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GENERALIZED CAYLEY TRANSFORMATIONS OF
BOUNDED SYMMETRIC DOMAINS.

By Josepr A. Worr! and Apam KorANy1?

1. Introduction. This paper is a continuation of [7]; its main subject
is the study of the realizations of Hermitian symmetric spaces as Siegel
domains of type IIT. The general definition of such a domain was given by
Pjateckil-Sapiro [9] as follows.

Let vy, v, and b, be complex vector spaces. Let u,; be a real form of
by, ¢ an open cone in i;, and D a bounded domain in b,. Given any We D
let Aw®: b, X b,—> b, be a bilinear form Hermitian with respect to u,, let
Aw®: 0, X 0,—>Db; be a complex-symmetric bilinear form, and define Ay
= Aw® + Aw®. Then the domain

{E1 +E2+E3€ D1+b2+ bg: Im. El—Re. A.Ea(Ez,Ez) € C}

is called a Siegel domain of type III.

Pjateckii-Sapiro [9] gave a case by case determination of the realizations
of the classical irreducible Hermitian symmetric spaces as Siegel domains of
type I1I. In this paper we will determine those realizations for all Hermitian
symmetric spaces by a method which is independent of the classification theory.
This is closely related to the study of the boundary structure of bounded
symmetric domains. In the classical cases that study is due to Pjateckii-
Sapiro [9]; in the general case most of the relevant results have been proved
by C. C. Moore [8], who combined our partial Cayley transform with the
general theory of boundaries due to Furstenberg [3] and Satake [10]. In
this paper (Section 4) we give an explicit direct description of the boundary
structure. The greater simplicity of our methods, and the fact that many
intermediary results from Section 4 are needed in subsequent discussions, are
the reasons why those results are included in this paper.

Our method is an extension of the technique of [7]. Making use of the
embedding theorems of Borel and Harish-Chandra, we define partial Cayley
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900 JOSEPH A. WOLF AND ADAM KORANYI.

transformations which carry the bounded domain realization of Harish-
Chandra to the various Siegel domains of type III.

In the case of a polycylinder U" C C" (where U denotes the unit disc
in C) a partial Cayley transformation is simply the usual Cayley transforma-
tion on some of the factors and the identity transformation on the remaining
factors. In the case of a general bounded symmetric domain D in Harish-
Chandra realization, it follows from results of ITarish-Chandra and is explicitly
pointed out by Hermann [5] that D contains a totally geodesic polycylinder
U" with K- U"=D; here n is the rank of D as a symmetric space and K is
the isotropy subgroup at the origin of the connected group G° of holomorphic
automorphisms of D. A partial Cayley transformation of D can be viewed as
a natural extension to D of a partial Cayley transformation of U™

Sections 2, 3 and 4 contain a considerable amount of expository material,
which is included so that the paper can be used by beginners in the subject.
In Section 2 we introduce our notation and some definitions. In Section 3
we collect some facts on parabolic subgroups of real Lie groups; these are due
to A. Borel and J. Tits [2] and to a conversation between J. Tits and the
first-named author. In Section 4 we give an explicit description of the
boundary components of D (Theorem 4.8) and compute them in the irre-
ducible cases (Theorem 4.13). We do not reprove [8, Theorems 1 and 2]
because Moore’s proof is independent of the general theory of boundaries of
symmetric spaces.

In Sections 5 and 6 we show that the set of all analytically equivalent
(“same type”) boundary components is, for each type, both a homogeneous
space of K and of (°; we study the Riemannian geometry and topology of
these spaces in some detail. The isotropy subgroup BT of (° is transitive
on D; this fact is basic in Section 7 where we construct the image of D under
the partial Cayley transformation; this Cayley transform is an orbit of a
certain conjugate of BT, which we determine explicitly. The resulting domain
is a Siegel domain of type III, and in the classical irreducible cases our
results specialize to those of Pjateckii-Sapiro.

The results of [7] are degenerate special cases of theorems in the present
Sections 5, 6 and 7, but some of our proofs here depend on the results of [7].

2. Notations. As in [7], M will be a Hermitian symmetric space of
non-compact type, G° its connected group of isometries, and K the isotropy
group. G° is globally a product of simple Lie groups and M a product of non-
compact irreducible Hermitian symmetric spaces. The Lie algebras of G°
and K are g° and ¥, g¢ is the complexification of g°, G¢ the adjoint group
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of g¢. G° is contained in G¢ as the analytic group corresponding to g°.
The symmetry of g° is denoted by ¢ ; under ¢ we have the splitting g® =¥ -+ p°.
Let p=1p°, g=*¥t-+p, G the corresponding analytic subgroup of GC.

h is a Cartan subalgebra in f; then )¢ is a Cartan subalgebra in gC.
The roots of g€ which are also roots of kC are called compact roots. Given
a system of simple roots, if g¢ is simple, there is a unique non-compact simple
root. To each root « we have the standard basis elements Hq, Fo. p* and p-
are the abelian subalgebras of g spanned by the positive (resp. negative)
non-compact root vectors Eo; P+ and P- are the corresponding analytic groups
in G¢.

K¢ denoting the analytic subgroup corresponding to ¥¢, K¢ -P* is a
semidirect product. G/K is identified with GC¢/KC- P+ by the identity map
of G into GC; this space is the compact dual of M, and is denoted by M*.
@ denotes the identity coset in M* = GC/K?-P*. The orbit G°(z) is the
image of the holomorphic embedding gK — ¢g(z) of M into M*. The map
&: p~—> M*, defined by £(F) =exp(F) - (z) is a holomorphic homeomorphism
onto a dense open subset; & is ad(KC)-equivariant. D =§&*(G°(z)) is a
bounded symmetric domain in p~; this is the Harish-Chandra realization of M.

The center 3 of f contains an element Z such that ad(Z)E = = iF for
Eep®. J=ad(Z) is a complex structure on p°. A basis of p° is given by
the elements

X=Eu+E
Yol =—i(Be—E_ o),

where a is non-compact positive. For such « we have the relations

JXo® = [2,Xo0] = Yo
JYaO—_: [Z, Yao] =—"Xa0
[Xao, Yao] = z'l:Ha.

We define the elements Xo=1Xc’, ¥o=—1Yo"; these form a basis of p.

Two roots « and B of g¢ are called strongly orthogonal if « = 8 are not
roots. There exists a set A of strongly orthogonal positive non-compact roots
such that the real span a® of the X,° («€ A) is a maximal abelian subalgebra
contained in p°. A= {8, - -,§,} is constructed in [4] as follows: For each
J> 91 is the lowest positive non-compact root that is strongly orthogonal to
1,* -, 8. Thus, if g is simple, §, is the non-compact simple root. In our
proofs we shall calculate with a set A constructed in this way. Our results,
however, do not depend on the construction of A.
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For each «€ A we define the 3-dimensional simple subalgebras ga,
spanned by {iHq, Xo, Yo}, and go°, spanned by {il{e, Xo% Yo}, The corres-
ponding analytic subgroups of G¢ are G and Go°. We define )~ — [a®,Ja’] ;
then h~ C h. §* denotes the orthogonal complement of §= in b with respect
to the Killing form; §* is the centralizer of a® in §, and t=5h*+a° is a
Cartan subalgebra of g° by [7, Proposition 3.8]. We have Z—=12°+4 7,
where Z° =—%ZAHO,€ b~ and Z’ € Bh*.

[ X
For every « € A we have co =exp(n/4)Xa€ G; c= ] ca is the Cayley

aeA

transform of M. ad(c) has order 8 or 4. If it has order 4, M is said to be
of {ube type. This is equivalent to the fact that M can be realized as a tube
domain over a self-dual cone (Remark 1 after Theorem 6.8 in [7]). In the
general case in [7], Section 4, we described a construction leading to a
symmetric subalgebra g, =% 4 p,° of g° which is of tube type. In Section
4 of the present paper we shall define certain subalgebras gr® of g; the
construction leading from g° to g,° can also be performed for gr° and gives
rise to subalgebras ¢r;°=/kr, - pr,® All these objects will be precisely
defined as they occur; here we only wanted to point out the reason for our
later notations.

In [7] we determined the Bergman-Silov boundary § of the bounded
symmetric domain [). In the present paper we make a more detailed study
of the boundary of D, and will show that it is a union of boundary components,
which we describe explicitly. This notion was introduced Pjateckii-Sapiro
[9] and is defined as follows: A subset ¥ of the boundary 4D of D is a
boundary component if (i) F is locally an analytic set, and (ii) F is minimal
with respect to the property that any analytic arc contained in 4D and having
a point in common with F must be entirely contained in F. From our result
it follows at once that the Bergman-Silov boundary of D is exactly the union
of all 0-dimensional boundary components.

INDEX oF NOTATIONS

Lie algebras and their subsets

g° Lie algebra of G, largest connected group of analytic auto-
morphisms of the hermitian symmetric space M = G°/K
of noncompact type

I Lie algebra of K

p° (—1)-eigenspace of the symmetry ¢ on g°
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f4-p, p=1p° g is the Lie algebra of G where M* = G/K
is the compact dual of M

center of f

Cartan subalgebra of f, thus also of g° and g

real span of all X,° (« € A), Cartan subalgebra of (g°f)
[a® Ja’] ; orthogonal complement of §)~ in f

h* + a° maximally split Cartan subalgebra of g°
complexification of g, thus also of g°

If v is a real linear subspace of gC:

pC
b5 0°

bO

complex span of v in g¢

complex span of all positive, or all negative, root vectors
in v except where v =B, n,T, n,T, nl, v,T or oT.

¢ N g for b such that b =0 (v).

It p®=0(b°) C g° then b denotes 1°C N g.
If 2 € A, then g, is the real subalgebra spanned by iHa, Xo and Y.
If T is an arbitrary subset of A:

gr®

fos prsar; e
Pr,1; fr,1 58,1
Ie130n,05 80, %
gl pr
£ T Q1P
[FRNN RS A
T

92" p.T

Il"; ql" ; fl‘*
L2 A

AP
BI‘

Cr

derived algebra of HC -+ 3 Hg-C.

intersection of gr with f/,u{)t I;I, b

(+ 1)-eigenspace of =r® on Pr; [r1, Pral; fro + Pra
(== 1)-eigenspaces of rr on fr ;I -+ 190,

(4 1)-eigenspace of ra-r>on g;g"N¥;alNp

[T, pT]5 PT84 paT

(== 1)-eigenspaces of ra_r on £,T; [T+ 4dq,T
centralizer of g,T in gT

(—1)-eigenspace of ra_r* on f; on p

P+ LT + o5 17 4 4g.7

02" poT* 5 pa-rs” 4 1T

" N ad(ca-r)@’; Pa-ra® N ad(ca-r)g°; M + o™
Lie algebra of BT

Ka 1% (—10")

Mappings

symmetry of g or of g°

complex conjugation of g€ over g; over g°

ad(Z)

ad(c)?;ad(cr)?

Harish-Chandra’s map p~— M* given by E — exp () (z)
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Gc

Capital roman
letter corres-
ponding to a
small german
letter

L. LT; ET
Br

Mr;Mrp,; MT

M ; M * 5 MT*

D;Dr
ST 8T
Ur; Ut
S;SD

Ho, Be,- - -
A

Xao;on
Ya0§Yoz

A

VARV

X0 V05 20
Xr;Yr
ca(@€A);c;er
z

aT

0;0"

3. A theorem on real parabolic groups.

JOSEPH A. WOLF AND ADAM KORANYI.

