 
ad(V)`* -ad(vV) (cf. [7], ?6.1). We have 
v is a complex antilinear map of p- onto r7 preserving this direct decoin- 
position. 

For any EC p- we denote by E1, E., and E3 the projections of E onto 
P,A-r,-, P2r- and r-, respectiv-ely. So E = E1 +E., + E3. 

By Lemma 6. 3, nlr- is a real form of 4=,-rl-. The termiis " real," 
"imaginary," " Hermitian " will always refer to this real form. As in Section 
4, we have Or 1(Cz_r(X)) i E E-C in1r-. By [7, Propositionl 6.21 

applied to the pair (&-ro, LA-r), the orbit K r,l*r(- ior) is a self-dual cone 
in 1t1r-; we shall denote it by cr. 

7. 2. LEMIMA. For- all U p2r+, we have TA-r(U) [U, or]. 

Proof. First we show that, restricted to 42rc + r2cC, TA-r and ad(XA-r) 
coincide. By Lemma 6. 3, -P2rC + q2rC is the sum of the (? 1) -eigenspaces 
of ad(YA r?) on gC. We have XAr iX,Aro -iad(ZA-r0) (YAr?0), and 

2rC + q2WC is invariant under ad(ZQ r0). It follows that P2rC + q2rC is the 
sum of the (?+ i) -eigenspaces of ad (XAFr). Now, if ad (XA-r) U ? iU, 
then T-r(U) = (exp(w77/2)ad(XA r)) (U) ,e+? i9U=-2 - 

iU, proving the 
assertion. 

To prove the Lemma, let U C P2r+. Then 

Th-r(U) ~~~a] [U,Xtr Ui Y Eo,]._ E][U, Or], 
aEA-r aEA-r 

since [U, Ea] 0 for all a E A p, p+ being abelian. Q. E. D. 
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Definitions. For all W C Dr we define the linear transformiation 

M (IV) : Pjr- ->P2r- by 

pt(W) U = ad (W)rA-r v(U), 

For all iV C P2r1 we define the linear fuclition fv: r-- -2'r- by 

fv (W) (I + tt(W) ) V. 

Finally, for all WVC Dr we define the vector-valued bilinear form 
Ay: P Tr X P2r JA-r,l- by 

AIv (U., V) - (i/72) [U, Th -r (v (I + It ( W) ))-lV] . 

It is easy to see that these definitions are meaningful; for the definition 
of AIv we only have to note that 11 ,u(.W) 1 < 1 in the operator norm with 
respect to the real part of < , >, restricted to P21'. In fact, lr,-r and v are 
isometric transformations on gc in this norm; TA-r v maps p2r- onto q2"r+ and 
on q2r+ we have 11 ad (W) 11 < 1 for all W C Dr by Lemma 4. 6. 

7. 3. LEMMA. 

(i) For all kC Kr*, WE Dr and U, VT ECr-, 

ad (k) Aw (U, V) l Aad (k) I (ad(le) U, ad (k) V) . 

(ii) For all W C Dr and U, V C P2", 

A-0(U., pt(W) V) ) -- AO (7,1 (IV) U). 

(iii) For all V C Dr we have A A() + AIV(2) wvhere 

A Awv( % l 9Jlv(2): P2r' X P2 r- > A-ri 

care defined by 

AW()(U, 7V) (i/2) [U,&A-rv (1 -,(W) 2)-17I ; 

Awv(2) (U1 V) (i/2) [U, 'r-r v (1-, (W) 2) (W) V]. 

&IV(') is Hei'mitian bilinear and such that ATv() (U, U) C cr for all U E P2r"-; 

Al,(2) is complex bilinear symmetric. 

(iv) For any W C Dr, Aiv is nondegenerate in the sense that if 
AV(U, Vo) =0 for all U E2r-, thenVo 17 0. 

(v) For any fixed U, V C P2rP Alv (U, fv(W) ) is a constant vector, 
independent of W. 

Proof. Since 11 pu(W) 11 < 1 for all lTW C Dr, we have the convergent series 
00 X 

expansions (I-+}--(W ))-1= (-, p(W))n and (I - (WV)2)-1 > (IV)2n. 
n=o n=O 

These will be used several times in the proof. 
To prove (i) we note that fr= ll + iqlr. ra-r and v are both trivial 
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on Ir and equal to -I on iqj. Hence Tr-r v is trivial on fr*, and thus ad(k1) 

commutes with I-r-r v for all k C IKr*. Also, ad((k) preserves p&-r,l- P2 r and 

pr bvT Lemma 6. 3. 
It follows that 

ad(k)A1v(U, V) ==- (i/2)ad(k) [U,p -r-r v (I +p(W))>'V] 

= ('i/2) [ad (k) U, ,&-r v (I + l-1 (ad (k) W) - ad (k) V] 
Aad (k) W (ad (k) U, ad (k) V) . 

To prove (ii) we use the definition of A0, the fact that T-rr commutes 

with v (by definition of T7-AP), then the Jacobi identity and the fact that 

[U,7] == 0: 

A O ( Up n ( W) V) - (i/2 ) [ Up 7A-r v ( V )]] 
-- (i/2) [U, [rA-r v(W), -V]] 

-- (i/2) [1V, [TA-r v(IV), - U]] 

AO (Vp, u(W) U). 

To prove (iii) we note that 

Alvl(l) ( Up V) -AlO ( Up (I - t(WV) 1) -1V), 
ATV 2(Up V) AO ( U, (I (W) 2) 1(W) V). 

Hence Aw - Aiv(l) + A1y7(2) is immediate. 

-Now we prove that A0 = AO(M) is Hermitian bilinear and AO (U, U) C cE 

for all U C l2I-. Since A0 is linear in the first and antilinear in the second 

argulment, it suffices to show that AO (U, U) C cI for all U. Since cr is a self- 

duLal cone, for this we only have to show that <A0 (U, U), V>, 0 for all 

Uc E2r-, VC cr. 
Given any such U and V, there exists an element k C KA -r,1* such that 

ad (l) V itor. Denoting U'== ad (k) U and using (i) we have 

<AO ( Up U),p V>, =- <AO (PU, U'), -ior>, 

Now note that by Lemma 7. 2 we have 

rA-r v(U)) [v(UP),or]= ad(v(UP))or=ad(U')*or. 

Hence 

AO! ( U;) (i/2) [ P,'r 7- r 1' ( U') ] (i129 ad ( TJ') ad ( U') *Or 

Therefore, 

<A:O ( U, V) n T7>v / adl ( U') ad ( U') "o Pto> 

=<ad (U') -or, ad (U') *or>.> O, 

proving the assertion. 
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To prove the desired properties of Alv(1) for arbitrary W C Dr, we first 
note that AO(U,M(T'J)2V) -. A(4W)V,,u(W)U)=- AO(&(W)2U,V) for all 
U, V by (ii) and by hermiticity of A0. Repeated application of these identities 
gives A0 (U,1t (W) 211 U) = Ao (/K (W) nU, p(W)n U) for all it n 0. Now wte have 

00 00 

ATv(1) (U, U) E AO (Up ,A(W)2nU) E Aop, (IV) Unp (W) U). 
n=O n=O 

By what we just proved, each term of the last sum is in cr; hence 
Aiv (U, U) E cr for all U p2r-. Since Aw(l) is linear in the first, antilinear 
in the second argument (by complex linearity of /,(TV)2), this also shows 
that Al,(') is Hermitian, as we had to prove. 