Subgroups and submanifolds

adjoint group of g¢
corresponding analytic subgroup of G¢, with the following
exceptions

isotropy subgroup at 2T of K,T'; of K; of G°

subgroup of G° preserving the set ca-rMr

submanifolds Gr°(z) ; Gr,.°(z); G (z) of M
submanifolds Gr(z) ; Gri(z) ; GF(z) of M*

£ (M) 5D 0 pe

set of boundary components of type I' of M ; of D
union of boundary components of type T of M ; of D
Bergman-Silov boundary 8% of M in M*; Sp? of D in p-

Group, algebra and manifold elements

standard basis elements of g€
maximal set of strongly orthogonal moncompact positive
roots
Ho+E o€p°;iX€Dp
—i(Ba—F o) €p°;1Y°€ D
element of 3 such that ad(Z)E = = iF for E € p*
— (1/2) X Ho32—2°
aeA
2 X' B Yo’ —i/2 3 Ha
ael ael ael
1X10;1Y 0
exp((m/4)Xa) € G; II ca; 11 ca
aeA ael
identity coset in M* = G¢/K°P*
ca-r(2)
zero elements & () of p=j; £ (al)

We will classify a certain

family of real parabolic subgroups of the Lie groups which are the connected
groups of analytic automorphisms of the bounded symmetric domains. In
Corollary 6.9 it will be seen that those parabolic subgroups are just the
stability groups of the various boundary components. We will also need the
notion of parabolic group in our proof of Theorem 6.8.

The goal of this section is Theorem 3.4, which resulted from a con-
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versation between J. Tits and one of the authors. All the other results of
this section are special cases of theorems of A. Borel and J. Tits [2] on
linear algebraic groups.

3.1. Parabolic subgroups of complex Lie groups. Let E be a complex
connected Lie group. Then the maximal solvable subgroups of I are all
closed, complex, connected and conjugate ; they are called the Borel subgroups
of F and their Lie algebras are the Borel subalgebras of e. If a complex
Lie subgroup of E contains a Borel subgroup, then it and its Lie algebra are
called parabolic. Every parabolic subgroup F C K is connected, for every
component of F contains an element which normalizes a Borel subgroup B
of F, (and thus of F), and it follows that this component must be ¥, because
it contains an element which centralizes a Cartan subgroup of E which lies
in B. Similarly every parabolic subgroup F C F is its own normalizer. As
every Borel subgroup of E contains the radical of ¥, we may pass to a quotient
and restrict our study to the case where F is semisimple.

Let Z be a connected complex semisimple Lie group. Choose a Cartan
subalgebra ¢ of the Lie algebra ¢, let A denote the root system of e relative
to ¢, and choose a simple system ¥ of roots. If e, denotes the root space
for A€ A, and if A+ denotes the set of positive roots, then our choices amount
to the choice of the Borel subalgebra

b=c+ X e
Near
of ¢. Now let ® C ¥, and define

Ot = {A€EA: A= aeax With as > 0 for some o€ &},
ae¥

P = {AEA: A= aqx With aa=0 for every a€ &}, and
ae¥
PF =3 U ®* = {A € A: A= doo With aa =0 for every a€ ®}.
aeVv
Then
fa=c+ X e
e d*

is a parabolic subalgebra of e which eontains b. fy =0, {¢p =e¢, and s C fr

for ' C 3 C ¥. Conversely, let { be a parabolic subalgebra of e which con-
tains b, and define

®={a€ ¥: ae =0 whenever e\ C{ with A= > agB}.
Be¥
Then it is routine to check that f=1{s. Now we can specify a conjugacy

10
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class of parabolic subgroups of E by marking the elements of ¥-—® on the
Dynkin diagram of e, where fs is the Lie algebra of an element of this class.

Retain the notation just above, and define (for every subset ® C ¥)

o= [\ (kernel of a),
aev-o
te==C- > e\, and
Neao

Up = 2 ex.
Ned+

Then =14+ Usp (semidirect sum) and is the normalizer of ugp in e.
Uy is nilpotent, 1y is reductive in e because it is the centralizer of ¢y in e,
and ¢y is the center of ry. Let Ry, Uy and Iy denote the analytic sub-
groups of E for the subalgebras ry, 11y and {p of e. Then Fy=— Ry Uy semi-
direct product. We may view I as a linear algebraic group because it is
complex, connected and semisimple, and then this semidirect product decom-
position of P, is the Chevalley decomposition into reductive and unipotent
parts.

3.2. Parabolic subgroups of real Lie groups. Let I’ be a connected
semisimple real Lie group embedded in its complexification. In other words
there is a complex connected semisimple Lie group EF and a real form ¢ of
the complex Lie algebra e such that E’ is the real analytic subgroup of F
with Lie algebra ¢’. We will say that a subgroup F” C B’ is a parabolic
subgroup of B’ if there exists a parabolic subgroup F C E such that (i)
F'=E"NF and (ii) f is the complexification of f. If F” is a parabolic
subgroup of L’ and Fy denotes the identity component, then any element
f€ F’ can be altered by an element of ¥, to centralize a Cartan subalgebra ¢’
of ¢’ contained in ¥, and it follows that F” = (C N I") - Fy where (' = exp(c)
and c is the Cartan subalgebra of e which is the complexification of ¢’.

Let ¢’ be a Cartan subalgebra of ¢’. Then there is a canonical decom-
position ¢/ =c¢; + ¢, where the roots are real valued on ¢, and take pure
imaginary values on ¢;. To obtain this decomposition, consider the Cartan
subgroup ¢”=exp(¢’) C E’. (” has a unique maximal compact subgroup
Ci, and c; is the corresponding subalgebra; it is clear that the roots take pure
imaginary values on ¢;. Let ¢, be the orthogonal complement of ¢; in ¢’ under
the Killing form. Then O, =exp(c,) is a vector subgroup of C’. If ¢, and
and O, were not diagonable in ad(e’) on ¢/, C; would not be maximal. Thus
the roots are real valued on c,. C; (resp. ¢;) and C, (resp. ¢,) are the
totally non-split and the split parts of " (resp. ¢/). O and ¢/ are mazimally
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split if dim.c, is maximal among the dimensions of the split parts of the
Cartan subalgebra of e’.

Lemma. The parabolic subgroups of E’ are just the subgroups
F'=F N E for which there exist (a) a mazximally split Cartan subalgebra
¢ of ¢, (b) a system ¥ of simple roots of e for c=¢’C and (c) a subset
® C ¥, such that (i) ¢4 is a real form of cg, (ii) ¢’ and its split part
¢’s N ¢, have the same centralizer in e, (iil) fe is the sum of the non negative
weight spaces of ad(c/s N¢c,) on e, and (iv) F = Fs.

Proof. Let v be conjugation of e over ¢’. Given ¢/, ¥ and ® satisfying
(i)-(iv), we recall that the roots of e are real-valued on ¢,. Thus every
weight space of ad(c’sNc,) on e is stable under ». Now (iii) says that
fo= (fa Ne’)C, so (iv) tells us that F”=F N E’ is parabolic in E’.

Let F’ be a parabolic subgroup of E’. Then F’—F N E’ for some
parabolic subgroup F of E, and v(f) =f. v preserves the maximal nilpotent
normal subalgebra u of { and we choose a v-invariant reductive complement .
If ¢, denotes the center of r, then v(cy) =c4 50 ¢’y =rc, Ne’ is a real form
of c,. There is a lexicographic ordering on the dual space of the real form
Cxo + €4t Of ¢y, such that u is the sum of the positive weight spaces. We
extend c, to a Cartan subalgebra ¢ of e for which ¢/ =cN ¢ is a real form,
in such a manner as to maximize the dimension of the split part of ¢’; we
then extend the ordering of weights on ¢, to an ordering of the c-roots of e.
Let ¥ be the corresponding system of simple roots. Now F — F, for some
subset & C .

We must check that the ¢/, ¥ and & just constructed satisfy the con-
ditions (i), (ii) and (iii) and that ¢’ is maximally split. Condition (i) is
immediate because ¢, = cg from the construction of complex parabolic algebras.
The split part c,,= ¢’y N ¢, of ¢’y is nonzero because the sum of the elements
of ® induces a positive linear functional on it. Now e Dt where r, is
the centralizer of c,, and r, the reductive part of f, is the centralizer of cs.
If ry 54 v then uN 1,540, so uNr, is a nontrivial sum of root spaces. The
roots which enter into this sum belong to ®*, because u Nr, C u, so their
negatives do not appear. Thus the roots which enter the sum must vanish
on ¢y, and thus on ¢’y = ¢4+ 4. That is impossible. Now r, =1 and (ii)
is proved. (iii) follows by our ordering of roots so that c,, precedes icy.
From (ii) we also see that 1’ contains a maximally split Cartan subalgebra
of ¢/, so the maximality condition in our choice of ¢ implies that ¢’ is maxi-
mally split in ¢’. Q.E.D.
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Lemma 3.2 shows that real parabolic groups are determined by the split
parts of the centers of their reductive parts. Let F” be any parabolic sub-
group of E’. In the notation of Lemma 3.2, let B’ be the group BN E’
where b is the sum of the non negative weight spaces of ad(c,) on e. Then
B’ is a parabolic subgroup of E’, B’ C F’, and every parabolic subgroup of E’
contains a conjugate of B’. B’ is a minimal parabolic subgroup of E’. There
is an Iwasawa decomposition B’ =K AN such that B"=L-A-N where
L C K is the centralizer of A. Furthermore there is a subset = C ¥ defined
by B="Fs, such that & C 5 whenever Fe N E’ is parabolic in E’.

3.3. The action of the Galots group. The Galois group of C over B
acts on e as the conjugation v of e over ¢/. This is a real automorphism of
e and induces a real automorphism of E. The fixed point set of v on E is E’.
Let F be a parabolic subgroup of E. Now F N E’ is parabolic in £ if and
only if y(F) —F, and this is equivalent to v(f) =f.

Let ¢ be a Cartan subalgebra of e which is the complexification of a
maximality split Cartan subalgebra ¢’ of ¢/, and let ¥ be a system of simple
roots. Then the Galois group {1,v} acts on ¥ as follows. The subsets of ¥
are in one-one correspondence with the conjugacy classes of parabolic sub-
groups of E, a subset ® corresponding to the class of Fy. Given ®, v(Fg)
is conjugate to some Fs and we define 3= ®*. This transformation on the
subsets of ¥ is induced by its restriction to the one-point subsets, so v acts
on ¥. If "N Fs is parabolic in E’, then v(Fs) =Fs, and so & — .
The converse is:

LemmA. Let ¥ be a system of simple roots of e for the complezification
of a mazimally split Cartan subalgebra ¢ of ¢, and let 3 be the subset of ¥
such that B’ N Fs is a minimal parabolic subgroup of E’. Then the parabolic
subgroups of E’ are just the conjugates of the groups E' N Fs for which
® C3 and & =a.

Proof. The remark above and the results of §3.2 show that ® C 3 and
® = & in case B’ N Fy is parabolic in E’.

Let ® C 3 and "= ®; we will check that E’ N Fy is parabolic in E’.
If two parabolic subgroups of E are conjugate and contain the same Borel
subgroup, then they must be the same. Now if two parabolic subgroups of E
are conjugate and contain Fy they must be the same, for Fs contains a
Borel subgroup. v(Fs) =PFs, and Fsx C Fy because & C 3; thus Fs and
v(F3) contain Fyi. &= says that F, is conjugate to v(Fs). Thus
Fy—v(Fs). This proves that B’ N Fy is parabolic in E’. Q.E.D.
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In order to apply the Lemma, one must know the action of the Galois
group on V.

CovrreMENT To LEMMA.  Let ¢ be a real simple Lie algebra with
simple complexification e, let v be the nontrivial element of the Galois group
of C over R. and let W be a system of simple roots of e for the complexification
of @ maximally split Cartan subalgebra of ¢. Then the action of v on ¥
is trivial except in the following cases.

e’ action of v on Dynkin diagram
- (T - )
o—o0 .es o o
s0%(4n 4 2)
or
507 (4n 4 2) OO s s & o\f
or
S0+t (4n)
€6 (-14)
0o—o
or £~£>o——o
Co(-2)

Proof. ¢ has a maximal compactly embedded subalgebra f such that,
if ¢ denotes the symmetry of the symmetric pair (¢,f) and ¢/ —f -+ p is the
Cartan decomposition, N ¢/ =r¢; and pN ¢’ =c,. The root vectors are in
iC¢ + €y, SO v is —1 on their ¢; projections and is 1 on their ¢, projections.
o is complex linear on e, +1 on f and —1 on p; thus ov sends each root
vector to its negative. Thus (i) if ¢ is an inner automorphism, then v is
trivial on ¥ precisely in case —7 is in the Weyl group of e, and (ii) if o
is an outer automorphism, then v is trivial on ¥ precisely in case —1I is
not in the Weyl group. As —1I is in the Weyl group in all cases except
e=_1, («>1), Doy (n>1), or I, [12, Theorem 4.1], the result follows
from the classification of the real simple Lie algebras. (.F. D.
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3.4, TuroreM. Let M be an irreducible hermitian symmetric space
of noncompact type; let G° be the connected group of analytic automorphisms
of M, embedded in its complexification GC; let u be a maximally split Cartan
subalgebra of ¢° which is preserved by the symmetry at a point € M, and
let ¥ be a system of simple roots of g€ for uC. If r is the rank of M, then
there is a unique sequence {®o, ®s,- * -, ®,} of subsets of ¥ such that (i)
Fg,°=G°NFy, is a parabolic subgroup of G°, (il) the reductwe part of
Fs,° has a simple normal subgroup G;° such that G°(x) is a hermitian sym-
metric subspace of rank i in M, and (iii) the G° can be chosen so that
GLCGOC: - -CG° Furthermore, G°=Fs =G and ®; consists of

the elements of ¥ numbered {t-+1,- - -, r—1,r} in the chart below.
a° Dynkin diagram
r r—I1 R 1
su”(n) o o . o o—-,
(Rr=n) o o .o o O«
r r—1 2 1
7 r—1 3 2 0
50*(4/’-) [ Y, SN S, SUY o SIS S —e | ] [e)
o1
T r—1 2 o1
8o* (4r4-2) 0———0———0———0———0—— s s+ —0 o
o1l
30%(n+R) 1 2 o
o o o .. ——o/ or « ——o0 o
(r=2) o
r r—1 2 1
sp(r, R) o o e o o
€6 (-14) ] o ‘° 1
[e] O,
(r=2%) \0 o1
€7 (-25) °
3 2 1
(r=3) 0—0——0~——0——0—0
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Proof. To satisfy (ii) and (iii) we must have &, G @, S G Let
3 C ¥ so that G° N Fs is a minimal parabolic subgroup of G°. Then &, C 3
by (i). The Galois group has exactly  orbits on =, and each &; is a union
of orbits by (iii). It follows that we can number the orbits as 3, - -, 3,
so that &, =3;, U - -U3,; &% ¢ and &,=3. Now a case by case check,
using the fact that g, must be one of the algebras listed for the g° with i=r,
and using the fact that the Dynkin diagram of g;° must be a connected com-
ponent of the complement of Z;,,U- - -UZ3, in the diagram of }§° shows
that (ii) and (iii) imply that =; must consist of the points numbered 4 in
the Dynkin diagram, and that then (i), (ii) and (iii) are satisfied. The
Theorem follows. .FE.D.

4. The boundary components of a bounded symmetric domain. Let
D be a bounded symmetric domain embedded in p- as described in §2.
Retain the notation of §2, and let ' be an arbitrary subset of the maximal
set A of strongly orthogonal noncompact roots. We will see that every T ca
corresponds to a certain boundary component of D, the empty set ¢ corres-
ponding to a point of the Bergman-Silov boundary, and A corresponding to
D. It turns out that two subsets of A give analytically equivalent boundary
components if and only if they contain the same number of roots from each
irreducible factor of M.

4.1. We have ca —exp(w/4).Xo€ G for every «€ A, and the Cayley

transform on M was defined to be c=1]] ca. We now define partial Cayley
aeA

transforms by
Cr = H Cay I C A,

ael

80 ca=c and cy=1. Similarly we define

Xr0= 2 Xa and Xr=’l:4Yr0,

ael
Yr0= 2 Yao and I7p=?:Yro, and
ael
70 ——1 3 He and b — 3 illq- R.
ael ael

By definition of Hg the centralizer of fs—r in g€ is
(4.1.1) e+ X Eg C.
B1lA-T

The centralizer of > g« in g€ is
aeA-T

(4.1.2) 5C+ 5eC 3 By C.
BLA-T
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For this, it suffices to show that 81 A—T implies [Eg, F.oc] =0 whenever
€ A—T. Here we may assume B > 0; then the assertion is trivial for g
noncompact and known [4, Lemma 13] for 8 compact.

The algebras (4.1.1) and (4.1.2) are reductive and have the same
derived algebra. We denote this derived algebra by g:¢, and gr—g N g€
and gr®=gr® N gr¢ are real forms of grC; they are semisimple. We have
gr=Ffr+pr and g®="Ffr+ p® where fr=grN¥=a®N¥f, pPr—grNyp
prl=gr® N P° and p®=1pr. pr* denotes prCNp*. Gr and Gr° denote
the respective analytic subgroups of G¢ with Lie algebras gr and g:°, and
K+ denotes their common intersection with K.

Further, we define Mr=G:°(z), Mr* = Gr(2), and 2T =ca-r(z). In
the special case where T' is empty, Mr and Mc* are just {z} and 2T is the
point ¢(z) on the Bergman-Silov boundary. More generally, we will even-
tually see that cs-r(Mr) = G:r°(2T) and is a typical boundary component
of M in M*.

Finally define Dr—=D N pr~ and of = &*(aT) ; o will denote the origin,
0=04=0, of p~.

4.2. LemMA. Mr is a complex totally geodesic submanifold of I,
thus being a sub hermitian symmetric space of M ; the same is true for Mr*
in M*, and Mr C Mr* is the Borel embedding. T 1is a maximal set of
strongly orthogonal noncompact roots of gr% {Xa®} yer Spans @ Cartan sub-
algebra ar® —=a° N gr® of (g% ¥r), and co is the Cayley transform of Mr.
Let &*: M—>p~ be the Harish-Chandra embedding as o bounded domain
D=¢&1(M); then Dr=¢Y(My) and &': Mro— pr is the Harish-Chandra

embedding.  ca-r(Mr) C E(7), &rca-xé acts on Dr by E—>E+1 3 E...
BLA-T

Proof. The algebras 4.1.1 and 4.1.2 are preserved by ad()), and thus
by ad(Z), so ad(Z) preserves gr¢; as ad(Z) preserves g and ¢°, it must
preserve gr and gr’; now ad(exp({Z)) preserves (fr and Gr°, so Mp* C M*
and Mr C M are sub hermitian symmetric spaces. Mr C Mr* is the Borel
embedding by construction.

The definitions of gr® and ga_r® give us

DXL RCa, (XN R)Nasr®=0, and X Xo® R C as-r’;

ael ael aeA-T
linear independence of the Xo° now shows that ar® has {X&°} ,.p for a basis.
If ar® is not a Cartan subalgebra of (gr° fr), then it is properly contained
in one. say in e. [e,aa-r®] =0 by definition of gr°, so we have

a® =ar® 4+ aa-r° Ge 4+ aa-r® C f
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where f is a Cartan subalgebra of gr°. Then dim.f==dim.a° which is a
contradiction. Now ar® is a Cartan subalgebra of (gr% fr), and the asser-
tions on T and c¢r follow. It also follows that the Harish-Chandra embedding
of M as D C p~ induces that of My as Dr C pr.

As ca-r commutes with every element of Gr° the proof of the last state-

ment reduces to proving that &lcaré: 0> X i, i.e., that (¢ X F.a)
aeA-T aeA-T

=2T; this is a calculation contained in the proof of [7, Lemma 4.2]. Q. F.D.
The following is the first step toward relating the Mr to the boundary
components of D.

4.3. LmmMmaA. 0D is the union of all sets of the form
4.3.1. ad(k) [5_1("A—:J[:], kEK, 2 (;A.
and every boundary component of D is a union of sets of that form.

Proof. A°=exp(a®) consists of transvections of M, so 1 is the only
element of &14° with a fixed point on D. From the action of the latter
on a- [7, Lemma 3.5] it follows that 4D N a- consists of all 3 boF., with

acA

—1=bo=1 where at least one | ba | =1. In particular, every > F o€ dD;
ael

as {exp(tZ)¢ acts on D and 4D by unimodular complex scalars, we have
02=1 3 E o€ dD. Applying G;° &'ca—sMs= (£1G5°¢) (0%) C dD. Thus

ael
dD contains every set of the form (4.3.1).
We wish to show that 9D is the union of the sets (4.3.1). As
0D = ad(K)[0D Nia], it suffices to show that every point of 4D N ia~ lies
in a set of that form. Every such element has expression I/ =¢ 3 =+ F o

aeA-Z
+1 2 ball o where —1<ba<1 and 3 cA; applying an element of
ael
ad(K Nexp X ge) we bring it to F=1 X E.o-+1 X ball o, which is in
aeA-Z aeA-Z ael

&teaz My by Lemma 4.2. This completes the proof that 4D is the union of
all the sets (4.3.1).

As My is a hermitian symmetric space of noncompact type by Lemma 4. 2,
any two of its points can be joined-by an analytic arc. It follows that any
two points of ad (k) [£*ca-=Mz] can be joined by an analytic arc in éD. This
completes the proof. @.H.D.

4.4, LemumA®  The restriction of ad(Za-r®) to pC has only the eigen-

8 This lemma and a sharpened form (Lemma 6.3) will be used repeatedly. The
apparently elaborate notation will be re-introduced and motivated in § 5. 4.
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values 0, == i and ==1/2; the respective eigenspaces are prC, the centralizer
Pacr:C of ca—r* in pa—xC, and the (—1)-eigenspace of ad(ca-r)* in pC.

Proof. Let ¢ and f be the -1 and — 1 eigenspaces of ad(ca-r)* on pC.
As ca_r is a transvection of order 4 or 8 in M¥* so (ca-r*)?=1 and
o(Ca-r*) = (ca-r*)"%, it follows that ad(ca-r)* preserves p¢ and that
pl=e@H

We have ad(Zs-r°) pr®=0 and prC Ce, by definition of g-¢. An
application of [7, Lemma 5.3] to (ga-r° fa-r) shows that pa-r, is spanned
by (== 1)-eigenvectors of ad(Za-r°), that pa—r®N{ is spanned by (==1i/?)-
eigenvectors, and that pa—r®=Ppa-r:¢+ (FN pa-r®). Let d be the com-
plexification of the orthogonal complement of pr—+ ps-r in p; it remains
only to show that d C f and that d is spanned by (= 1/2)-eigenspaces of
ad(Za-r°). Asc (vesp. ) is the intersection with p¢ of the sum of the odd
(resp. even) dimensional irreducible representation spaces of

ad( {A:A—r, YA—I‘, ZA—I‘O} );

we need only prove b to be spanned by (= ¢/2)-eigenspaces, and then d C {
will follow.

D is spanned by root vectors H.g, 8 positive noncompact; thus we need
only prove that ad(Za-r°) - Eg = = (¢/R)Eg for every noncompact positive root
B with Eg€ d. By definition of Zs-r* and b, this is equivalent to the proof
that, for every noncompact positive root 8 which is orthogonal neither to T'
nor to A—T, we have EA F<a, B> ==1. This has been proved by Harizh-

o €N~

Chandra [4, Lemmas 13-16]. ¢.F.D.

4.5. Let +° be conjugation of g over g°. As p° is spanned by the
Xg®=FEg+ E g and the Yg*=—1i(lig—I_g) for the noncompact roots 3,
v° exchanges Fg and Il_g, so (I +1°)ill_ g=—Yg®and (I 4 +°)E_g— X"

Let v be the conjugation of g¢ over g and observe that (U, V>,
=—U,vV> is a positive definite hermitian form on g¢ where ¢ , > denotes
the Killing form. Let | | denote operator norm relative to ¢ , >, for
linear transformations of gC.

The following result is included for completeness. It was proved by
C. C. Moore [8, Lemma 4.5] in a somewhat different manner. The idea of
using operator norms is due to R. Hermann.