Ajv (2) is clearly complex bilinear for any TV C Dr. To prove that it is 
symmetric, we use the definition of AIV(2), hermiticity of A0,(U, (I ,U(4W)2)-1V) 
-A1vM1) (U, V) in U and V, hermiticity of A0, then (ii) an d again the (lefini- 
tion of AwI (2); denotinlg the conjugation of lpA-P,l- with respect to ii1- b p, 
we have 

Al(2) (U, 1) =AO(U, (I ,(W)2)-l2) (W) V) 

pAo (Ij(W) VP (I _ t(W) 2) -1U) 
AO ( (I _,k (WTV) 2 ) -1 Up /t (W/r) V) 
AO0 (VP /t(W4) (I K(W4) 2) -1U) 
Awv(2) (1V U). 

This finishes the proof of (iii). 
In order to prove (iv) it is enough to show that A0 is non-degenerate. 

The relatioii A1v (U, V) = AO (U, (I +- p (W) ) -117) will then imply that Aiv 
is non-degenerate. We show that AO (U, U) 0 implies U = 0. 

Suppose AO(U, U) 0 for some UC EP2j-. As in the proof of (iii), we 
have by Lemma 7. 2, 

0 <AO (U, U), - io> 1 <ad (U) *or, ad (U) *o">^. 

Since < , >^ is positive definite, this implies ad (U) *o 0. This means 
[-v(U), r] -0. Now, since or- E E_, it follows that [v(U), IJ7Za 

aEA-r 
O, i. e. ad ( YA-ro (v (U)) = 0. Since v(U) C P92+, by Lemma 6.3 it follows 

that v(U) =0. Hence U 0, as we had to show. 
The proof of (v) is trivial from the definitions; we have 

Al(Uf ( )V) (i/2) LU., T&-r ],(I+ /(IV) )-'(I+ -( IV')) VI 
=- (i/2) [U, rT-r v (V)] 

which is indepeuzdent of IV. Q. E. D. 

7. 4. LE]ii. TlT e I I- rT- 1' iS a r'Ceal lb1let isomniorpltisis Of P2O'- 
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on-to t21'; so every element of iii'- Ca n. uniquely be written as V- VT(V) 

with V C 

Proof. If V1 C 2-, then TAP v(V) C q2+ i-2 - (P2" + q2 )nad(cA-)j0 
is a real form of P2r- + q2r+, hence dim. n21 =- dim. p2r"- dim. q2r+. Now it 
suffices to prove that l -T-r v (iV) C ad (cA-r) go for all i C p2r-. 

The involution of gc with respect to ad(cA-r)go is 

ad ( CA) -r0 ad ( CA =r) ad (CA-r) ouv ad ( CA-r) -1 

=- ad ( cA-,) -1V ad ( cA-r)-1 =OTA-r-1. 

For V C p21r we have 

,UVTA-r-:1 ( V) -UVTA-r ( V) TA-r 11 ( V) 
F1TA-r-r1(TA -r V (V ) =) u (V) =- V. 

Hence V -TA-r v(V) is invarian-t under OTTA-r-1, and so is contained in 
ad (CA- r). Q. E. D. 

7. 5. PROPOSITION. Nr- acts ont p- by 

g(E) E + U + fT7(E3) + 2ilA.E3(E2, fV(E) ) + iAT,,(fv-(E3), fv(E)) 

whlere g=exp(U + (I -TA-r 1v)(V)), U C mlr-, VC P2r-. Kr* acts on it 

by the adjoint representation; it preserves PA-r1-, p21- and pr-. On pA-r-^ , 

K(A-rl - is real, Kr and L2, are trivial. These actions are e-equivariant; in 
particular Kr* * N- preserves 4 (p-). 

Proof. It is easy to see that KC and P- act on p- in a t-equivariant way 
by the adjoint representation and by translations, respectively. Now let g 
be any element of Nr-; it can be written in the given form by Lemma 7. 4. 
By the Campbell-Hausdorff formula we have 

g exp(U + V -TA-r v(V) ) 

exp(U) exp(I[V, TA-r v(1)]) * exp(V) exp(--TA-r v(V)) 

since, by Lemmas 6. 3 and 6. 4, all other brackets vanish. Now - TA-r v (V) 
C q21r+ C fyc, so exp(-TA-r V(V)) acts on p- by the adjoint action; 

exp(--TA-r v(V)) (E) 

E- [TA-r V(V), E] + 1[TAPr 1(V), [TA-r V(V)E] ] 
E + [E2,TA-r v(V)] + [E,n TA-r i;(V)] 

2 t [E3n TA-r 11 (V) ], TA-r v (V)] 

siuce all other brackets vanish, again by Lemmas 6.3 and 6. 4. The other 
factors in the expression of g are in P-, so they act on p- by translatioiis. 
IUsiing the definition of Ajv the assertion about the action of g follows. 