4.6. Lemma. Let p° be given the complex structure defined by ad (Z)



BOUNDED SYMMETRIC DOMAINS. 915

and define y: p~—>p° by y(B) =3 (E ++°F). Then y is an isomorphism of
complex vector spaces, and

y(D) ={Uep’: [ad(U)] <1}

Proof. The first statement is clear. y is ad(K)-equivariant because
K Cexp(g), and ¢(a") =a°. Thus we need only prove F€ D if and only
if Jady(E)] <1 for every E€a. As a- consists of all B = 3} boF_o with

aeA

be real, and F € D if and only if each |bs| <1, we need only prove that
[ ad(3 2 beXo®) | <1 is equivalent to the condition that each |b«| < 1.

Each gg°, S€A, has a nonzero element Wg with [Xg° Wg]=2Wg;
now ad(} X baXe®)  Wg=10gWg. Thus || ad(} X baXe’)| <1 implies that
each | ba | < 1.

Suppose that each |bo| <1; we will see that | ad($XbeXo®)| < 1.
As Y € g, ad(exp(w/4)Y) preserves operator norm; that element sends each
Xo° to H, as seen by calculating in goC, so we need only prove || ad(3 > beHe) ||
< 1. In other words, we need | ZAba@z, B> | <2 for every root 8. This

ae

now follows from [4, Lemmas 13-16] which say that, if (a, 8> 40 for some
a € A, then either <a, 8> = =1 and <o/, 8> 5= 0 for at most one other o’ € A,
or <&, by =2 and <&/, 8> =0 for a5’ € A. Q.E.D.

We can now take the main step toward relating Mr to the boundary
components of D. Here p~ is endowed with the positive definite hermitian
form < , >,

4.7. Lemma. Let T S and define ec® and ec® to be the respective
real and complex hyperplanes* in p= in which ol is the point nearest to the
origin. Then

4.7.1. Dﬂ[or+pr-]=DﬂErC=DﬂCrR;

this set is the closure of &ca-rMr in 0D and is a union of boundary com-
ponents of D; it is the union of all sels of the form

4.7.2. ad(k) [£'casMs], k€ Kr,3 CT.

Proof. This proof is close to an argument of Moore. ¢ =% (I 4+°) is
a unitary transformation of p- onto ° so y(er®) consists of all

=_% 2 Yoco—l“'U

aeA-T

where U is real-orthogonal to the first summand. Now decompose U

*real (resp. complex) affine subspaces of real (resp. complex) codimension 1.
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= U, 4+ U, where U, is real-orthogonal to ¥,° for every « € A—T, and where
U= 3 uaYo® The condition on U, gives

aeA-T
Uy =2 apXg’ + bg¥'s°

where the sum runs over all positive noncompact roots B8, and where bg==0

in case B€ A—T. As each Y,° has the same length, the condition on U

implies X u%a=0. Finally, by Lemma 4.6, V€ y(D) if and only if
r

oeA-
lad(V) | =1.
Let Vey(D). We define Wo=Xo"—27s° and W= X W4 Now

aeA-T
[—3Ya® W] =Wa. This gives
ad (V) - W —W —+ [T, W],

and [U,, W] is real-orthogonal to W by definition of W and by bg=0 for
BEA—T. As [ad(TV)] =1, we must have |[ad(V)]|=1 and

0—=[U,, W] =2ad(Zar®) - U + F

where F € f. This yields ad(Za-r°) - U, =0; now U, € p° by Lemma 4.4.
As U,€ p® by construction, this proves U € p®. Thus V€ y (ol 4 po).
We have just proved D Ner® C DN [of + pr]; therefore (4.7.1) follows
immediately. Lemma 4.2 shows that this set in the image by &'ca_ré of
the closure of &*Mr in pr-, and the set lies in 4D by the observation
|ad (V)| =1 above; it follows that the set is the closure of &*ca—rMr in 0D.

Let b be the complex linear functional on p~ such that 0 (F) =1 is the
equation of erC, and notice from the above paragraph that er® does not
meet D. As D is preserved hy the rotations e, we then have |b(F)| =1
for every E€ D. Now let u: U'—p~ be an analytic arc in 0D wuch that
pw(U) meets ex. Then the holomorphic function b op on U is bounded by 1
and this bound is achieved; thus bopu is constant by the maximum modulus
principle; in other words, u(U) C ex¢. This proves that the set (4.7.1)
is a union of boundary components of D.

The last statement follows by application of Lemma 4.3 to 9Dr,
Dr=§&*(Mr), and by the observation that ca—sz==cs—r-cazs for every 3 CT.

Q.E.D.

4.8. TuroreM. The boundary components of D in b~ are just the sels
ad (k) [étcardr], BEK, T ca.
The boundary components of M in M* are the sets

k(CA—r(.A[r)), kE K, T _CL A.
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Proof. The two statements are equivalent because & is an ad(K)-
equivariant complex analytic homeomorphism of a neighborhood of D in p-
onto a neighborhood of # in M*, carrying D onto M.

Every boundary component of D is a union of sets ad(k)[é*ca-sMs],
ke K, 3 cA, and every such set lies in a boundary component of D, by
Lemma 4.3. Thus it suffices to prove, given an analytic arc p: U—p~ in
8D such that w(U) meets &'ca-rMr, that w(U) C &*carMr. Lemma 4.7
says that the closure of &'ca—rMr is a union of boundary components of D,
so u(U) is contained in that closure. Now define B =& ca-r*+ & p; then
B: U—> pr is an analytic arc in Dr which meets Dr =& (M), and we wish
to prove that g(U) C Dr.

Suppose that B(U) contains a point I of 9Dr. Applying Lemma 4.3
to Dr we see that F is contained in a set ad(k)[&tcr—=M:], k€ K1, 3 Gr.
Applying Lemma 4.7 to Dr, we obtain a complex linear functional b on pr~
whose restriction to Dr attains its maximum at F; b is the linear functional
specifying ad(k)es®. Now bof is a holomorphic function on U which
attains its maximum, so b o 8 is constant by the maximum modulus principle,
whence

B(U) C{FeDr:b(F)=>b(L)} CoDr.

This contradicts the fact that 8(U) meets Dr. This shows g(U) C Dr, and
the Theorem is proved. @.H.D.

4.9. CororrArY. The boundary components of D in p~ are bounded
symmetric domains in Harish-Chandra embedding, where the ambient space
18 a complex affine subspace of p~ and the domain is the interior of the inter-
section of the ambient space with D. The boundary components of M in M*
are hermitian symmetric spaces of moncompact type in Borel embedding,
where the ambient space is a complex totally geodesic submanifold of M*
and the noncompact space is the interior of the intersection of the ambient
space with M.

The first statement is immediate from Theorem 4.8 and Lemmas 4.2
and 4.7; the second statement follows upon mapping by ¢ and applying
Lemma 4. 2.

4.10. CoroLLARY. Let D=D;X - - -X D, be the decomposition of
D as a product of irreducible domains. Then the boundary components of D
are just the sets F—=F, X - - X F,5 D with F; either equal to D; or a
boundary component of Dj; each of the bounded symmetric domains F; is
irreducible.  The analogous result holds for the boundary components of M.
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Proof. Let F be a boundary component of D; then without loss of
generality we may assume F = & *ca—rMr with T gé A Let g°=g.°®- - D g°
be the decomposition as a sum of simple ideals, ordered so that the analytic
subgroup of G° for g;° is the connected group of analytic automorphisms of D;.
Then A=A, U - -UA, (disjoint) where A; is a maximal set of strongly
orthogonal noncompact roots of g;°. Define

1-‘]' =T N A]‘ and F]' = é_chI-—I‘j (-M] N qu‘)‘

Then F=F; X+ X F,, F;=D; if T;j=A;, and F; is a boundary com-
ponent of D; if T;=£A;.

Let F=F, X"+ X F,5D where F; is D; or a boundary component
of D;. The last part of the proof of Theorem 4.8 consisted of showing that
Dr is an analytic arc component of Dr; thus F; is an analytic arc com-
ponent of Dj;, so F is an analytic arc component of D. Now F C 4D by
construction, so # is an analytic arc component of 9D, i.e., a boundary
component of D.

To prove F; irreducible we may assume D irreducible and F;=&"%ca-rMr
with T C A, and we need only prove that the effective part of gr® is simple.
It suffices to prove that the effective part of gr is simple. For this, we define
Wa to be the subgroup of the Weyl group of G relative to § consisting of the
elements which preserve A as a set, and we define Wr to be the subgroup of
Wa consisting of the elements which fix every element of A—T. A result
of C. C. Moore [8, Theorem 2] says that Wa induces the full group of
permutations of A; thus Wr is transitive on I'. Let U be the centralizer
of ha-r~ in G. exp(ha-r) is a torus because it is closed in exp(h), so U is
the centralizer of a torus. Now U is connected, the Weyl group of U relative
to § contains Wr (by definition of U), and Gr is the semisimple part of U
(by definition of gr) ; it follows that the Weyl group of Gr relative to h N gr
is transitive on I'. This proves that gr is simple. @.Z.D.

4.11. CororrarY. If M s of tube type, then each of its boundary
components 1s of tube type. If M is wrreducible and has a positive-dimen-
sional boundary component of tube type, then M is of tube type.

Proof. 1If M is of tube type, then the Cayley transform ¢—ca has
order 4. As ¢=cr*Ca-r and ad(¢s-r)|gy =1, this implies ad(er)* |4 =1,
and it follows that Mr is of tube type. Thus each boundary component is
of tube type.

Before proving the second statement, we must check that 3 is of tube
type whenever, for some T' C A, both Mr and Ma_r are of tube type. To see
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this, we write p = pr -+ pa-r -+ D where d is the orthogonal complement of
pr - ps-r. By Lemma 4.4, both ad(ca-r)* and ad(cr)* are —1 on b, so
ad(c)*|s=1. By hypothesis and the argument of the preceding paragraph,
ad(c) is 1 on pr and on pa_r. Now ad(c)* is 1 on p, and thus also on
f—[p,p], so ¢*=1 and M is of tube type.

Let M be irreducible with a positive-dimensional boundary component
of tube type. Then some Mr, ¢ 4T cA, is of tube type. Let a€A—T
and BET, and define ®=TU {a} and ¥=&—{B}. A result of C. C.
Moore [8, Theorem 2] shows that an element of the subgroup preserving }-
in the Weyl group of g° send I' to ¥; thus My is of tube type. Applying the
first part of this Lemma to My we see that My is of tube type. Applying
the above paragraph to Ms with the decomposition ® =T U {a}, now Ms is
of tube type. Iterating the argument, Ma =DM is seen to be of tube type.

Q.E.D.

4.12. ComrorLLARY. For a bounded symmetric domain in Harish-Chandra
embedding, a boundary component of a boundary component is a boundary
component.

This is immediate from Theorem 4.8 and from (4.7.2) in Lemma 4.7.

Lemma 4.4, Theorem 4.8 and Corollaries 4.11 and 4.12 allow us to
list the boundary components. Here we say that two boundary components
are of the sume type if an element of G° sends one to the other.

4.13. TuroreM. Let D be an irreducible bounded symmetric domain
of rank m in Harish-Chandra embedding. For each integer r, 0 =r <m,
there is just one type D, of boundary component of D which has rank r as
a symmetric space. D, is a single point and the other D, are given as follows.

4.13.1. D=8U"(m +k)/S(U(m) XU(m+k)), k=0. Then
D,=8Ur(2r+k)/S(U(r) XU(r+k)).

4.13.2. D=80%(4m)/U(2m). Then D,=S0%*(4r)/U(2r).

14.13.3. D=~80%(4m +2)/U(®m +1).

Then D, = SO*(4r 4+ 2) /U (2r 4 1).

1.13.4. D=8p(m,R)/U(m). Then D,=8p(r,R)/U(r).

14.13.5. D=80%?(n+2)/80(2) X 80(n), n>2; here m =2. D, is
the unit disc in C*.

14.18.6. D=1FH,/S0(10)-8SO(R); here m=2. M, is the open unil
ball in C5.
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4.13.7V. D=FE./E;-80(2); here m=3. D, is the unit disc wn C*,
and D, =802(12)/80(2) X 80(10).

Remark. For the classical domains the statement is due to L. K. Hua
and K. H. Look [6], and the proof is due to Satake [10]. The result is
new for the exceptional domains.

Remark. There are some duplications. For example SO*(8)/U (4)
=80%(8)/80(2) X 8O(6) and SO*(4)/U(2) is the unit disc in C*.

Remark. 'The classification is not necessary for the first assertion. That
assertion follows from Theorem 4.8 and transitivity of the small Weyl group
on the collection of all subsets of » elements in ad(c)?A.

Proof. The domains D listed exhaust the class of irreducible noncompact
non-Euclidean hermitian symmetric spaces, according to E. Cartan. Here the
domains of tube type are (4.13.1) for k=0, (4.13.2), (4.13.4), (4.13.5)
and (4.13.7). Now assertion (4.13.5) is immediate from Corollary 4.11
because the unit disc is the only tube-type domain of rank 1.

Tet a€ A and define '—=A-—{a}. The fixed point set of ad(ca«)*
on gy is of the form g¢ay,1 @D lia),2 Where the second summand is in f and
the first is equal to [Piay1, Playi,] + Piayi- Part 4 of [, Theorem 4. 9] shows
that gay, is of Cartan classification type a;. Now Lemma 4.4 gives a direct
sum decomposition p = Piay,1 + P1 + f where ad(ce)* is 4+ 1 on the first two
summands and —1 on the third. Consider the decomposition g=u-1p
into 41 and —1 eigenspaces of ad(cq)*; it follows that 1=a, B g, D 0
(direct sum of ideals) with w C¥f. As ad(ce)* is an inner automorphism
of g, we have proved: g has a symmetric subalgebra 1 of maxzimal rank which
has a, and gr as distinct simple ideals.

Let D=8U"(2m 4 k)/S(U(m) X U(m +k)). Then g=aup.r1, %0
the only possibility is 1 =a; @ asmr-s @ (1-dimensional abelian). Thus
Or = Qz(m-1)+k-1- As Dr has rank m —1, (4.13.1) follows.

Let D=80%(2n)/U(n) where n=2m or 2m 4 1. Then g=2>», and
u=2>», @ dy is the only possibility; here observe that do—a, ®a,. If
gr—a;, then m—1=1, and n=2m by Corollary 4.11, so n=4 and
D, = (unit disc) =80%(4)/U(2) ; conversely, if n =4, then d,..—a, D o,
80 gr=Dy_.. We must check that

Dr—=80%(2[n—21) /U (n—2).

If m—1> 2 then this is true because the rank of Dr is too large to allow
Dr to be of tvpe (4.13.5); it is true if m —1 =2 and n=2m - 1, for then
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Dr cannot be of type (4.13.5) by Corollary 4.11; it is true for m —1=2
and n = 2m because SO*(8)/U(4) = S0%(8)/80(2) X SO(6). Now (4.13.2)
and (4.13.3) are proved.

Let D= Sp(m,R)/U(m). Then g=—cn 50 t=201 @ tn-1 and gr = Cpy1.
Thus Dr=S8p(m—1,R)/U(m—1). This proves (4.13.4).

Let D =FE;/S0(10) - 8O(2). Then g=¢; so u=aq,; @ a;; thus gr =naq,.
As Dr is of rank 1, (4.13.6) is proved.

Let D=FE;/E;-80(2). Then g=¢e; so u=aqa, @ ds; thus gr=0>0s.
As Dr is of tube type, or because SO*(12)/U (6) has rank 3, now Dr must
be §0%(12)/80(2) X 8O(10). This proves the statement on D,; the state-
ment on D, follows either from Corollary 4.11 or from Corollary 4.12.

Q.E.D.

The following result shows how the boundary components are related to
the limit points of geodesic rays. We work in 3/ and J/* for convenience,
but the result translates immediately to D and p-.

4.14. TurorEM. Gwen y€ M and a boundary component F of M in
AM#, there is a unique point f€ F such that some geodesic ray of M from y
tends to f.

Proof. Let U= {k(a"): ke K, T ;A}, and define V' to be the set of
all limit points in M* of geodesic rays of M with initial point x. Tf
= X taXa€a® then the geodesic ray {exp(sX”’)-a}s=, is given by

acA

exp (sX’) o =¢( X tanh(tes) - E_¢). Thus the limit point of the geodesic
aeA
ray is £( X eallo) where e is 0, 1 or — 1 as fa is 0, positive or negative.
aeA

We can find k€ K such that ad(k)X' =3 |ta| Xo; now the limit point
is ad(k)~*-al where I'={a€ A: ta—=0}. This proves U=7V.

We have g€ G° with ¢g(y) ==, and k€ K with k(gF) = ca-rMr for
some I'C A, so we may assume that y == and F=ca-r)r. Now we need
only prove that ca-eMr N {k(2>}: 2T is the only element of k€ K,3 CA}
If k(%) € ca-rlr, then ca—rMr must coincide with kca—zMs, for both are
boundary components containing k(z*). Lemma 4.7 shows that of — & (al)
is closer to the origin of p- than any other point of ¢ca-rdr, and & (ka®)
is closer to the origin of p- than any other point of &'kca—sMs. Thus
k(%) =2T. @Q.E.D.

5. The space of boundary components of a given type.

5.1. We say that two boundary components of D (or M) are of the
same type if an element of G° carries one to the other, and we say that a

11
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boundary component is of type T (T géA) if it is of the same type as
(&'ca-ré)Dr (or ca-rMr). Here we remark

Levmma. Let T ca and 3 gA and suppose that F is a boundary com-
ponent of type T. Then the following statements are equivalent.

(i) F is of type =

(ii) ad(c)®S is equivalent to ad(c)®T under the small Weyl group of
(g%%f) rel. a°

(iii) For every simple ideal of ¢° both 3 and T contain the same
number of roots of that ideal.

Proof. Corollary 4.10 reduces the proof to the case where D is irre-
ducible. Then (i) implies (iii) because Lemma 4.2 shows that the symmetric
space Tank of a component of type T is the number of elements of T.
(iii) implies (ii) by [8, Theorem 2], and it is obvious that (ii) implies (i).

Q.E.D.

Let TCA. We define ST to be the set of all boundary components of
M of type T, and we define UT C 9M to be the union of all boundary com-
ponents of type T. Similarly, SpT denotes the set of boundary components
of D of type T, and Upl' C 8D is the union. These two notions coincide in
the case where T is the empty set ¢; there we have

82 = U? =S, Bergman-Silov boundary of M in M*
Sp? = Up? = Sp, Bergman-Silov boundary of D in p-.

Theorem 4.8 and the Lemma above show that K acts transitively on ST
(vesp. SpT). Let LT denote the isotropy subgroup of K on ca-rMr € ST (resp.
on &lesrMr€ SpT; it is the same subgroup). Then LT is the set of all
elements of K which preserve the closure of c¢s-rMr in the compact set
M, and it follows that LT is closed in K. Now we have identifications
ST = K/L'=8pl, so ST and Sp' are real analytic manifolds, homogeneous
spaces of K.

As a final preliminary remark we observe that K cannot be transitive
on UT or Upl for T's£4 ¢, because any. orbit of K is compact and Lemma 4.7
gives us the closures

UT= |J U* and Upl'= | Up
zcr zcr

5.2. Lemma. Let k€ K. If k preserves ca-cMr,, then k(al) =aT.

Proof. LT is a compact group of isometries of ca-rMr, so it has a
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stationary point. But Kr C LT, and 2T is the unique stationary point of
Kr on cs-rMr.  This proves that 2T is stationary under LT. Q. E.D.

5.3. Let w: UT'— 8T be the natural projection. This is a differentiable
bundle with fibre Mr and group Gr° and K is transitive on the base. Lemma
5.2 may be paraphrased as: kca-rMr—> k(aF) is a K-equivariant global section
of the bundle UT— ST. Lemma 5.2 also allows us to identify ST with K (2T').

5.4. Definitions. We will decompose g° under cs-r in order to study
ST. Let ra-r=ad(ca-r)% We define:

gl': the set of all elements of g fixed under ra-r?;
f'—g'N{;
S=g"Np;
£ = [0, ’plp] 5
gl =5t" 4 p.T;

[,': the centralizer of g,I" in gT.

Here gl is a subalgebra of g, and gU'=1{T + p,T because ra_r* preserves both
fand p. LT is the centralizer of p,T in g, by the Jacobi identity; the decom-
position theory of orthogonal involutive Lie algebras now implies that
' =f£ 4+ L0 and gl'=g," @ I,T, direct sums of ideals.

7a-r preserves and has square I on f,I'; its square preserves and has
square I on f and p. Thus we define:

LT: the (4 1)-eigenspace of 7a_r on £,T;
q:": the (—1)-eigenspace of 7a—r on £
q.T': the (—1)-eigenspace of ra_r® on f;
p.I': the (—1)-eigenspace of 7a_r® on p;

F=0L"4+ L0 and qF = q," + .l

Now we have £, =T 4 q,, =14 q,F, ¥ =1"+ g7, and p = p,I + p.T.
We finally define some related subalgebras

G0 — £,T 4 ip,T
gm0 =10 gyt
BT — [T ig,T
¥ =1 g, T =1L @ £,
of g¢.

Latin letters denote the corresponding analytic subgroups of G, except
that LT was already defined to be the isotropy subgroup of K at af and



924 JOSEPH A. WOLF AND ADAM KORANYI.

L,T will be the isotropy subgroup of K, at «T. We will justify this exception
by checking that I is the Lie algebra of L. As L' C G and cs-rSCa-r™
is the symmetry of M* at T, this check is reduced to seeing that IT is the
fixed point set of ad(ca-rsca-r*) on f. To prove the latter, we first observe
that [T is the fixed point set of 7a—r on f, for the fixed point set is in IT
by definition of qF, the fixed point set contains [,I' by definition and the
fixed point set contains [," as a consequence of ca_r€ GiI. Now let Vef
and observe that

ad(CA—rSCA—r_l) ° —V= a;d(CA—I‘SCA—I‘_l) : a'd(s_l) ' -V

= ad(cA—l‘) . ad(ad (S)CA_P) . V= TA—r(V).
Our assertion follows.

5.5. Lemma. MU= GT(z) is « hermitian symmetric subspace of M.
LT is the tdentity component of the kernel of the action of GT° on MT,
G0 ds (locally) the conmected group of analytic automorphisms of MT,
and g, and g,1° are semisimple. The Cayley transform on MU' is ¢ =ca € G,
MY is of tube type if T =¢, and MT is of tube type if and only if Mr is of
tube type when T £ ¢.

Proof. 3 ga C gU by construction. Z is the sum of its projections Z’
ael
and Z° on §j* and ), )~ C 3 ga, and §h* is centralized by each co. This proves
ael

Zegl, so Z€ gl and it follows that MT is a sub hermitian symmetric space

of M. The statement on L, is immediate from the definition of [T, and

the assertions on G419, g,I*° and g,T follow. The next statement follows from

0’ C X g C g, which is a consequence of ZAga C g and the fact that
ae

aeA
ge N p generates go. The remaining assertions are immediate from Lenma
4.4. Q.E.D.

5.6. LEMMA. 7a_p inlerchanges p,r and q.0'; ad(ca-r) interchanges q."
with the (—1)-eigenspace of ra—r on PiT'; pU=pr + Pa_r,, where 7a-r is
+1 on pr and has square 1 on Pa-r,y, and where J =adZ interchanges the
(== 1)-eigenspaces of ta-r 0N Pa-ry.

Proof. Let Ve p,L and R€ gq.f. Then

‘O'TA—FV = TA—r_]'U'V = TA_r—l-V == ——TA-T TA—r2V = TA—I“V
and

'O‘TA—I‘R == TA—I‘_]'O'R = TA—I‘_lR = Ta-T TA—I‘ZR = TA—I‘R-
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Thus 7a-r(p.F) C ¥ and ra-r(q.T) CTp. Now 7a-r comutes with its own
square, and this implies 7a-r(p.T) C .0 and ra-r(q.0) C p,I.  Equality
follows from dimension considerations. This proves the interchange state-

ment for ra-r. The proof of the interchange statement for ad(cs-r) is
similar.