12 
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KP* commutes with ad(Z&r?), therefore preserves its eigenspaces 4 
P2 r and 4r- in 4-. K,-r,i* is real on p^-r,r by [7, Proposition 6. 6] applied 
to the pair (gr&-0,r) I21 and fr centralize - hence L2j and Kr act 
trivially on it. Q.E.D. 

7. 6. We define the partial Cayley transform of D by 

C,&-rD t-' (c,&-rG? (x) ). 

This is the image of D under t-'c,-rd in 4y-. To see that this definition is 
meaningful, we note that by (6. 6. 6) we have a local semidirect product 
ad(c&-r) Bol'- Gro0 (KR&r,i* -L21PN-). Using this, we have 

CQ -r ( GO (x) = - r (Bo - (x) (ad (c.- r) BoI) (C&-rX) 

(Nr- *L2r *K`,-r,14 ) (Gr0(C, rX) ) 
(Nr- L2PrKAPr,l*) (CAMrIr) C t(-) 

by Lemma 4. 2 and Proposition 7. 5. 

7. 7. THEOREM. The partial Cayley transform CA,-rD of D is the 
domain {E: ImEl -ReAE3(E2,E2) C cr,E3C Dr)}. 

Proof. Let us denote by S the domain defined iii the text of the Theorem. 
First we show that ca rD C S. By 7'. 6 we have 

CArD D (Nr-*L2"r K &-r,l*) (Gro (or)). 

Now Gro (or) - {or + E3: E3 C Dr} C S, and in order to see that ca-rD C S, 
it suffices to show that L2" K&* and N"- map S into itself. To show 
this, let E C S and let k C L2" KA r,,. - We (lenote E' = ad(lc)E. By Lemma 
7. 3(i) and Proposition 7. 5 we have 

Im E'1 - Re As3 (E'2, E'2) = ad (k) (Im E1 - Re AE,(E2, E2)) C ad(A-)c c- . 
Now let g ==exp(U+ (I-TA-r v) (V)) E N"- with U E Yj-, cVC 4,r-, and 
let -E'= g (E). By Proposition 7. 5 we have 

Im E'1 - Re AE' (E'2, 2,) 
I=m(E1 + U + 2iAE3(E2, fv(E3)) + iAP"3(fv(E3), fV (E3)) 

-iRe AE.3(E2 + fv(E3), E2 + fV (E3)) 
_ Im E1 - Re AE3 (F2, E2) , 

proving the assertion. 

Next we prove that S C CA rD. Let E C S, it is sufficient to show 
that E can be transformed into the element OG C CA-riD by an element of 
ad(c, r)BoP. Let VT=- (I+I(E3))-'E,; then 

n2 ==exp ( (I - -Th-r v) (V) ) C NP-. 
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carries E into an element E' - E'1 + 0 + E8. Now let U - Re E',; then 

n= exp (U) E Nr- carries E' into E" iF + 0 + E8, with F real. As we 

showed above, Nr- preserves S, so we have 

Im E"1 - Re AE"3 (E"2, E"2) - F CP. 

Now there exists an element k E KA-r,j* such that k- F ior; k carries 

E" into E" = or + 0 + E8. Finally, since E3 E Dr, there exists g E Gro such 

that g E3 =O0. It follows that gknnn2 E =or, and gkn,n2 E ad(cA-r) Br. 
Q.E.D. 

UNIVERSITY OF CALIFORNIA, BERKELEY. 
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