Lemma 4.4 shows p=pr + Pa-—r, + p.I, direct sum; thus we need only
check that J=ad(Z) interchanges the (= 1)-eigenspaces of ps_r;. This
follows from the fact that Lemma 4.2 allows us to apply [7, Lemma 4.7]
to Mar. Q.E.D.

5.7. THEoREM. Let LT and L.U be the isolropy subgroups of K and
KT at aT=ca_r(z). Then:

5.7.1. ST'=K(al) =K/L" and dim.ST=dim. p," 4 F dim. par,;.
5.79.2. U= (@°(2") and dim.UT = dim. p,T 4+ L dim. pa—r,;, + dim. pr.

D )

3.7.8. K(ea-r*(2)) is a complex totally geodesic submantfold of M*,
and is thus a compact hertmitian symmetric space; KT is the isotropy sub-
group of K al ca_r*(x), so K(ca-r*(x)) =K/KT.

5.7 4. The map k(aT) = k(ca—r®()) is « fibering of ST over K(ca-r*(x));
the fibre over k(ca—c?(z)) ts kK, T (al), which is tolally geodesic in II*,
Riemannian symmetric and isometric to K,T/L,T.

[

5.%.5. The following statements are equivalent:

(1) The partial Cayley transform ca—r has order 4, i.e., g=gT, i.e.,
K (ca-r*(2)) is a single point.

(ii) ST is @ totally geodesic submanifold of M* (in which case il s
Riemannian  symmetric and K induces the largest connected group of
isometries).

(iii) Lel M=2JMU,X - XU, be the decomposition into irreducible
faclors, and let ca—rMp=F{ X - - X F, be the corresponding decomposition
of the boundary component ca—rlr. Then for each j, either F;=M;, or M;
s of (ube type and F; is a point on its Bergman-Silov boundary.

Proof. ST= K (2T) was observed in §35.3, and K («T) = K/LT by defi-
nition of LF. Now dim.ST = dim. K — dim. LT = dim. f — dim. [T = dim. qT
=dim. ¢;"4 dim. q.T. Lemma 5.6 shows that dim.q.l' = dim.p,’ and
dim. q," = } dim. pa-r,;. This proves (5.7.1).

UT = G°(Mr) = G°(Gr(2l)) = G°(2T), and Lemma 5.2 shows that
dim. UT— dim. 8T = dim. M1 = dim. pr. Now (5.7.2) follows from (5.7.1).

The isotropy subalgebra of f at ca-r?(2) is the fixed piont set in f of
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conjugation by the symmetry ca-r’sca-r?=ca-r*s there; thus fI' is the
isotropy subalgebra of ¥ at ca—r’(z). On the other hand, f=1{'--q.f, and
conjugation by the symmetry is —1 on q,7; thus the orbit K (ca-r*(z)) is
totally geodesic in M*. The complex structure operator at cs-r*(2) is ra-r(Z).
[ra-rZ, q.F] = ta-r [ 2, a-rqel ] = 1a-r [ Z, pF ] — ra-r t(Pel) = q.Tl. Thus
K(ca-r?(z)) is a complex submanifold of M*. K (ca-r*(x)) is simply con-
nected ; this is seen in the irreducible case because a local toral factor would
be a coset space of the (one real dimensional) center of K, and the assertion
follows in general. Now the isotropy subgroup of K at ca-r*(x) is connected;
as its Lie algebra is T, it must be the analytic group KT. This proves (5. 7.3).

The map ST— K (ca-r*(z)) is given by the map kLT— kKT of K/LT
onto K/KT; to prove it to be well defined, we must check that L' C KT
(although we do not yet know that LT is connected). KT is the iden-
tity component of V, where V is the full centralizer of ra-r* in K. As
K/V is hermitian symmetric without locally euclidean factor, as checked
in the paragraph above, it is simply connected. Thus V is connected, and
now KT—7V. On the other hand, LT =K N ad(csa_r) K is contained in the
centralizer of 7s—r in K. Thus LT C KT. Now S8T— K (ca-r*(z)) is a well-
defined fibering. The fibre over k(ca-r?(z)) is kKT (al) =k K T LT (al)
= kK, (aT). K,I(al) is totally geodesic in M*, because cCa-rSCa-r* is the
symmetry at 2f, and because ad(ca-rsca-r*)K,l=rsrK;'=K,T. XNow
EK,T is totally geodesic in M*. We have proved (5.7.4).

Let ca-r*=1. Then g=gr, so in particular f=1{"" and K (ca_r*(2))
=K/K" is a single point. If ¥=1{T, then q,"=0, so p,T=0 by Lemma
5.6, whence g==gT and ca_r*=1. Now the conditions of (i) of (5.7.3)
are equivalent.

Assume (i). Then s commutes with cs-r* because ca-r*=1, so
ta-r(f) =% As ra_r coincides with ad(ca-rsca-r?) on f, ST=K(al) is
totally geodesic in M*, which is (ii). Assume (ii). If M is irreducible then
K is the largest connected subgroup of G which preserves K (2T'), by maxi-
mality of £ in g; now f=ad(ca-rsca—r)f=ra_r(f) by (i1), and (i)
follows via Lemma 5.2 from q.f =0=p,. Now (i) is equivalent to (ii)
in (5.7.5).

For the equivalence of (i) and (iii) we may assume 1}/ irreducible.
Assume (iii), then Mr is a point and 2/ is of tube type, so ca-r=c and
[7, Theorem 4.9] c¢*=1, proving (i). Assume (i). Then M =MT. As
MU =Mt X Mar;: by 9.F =pr~+ pa-r,1, and as M is irreducible, we must
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have T=¢ or I'=A; (iii) follows. Now (i) and (iii) are equivalent in
(5.7.5). Q.E.D.

5.8. CoronLARY. The fundamental group = (ST) is the direct product
of a finite abelian group and a group which is free abelian with one generator
for each tube type wrreducible factor of M whose Bergman-Silov boundary is
a direct factor of ca—rMr. In particular the first Betti number of ST is the
number of irreducible tube type factors of M whose Bergman-Silov boundary
s a factor of ca—rMr.

Proof. We may assume M irreducible. Now Z ¢ . if and only if I
is of tube type and T'=¢, for Z=2"+ Z:°+ Zsr° where Z’ -+ Z2€ 1T,
Zs-r*€qiF, and Z’=0 if and only if 1/ is of tube type. Let % be the
derived algebra of f. As dim.f—dim.f,=1, ¥, 17 under the Killing
form of g, and I L q,l, it follows that

(1) if M is of tube type and I' = ¢ then I C f, and
(ii) otherwise ¥, 1T =¥,
We also have
(iii) 7 (8T) is abelian

as in [7, Theorem 4.11] because ST is fibered over a hermitian symmetric
space of a semisimple group with symmetric fibre. Now our assertion follows
from some homotopy sequences as in [7, Theorem 4.11]. @.F.D.

6. The stability group of a boundary component. G° is transitive
both on the set ST of boundary components of type T' and on the union UT
of these boundary components. Let BT be the set of all elements of G°
which preserve ca_rMr € ST and define ET to be the isotropy subgroup of G°
at 2 = ca-r(2). Now

ST == G°/BT and UT == G°/E.
We will study ST and UT by examining BT and ET.

6.1. We have LT C ET C BT because LT is the isotropy subgroup of K
at 2 and T € ca_rMr, and L'=K N BT by Lemma 5.2. K is transitive
on ST so G°= KB'; now G°= BT K and BT is transitive on M, BT/LT = M.
M being connected and acyclic, it follows that LT is a maximal compact
subgroup of BT.

ET is in general not transitive on M. For if ET(2) =DM, then
dim. BT = dim. BT because K N BT = LT = K N ETY, whence ET = BT because
it meets every component. Then cs—rMr= 2T because G C BT and so T' = ¢.

Now LT is maximal compact both in BT and ET, and these groups are
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generated by LT and their respective identity components B," and Il
This brings the study of BT and ET down to the study of their Lie algebras
b and ef. We will need some definitions in order to calculate these Lie
algebras.

(6.1.1) If u is a subspace of g or g° and u¢ is the sum of hC-root
spaces, then u* (vesp. u-) denotes the sum of the positive (resp. negative)
root spaces in uC. This defines p;T%, q,7%, p:* and px,;" (1=1,2;3=T,A—T).
(6.1.2) vl =, + p,I* and tT* = pa_r,,* } r.T*, complex subspaces of g€.
(6 1. 3) Ugri = ]:2I‘: N ad(CA—r)go, nlI‘: = Pa-r1* N ad(cA-r)g" and

' = n,T* 4 n,T™, real subspaces of gC.
(6.1.4) Recall £,T* = [,I' 4+ 4g," and '* =1T 4 4g,T.

Convention. From now on we assume that « > 8 for «€ T and B€ A—T.
This causes no loss of generality because [8, Theorem 2] on each irreducible
factor of M the small Weyl group induces all permutations on the strongly
orthogonal roots.

6.2. LemmAa. ad(Zs—r°) coincides with Yad(Z) on p.f¢ and ra-r
interchanges p,T* with q.r*

Proof. 7 = (7' 4 Z1°) + Zs—x® where 7a_r is 4 1 on the first summand
and — 1 on the second. Now 7a-rZ = Z —2Za-r°. Let E € p,IC; E =7._r0)
with @ € q,7¢ by Lemma 5. 6, and

(ad(Z) - Qad(ZA-ro) )E = ad(n—rz) (TA—I‘Q) = TA-Fad(Z) Q =0.
This proves the first statement.

We may now assume g° simple. Let A= {8;,- - -,8;} with 8, <& < - -
<8, so T'={8;,1,- - *,8} by hypothesis on the ordering of roots. It is
known [8, Theorem 1] that the compact simple roots have restrictions 0,
1(8,—38,), -, (8, — 8—1), and perhaps also — 43,, to h=. Thus ad(Zs-1°) - g
is 0 or (i/2)Eg. It follows that ad(Za-r°) Ly =1ia,l, with a, =0 for
every compact positive root y. The first statement says that ad(Z,-r°) is
F1/2 on poT= As 1a-r®(Za-r°) =—Zs-1°, it follows that ad(Zs-c°) is = i/2
on ta—r(psF*). Thus 7a-r(p"*) C g.7* and the interchange statement fol-
lows. @.E.D.

6.3. Lemwma. The eigenvalues and eigenspaces of ad(— Ya-r°) are:

etgenvalue etgenspace on g¢ etgenspace on g°
0 ad(CA_p)'lfFC _|_ pFC ad(CA_p)'lfF* + pr°
+1 ad(ca-r)tr,T* ad (ca-r) 7 n ™

“+ 2 ad(CA—r)_lpA—rJ: ad(CA—p)_lnlrt
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In particular, % =1,T @ {,T* =¥t'C Nad(ca-r)g® and is a real form of ¥rC,
ML is a real form of t.7%, and n,"* is a real form of Pa-r,*.

Proof. gC =1H'C4 0,70 4 p,FC + prC + pa-r: €. ad(Zs-r°) is =% on
Pa-r,” by Lemma 4.4, = ¢/2 on q,7* 4+ p,’" by Lemma 6.2, and 0 on prC by
definition of grCl. F'C=1TC 4 (£:€ 4 fa-r:€) for pré=pcC 4 pa-r.¢ by
Lemma 4.4. Now ad(Zs-r®)fF¢=0 because Z,-r® is central in fa r,°C,
centralizes ¥r¢ by construction, and centralizes L,TC by [LT,f,']=0 and
fa-ry CHT. Now we know the eigenvalues and eigenspaces of ad(Za-r°)
on g¢, and the assertions for ad(— Ys-r°) follow from

ad((’A_r) -1 (21:ZA—[*0) _ YA—PO.

As — Ya-r?€ g° and ad(— Ya-r°) is a semisimple linear transformation
with all eigenvalues real, every eigenspace of ad(— Ya-r°) on g¢ is the com-
plexification of its intersection with g°. Thus we need only prove that

ad (CA—[‘)_lpA—I‘,1t N g°=ad (CA—I‘) _11111‘:,
that
ad (ca-r) .7 N g% = ad (ca-r) 01",
and that
(ad (ca-r) HTC 4 pel) N g° = ad (ca-r) HT* - po.

The first two equalities are immediate from the definitions of the n,'*, and
PN g% =pr® by construction. Thus we need only prove that

ad (ca-r) IO N g° = ad (ca—r) T*,
As % is a real form of fTC, it suffices to check that ad(csa—r) ™ C g°.
¥ =1 4 iq," and ad(ca-r) is trivial on II. Thus ad(ca-r) T
=[I'CfC g’ Lemma 5.6 says that ad(ca-r)*(iq,") C ip,T C p° C g°. Now
ad(ca—r) HT* C ¢° and the Lemma is proved. @.E.D.

6.4. Lemma. [qof%, 0.7] C pa-r®, 0= ds a complex nilpotent sub-
algebra of degree 2 which is unipotent in the adjoint representation of g¢,
and 1T is @ real form of vT*.

Proof. [q.", poT*] C pa-r,s* by addition of eigenvalues of ad(Za-r°) and
because [£C, p=] C b= [p.,T5 p.T*] =0 and [q.T% q./"] =0 now by Lemma
6.2. Finally [T, pa_r,*] = 0 by addition of eigenvalues of ad(Z.-°). Thus
T is nilpotent of degree 2.

ul= is a real form of 1T, and ad(rT*) is unipotent on g¢ hy addition
of cigenvalues, by Lemma 6.3. @.FE.D.

6.5. THEOREM. O =pr®+ ad(cs-r) - (7% 4 ul-); OF is the sum of
the nonpositive eigenspaces of ad(— Ya-r°) on g° and is the normalizer of
ad(ea-r)™ntin g° el ds the subalgebra ad(ca-r)™*- (¥ +n'~) of BT
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Proof.  The isotropy subalgebra of g at aT is ad(ca-r) - (£¢ + p*),
which we decompose as
ad(ca-r)¥C + ad (ca-r)q.1¢
+ ad (¢a-r) po" + ad (¢a-r) pa-r1* 4 pr.
As 7a-rfl' =1 we have ad(ca-r)f'C—ad(ca-r)'C. Lemma 6.2 gives us
ad(ca-r)7'roT- =ad (ca-r) . C ad(ca-r) 0. + ad (ca-r) p,T*.
Finally ad(ca-r)*pa-r,"=2ad(¢a-r)pa-r,i". Thus the isotropy subalgebra
of g¢ at 2" contains ad(ca-r)™- (f'¢41T). Now Lemma 6.3 say that
ad (ca-r)™ - (£ 4-nl-) lies in the isotropy subalgebra of g° at aT.
The isotropy subalgebra of g° at 2T has dimension dim. G°— dim. T'T, and
this is equal to dim.f 4 4 dim. psa-r,; by Theorem 5.7. Now
dim. f 4 % dim. pa_r; = dim. " 4 dim. q,F + dim. 1,T-
= dim. {7 + dim. 0™~ = dim. ad (ca—r) 7 (7% 4 nT-).
The final assertion of the Theorem is proved. As pr® C br, as
pr® Nad(ca-r)t+ (™ 4-ul") =0,
and as dim. pr® = dim. Vr = dim. UF — dim. ST, it follows that
br — pr® + ad (ca-r) "t - (F* 4 nl-),
which is our main assertion.
The eigenspace assertion now follows from Lemma 6.3, and the nor-

malizer assertion is immediate. Q.E.D.

6.6. Eemarks on b'. The linear transformation ad(Za—r°) is 0 on pr
and == on Pa-ry; thus [Pr, pa-r1] is in the (== i)-eigenspace of ad(Za-r%)
on f, which is zero. We conclude that
(6.6.1) [:C, ga-r,:¢] = 0.

Recall that
P =pr 4 Pa-r1, B = [p.5, 0.1, Fo= [pr, pr]

and fa-ry= [pa-riPsa-r1]. With (6.6.1) this gives f," —fr @ fa—r, (direct
sum of ideals) ; now it follows that

(6.6.2) B0 = @ faory ™.
Now (6.6.2) and ¢' ="+ p' =1 @ g,T yield
(6. 6. 3) oo + pr° = gp" O] IzF O] fA—I‘,]_*-

The algebra (6.6.3) is a reductive subalgebra of ad(ca—r)g® which is a
complement to n'- in ad(ca—r)bT. It follows that
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(6.6.4) n'- is the nilradical of ad(ca-r)bT,
(6.6.5) gr* @ LT @ fa-r:* is a reductive complement to n'~ in ad(ca-r)bT,
and
(6.6.6) ad(ca-r)b'= (gr° @ L,F @ fa-r:*) + nl-, semidirect sum.

el' denotes the isotropy subalgebra of ¢° at 2. As above we see that
(6.6.7) nT- is the nilradical of ad(ca-r)el,
(6.6.8) fr@® LD far,.* is a reductive complement to n' in ad(ca-r)el,
and
(6.6.9) ad(ca-r)el = (fr @ L' @ fa-r:*) 4+ nl-, semidirect sum.

6.7. In order to describe BT we define
(6.7.1)  Pa-r,"=exp(Pa-r:*) C G¢ and N,*=ad(ca-r) G° N Pa_r,.*,
(6.7.2) RT*=exp (™) C GC and N'*=ad(csa-r)G* N RT=

Lemma 6.4 says that every element of ad(r*) is a nilpotent linear trans-
formation of g¢. Thus Pa-r,* and RT* are unipotent subgroups of G¢, and

exp: Pa-r1*—> Pa-r;® and exp: 1T — RI*

are one-one onto. In particular, the groups Par.* and RT* are connected
simply connected nilpotent Lie groups. Now let 4 be conjugation of G¢ over

ad(ca-r)@°; 5 induces involutive automorphisms of the real groups Pa.r,,*
and RT™* with respective fixed point sets N, and NT=. Tt follows that

(6.7.8) N,I* and NT* are the analytic subgroups of ad(ca-r)G°® with Lie
algebras n,™ and n™™

In particlar, N,/* and NT* are connected simply connected nilpotent Lie
groups.

6.8. THEOREM. BT is a parabolic subgroup of G° and is the normalizer
of ad(ca-r)'NT- in G°. The identity component of BT is given by

BOP = {Gro . Lzl‘ : ad(CA—r) —IKA—I‘,l*} -ad (CA—P)'INF_

semadirect product; this is the Chevalley decomposition into reduclive and
unipotent parts.

Remark 1. G°/BU'= 8T is a real projective variety defined over the
rational number field. For BT = BTC N G° for a parabolic subgroup BTC of
G¢, G°/BTC is a complex projective variety defined over the rationals, and
a result of Borel [1, Proposition 3.7] gives the conjugation of GC over G°
defined over the rationals.
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Remark 2. The reductive part of B, admits
Gr® X LT X ad(ca-r) " *Ka-r,*
as a covering group.

Remark 3. BT is the subgroup of ° which preserves the boundary com-
ponent &tca_rMr= (£ca-ré)Dr of D in p-.

Proof of Theorem. Let BTC denote the analytic subgroup of G¢ whose
Lie algebra is the complexification B¢ of BT. As — Ya_r° is a basis of the
Lie algebra of a split algebraic torus of (%, and as OTC (vesp OT') is the sum
of the nonpositive weight spaces of ad(— Ys-r®) on g¢ (resp. on g°), BIC
is a parabolic subgroup of G¢ and BT¢ N G° is parabolic in G°.

Let B, denote G° N BTC. Now B, is the identity component both of
BT and B,T, and ad(ca-r)*ANT- is the unipotent radical of all three by
(6.6.4) and (6.7.3). B, is the full normaliser of ad(ca-r)*NT- in (¥
because BTC is the full normaliser of ad(cs—r)*RT- in G¢; now BT C B,T.
On the other hand B¢ Cad(ca-r) (¢4 p*) as in Theorem 6.5 so
BTC¢ C ad(ca-r) (K- P*); thus B,l=BI'N G° C ad(ca-r) ((KC-P*) N G°)
= Br. Now B'=B,, parabolic subgroup of G° which is the normalizer of
ad(ca-r)*NT- in G°.

The assertions on B, now follow from Theovem 6.5, (6.6.5) and
(6.6.6). Q.E.D.

6.9. CororrarY. [If M s wrreducible and of rank v, and if T has
precisely 1 elements, then BY is conjugate in G° to the group Fs° of
Theorem 3. 4.

Remark 1. This corollary identifiex BT for reducible J/ hy means of
Corollary 4.10.

Remark 2. It is instructive to compare Corollary 6.9 with Theorem <. 13.

Proof of Corollary. Recall the maximally split Cartan subalgebra
t=D0h +a’of g° Now u=1h 4 Ja®=ad(exp(=/4)Z)t is a maximally split
Cartan subalgebra of g°; Ja° the span of {15°};.,, is the split part of 1.

A= {8, - -,8} with & < - <38, Define A(a) to be the last @
elements of A so T—=A(f). Let Y () =—Ya-a)®; {Y(1)," - -, ¥ (r)} is
a basis of the split part Ja® of 1. We order the dual space of Ja° lexico-
graphically by values on this basis. Let 8 be a tC-root of g¢. Then
ad(ca)*B=B* is an hC-root. If B* is noncompact positive, then B*(Za-a(w)®)
is 0, —1/2 or —1; as

ad((’AM]') (giZA_M,[)O) = ad(CA_A((,))“1(27.ZA_A((,)0) = I’((().
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we then have 8(Y (a¢)) equal to 0, 1 or 2. If B* is a compact simple root
we similarly have (¥ (a)) equal to 0 or —1, so B(Y(a)) =0 if B* is
compact negative. Now B |se0 > 0 implies either f* is noncompact positive
or B* is compact negative. ad(ca-a(e))b@C contains every noncompact
negative and every compact positive HC-root space; thus the bA@C are para-
bolic for the split torus Ja®. Now our assertion is the content of Theorem
3.4. Q.E.D.

7. The partial Cayley transforms of D. In this section we shall apply
the partial Cayley transformation ca_r, where I' is a subset of A of the type
considered in Section 6, to the domain D embedded in p-. It will turn out
that the result of this transformation is a Siegel domain of type ITI, which
we shall describe explicitly by determining the action of ad(ca_r)BT on p-.

7.1. v and »° denote the conjugation of g¢ with respect to g and g°
respectively; ¢ , > denoting the Killing form, we define a positive definite
Hermitian form by (U, V>,=—<U,vV> on g¢. The adjoint of a linear
transformation ad(V) (V€ g®) with respect to this form is given by
ad(V)*=—ad(vV) (cf. [7], §6.1). We have p*= pa-r,* -+ p.I* 4 b,
v is a complex antilinear map of p* onto p* preserving this direct decom-
position.

For any F € p~ we denote by E,, E, and K, the projections of E onto
Pa-r,17, P.T~ and pr, respectively, So K= FE, -+ E, -+ E,.

By Lemma 6.3, n,7 is a real form of pa_r,. The terms “real,”

“imaginary,” “ Hermitian ” will always refer to this real form. As in Section
4, we have ol =& (ca-r(2)) =1 X E.a€im. By [7, Proposition 6.2]
aeA-T

applied to the pair (ga-r% fa_r), the orbit Ks-r,*(—1o"") is a self-dual cone
in 1,7 we shall denote it by cT.

7.2. Lemma. For all U € p,r*, we have 7a—x(U) =—[U, oT].

Proof. First we show that, restricted to p,"¢ 4 q,I'C, ra—r and ad(Xa-r)
coincide. By Lemma 6.3, p,'C - q,I'C is the sum of the (== 1)-eigenspaces
of ad(¥a-r") on g¢ We have Xar—iXar®—=—iad(Zs-r°) (¥a-r°), and
PTC4- q.FC is invariant under ad(Zy-°). It follows that p,IC + q,7C is the
sum of the (== 1)-eigenspaces of ad(Xar). Now, if ad(Xar)U ==+ iU,
then 7a-r(U) = (exp(w/2)ad(Xa-r)) (U) = ¢*i7/2U — + iU, proving the
assertion.

To prove the Lemma, let U € p,I*. Then

TA‘F(U) =_—'[U) XA—P] = [U)% 2 Ea] - [U)/'/ 2‘ E-O‘] = [U) 01‘]’
aeA-T aeA-T
since [U, Ho] =0 for all @€ A—T, p* being abelian. Q. E. D.
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Definitions. For all W€ Dr we define the linear transformation
p(W) 2 pf=— p,1= by
p(WYU = ad(W)ra_r v(U),

For all V€ p,I- we define the linear function fy: pr~—> I~ by
fr(W) =T+ u(W))V.
Finally, for all We€ Dr we define the vector-valued bilinear form
Az oI X Por™=> Pa-r,” by
Aw (U, V) =— (i/2) [U, ra-c (v(I + u(W))) V1.

It is easy to see that these definitions are meaningful; for the definition
of Aw we only have to note that | u(W)| <1 in the operator norm with
respect to the real part of ¢ , >, restricted to p,'~. In fact, ra_r and » are
isometric transformations on g€ in this norm ; 7a_r v maps p,I- onto q.r*, and
on g.™ we have || ad(W) || <1 for all W€ Dr by Lemma 4.6.

7.3. LEMma.

(1) For all ke K™, W€ Dr and U,V € p,I-,
ad(B)Aw (U, V) = Apagyw(ad(k)U,ad(k) V).
(ii) For all We Dr and U,V € p,I-,
Ao (U, w(W)V)) = Ao(V,n(W)U).
(iii) For all We Dr we have Ay = Ay® + Awp® where

AW(I)’ AW(2) : pzl"— >< pzl‘—_> pA—I‘,f
are defined by

AW (U, V) =— (i/2) [Uyracr v (1— p(W)?) 3V
Aw® (U, V) = (i/2) [T, raer v (1—u(W)?) 3 (W) V1.

Aw® is Hermitian bilinear and such that Aw®(U,U) € of for all U € p,T-;
Aw® is complex bilinear symmetric.

(iv) For any W€ Dr, Ay is nondegenerate in the sense that if
Aw (U, Vo) =0 for all U€ p,T-, then Vy=0.

(v) For any fized U,V € p,T5 Aw(U,fr(W)) is a constant vector,
independent of W.

Proof. Since | n(W)| < 1 for all W € Dr, we have the convergent series
expansions (1 4 (W)= =3 (—u(W))* and (I—p(W)2) =3 (W),
n=0 n=0

These will be used several times in the proof.
To prove (i) we note that ¥ =1 4+ 4q,". ra_r and v are both trivial
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on IF and equal to — 7 on 4q,". Hence ra—r v is trivial on 7%, and thus ad (k)
commutes with ra_r v for all k€ KT*, Also, ad (k) preserves pa-r:~, '~ and
pr~ by Lemma 6. 3.
It follows that
ad (k) Aw (U, V) =— (i/2)ad (k) [U, ra-v v (I +p(W))*V]
—=— (i/2)[ad (k) U, ra-r v (I 4+ p(ad (k) W))*ad(k) V]
= Agamyw(ad(E)U,ad(k)V).

To prove (ii) we use the definition of A,, the fact that ra_r commutes
with » (by definition of ra_r), then the Jacobi identity and the fact that
[U,V]=0:

Ao(U,p(W) V) =— (/) [U, ra-r v(V) 1]
=— (/) [U, [ra-x v(W), — V1]
=—(i/2) [V, [ra—c v(WV), —U]]
= 'XO(V}"'(W) U).

To prove (iii) we note that
A (U, V) = Ao (U, (I—pu(W)*)2V),
Aw®@ (U, V) = Ao (U, (I —p(W)*)u(W)V).
Hence Ay — Aw® 4 Aw® is immediate.

Now we prove that A,— A,® is Hermitian bilinear and A (U, U) € o
for all U € p,T-. Since A, is linear in the first and antilinear in the second
argument, it suffices to show that A,(U,U) € o for all U. Since cF is a self-
dual cone, for this we only have to show that <A.(U,U), V>, =0 for all
Uept-, Ve

Given any such U and V, there exists an element k € Ka-r,* such that
ad(k)V = —1iof. Denoting U’ =ad(k)U and using (i) we have

A (U, U), V> =LA (U, U"),— 10",

Now note that by Lemma 7.2 we have

racr v(U7) = — [v(U), 07] =—ad (v(U") ) of = ad (U") *oT.
Hence
AT, T?) =— (i/2) [T, 7acr v (I7) ] = — (i/2) -ad(U”)ad (U”) *oT.
Therefore,

AT, V), TSy = (— (i/2) ad(U")ad(U”)*oF,— 0TS,
= 3<ad(U")*oT, ad (U") *0™», = 0,

proving the assertion.
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To prove the desired properties of Aw® for arbitrary W € Dr, we first
note that Ao(U, u(W)2V) = Ag(p(W)V,u(W)U) = Ag(u(W)2U, V) for all
U, V by (ii) and by hermiticity of A,. Repeated application of these identities
gives Ao (U, p(W)21U) = Ao (u(W)*U, n(W)"U) for all n=0. Now we have

Av® (U, U) =§0A0(U;#(W)2”U) =7§)A0(l"(W)”U>#(W)"U)-
By what we just proved, each term of the last sum is in ¢T; hence
Aw(U,U) €T for all U€ p,r~. Since Aw® is linear in the first, antilinear
in the second argument (by complex linearity of w(¥)2), this also shows
that Ayw® is Hermitian, as we had to prove.

Aw® is clearly complex bilinear for any W€ Dr. To prove that it is
symmetric, we use the definition of Aw®, hermiticity of Ao(U, (I — w(W)?)1T)
=Ay®(U,V) in U and V, hermiticity of Ao, then (ii) and again the defini-
tion of Ay®; denoting the conjugation of pa_r,” with respect to n,I- by p,
we have

Aw@ (U, V) = 8o (U, (I— p(W)2)2p(W) V)
— o (W(W) 7, (I—u(W)*)2T)
=AM (I —u(W)*) U, (W) V)
= Ao (V,n(W) (I —p(W)*)70)
= Aw®(V,U).

This finishes the proof of (iii).

In order to prove (iv) it is enough to show that A, is non-degenerate.
The relation Aw (U, V) =Ao(U, (I 4 p(W))V) will then imply that Ay
is non-degenerate. We show that A,(U,U) =0 implies U =0.

Suppose A, (U, U) =0 for some U € p.-. As in the proof of (iii), we
have by Lemma 7.2,

0=<A(U,U),—10">, = §<ad (U)*oT, ad (U ) *oT,.

Since <, >, is positive definite, this implies ad(U)*o" =0. This means

[—v(U),0"] =0. Now, since of — 3 FE_q, it follows that [v(U), Ya-r]
o eA-T

=0, i.e. ad(¥Ya-r*(v(U)) =0. Since v(U) € p,*, by Lemma 6.3 it follows
that v(U) =0. Hence U =0, as we had to show.
The proof of (v) is trivial from the definitions; we have

A (U, fr(W)) = — (i/2) [U, 7ame v (14 w(W)) (I + (W) V]
—=—(i/2) [U, ra-r v (V) ],

which is independent of W. @.E.D.

7.4. LeMMs. The map I —rza_pvis a real linear isomorphism of p,t=
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onto '~ ; so every element of n.T~ can uniquely be wrilten as V—ra-x v(V),
with V € p,I-.

Proof. If V€ p,I-, then ra—r v(V) € 1. 1.1 = (b7~ + ¢.T*) N ad(ca-r)a°
is a real form of p,T - q,T*, hence dim. 11,/ = dim. p,I- — dim. q,™*. Now it
suffices to prove that V —ra_r v(V) € ad(ca-r)g° for all V € p,I-.

The involution of g€ with respect to ad(ca-r)g°® is

ad(ca-r)r*ad(ca-r)* =ad(ca-r)ovad(ca-r)?
=ocad(car)wad(ca-r)' = ovra-r.
For V€ p,I'- we have

UVTA-r'l(V) = U'VTA—]‘(V) =-—Ta-r V(V),
ovracr (ramr v(V)) — o (V) =—TV.

Hence V-—7arv(V) is invariant under ovra-r?, and so is contained in
ad(ca-r)g®. Q.E.D.

7.5. ProrosirioN. NT- acts on b~ by
9(B) =B+ U+ fr(Bs) + 2ihp,(Be, fr(Bs)) + idn, (fr(Bs). fr(Bs))

where g—=exp(U + (I —ra—rv)(V)), T€nl~, VEpL-. KTU* acls on p~
by the adjoint representation ; it preserves pa-r1, P.F= and pr-.  ON Pa-r17,
Ka-r1* is real, Kr and LT are trivial. These actions are &-equivariant ; in
particular K% N- preserves £(p7).

Proof. Tt is easy to see that K¢ and P- act on p~ in a &-equivariant way
by the adjoint representation and by translations, respectively. Now let g
be any element of NT-; it can be written in the given form by Lemma 7.4.
By the Campbell-Hausdorff formula we have

g=exp(U-+V —zarv(V))
—exp(U) exp(3[V, ra-xv(V)]) - exp(V) - exp(—ra-r v(V))

since, by Lemmas 6.3 and 6.4, all other brackets vanish. Now —7a—r v(V)
€ 0. C £%, 50 exp(—ra—r v(V)) acts on p- by the adjoint action;

exp(—ra-r v(V)) ()
=B —{[ra-v v(V), E] 4 $[ra-x v(V), [ra-r v(V), E]]
=B [Eoyra—r v(V)] + [Es, 7a-r v(V)]
+%[[E3’TA-P "(V)]:TA-I‘ V(V)])

since all other brackets vanish, again by Lemmas 6.3 and 6.4. The other
factors in the expression of g are in P-, so they act on p- by translations.
Using the definition of Ay the assertion about the action of g follows.

12
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KT* commutes with ad(Za-r°), therefore preserves its eigenspaces Pa-r,.-,
p.f- and pr~in p=. Ka-r,* is real on pa_r,;~ by [7, Proposition 6.6] applied
to the pair (ga-r° fa-r). LT and fr centralize pa-r,~, hence L,T and Kr act
trivially on it. @.E.D.

7.6. We define the partial Cayley transform of D by
Ca-rD = é"l(CA—rGo (117) ) .

This is the image of D under &'ca—ré in p-. To see that this definition is
meaningful, we note that by (6.6.6) we have a local semidirect product
ad(ca-r) Bo' = Gr+ (Ks-r,,* - L,YNT-), TUsing this, we have
¢a-r(G°(2)) = ca-r(Bo' (@) ) = (ad (ca-r) BoL) (ca-r2)
= (N L,T Ka-r,1*) (Gr° (Ca-r) )
— (VT L" Kuon*) (comsMr) C £(1),

by Lemma 4.2 and Proposition 7. 5.

7.7. TurEOrREM. The partial Cayley transform ca—cD of D is the
domain {E: ImE,—Re Ag,(E,, E,) € ', E; € Dr}.

Proof. Let us denote by S the domain defined in the text of the Theorem.
First we show that ca_rD C S. By 7.6 we have

CA—[*D = (NF_ ° Lgr N KA—P,:[*) (GI‘O(OF) ).

Now Gr°(oT) = {oT 4 Es: E; € Dr} C 8, and in order to see that csrD C S,
it suffices to show that L, Ka_r,* and NT- map S into itselt. To show
this, let € S and let k€ LT Ka-r,*. We denote B/ — ad (k) E. By Lemma
7.3(i) and Proposition 7.5 we have

Im B’y —Re Ap,(E's, B',) = ad (k) (Im By, — Re Agy(E,, B,)) € ad(k)c" = (.
Now let g=exp(U + (I—ra-rv) (V)) € NT- with U €™, Ve p,t-, and
let B”=g(F). By Proposition 7.5 we have

Im B, —Re Ap, (B5, E>)
= I (By + U + 2iAp, (B, fv (Bs) ) + i, (fv (Bs), fr (Bs))

—Re AEB(EZ +fV(E3); B, +fV(E3))
=Im E, —Re Ag, (., E,),

proving the assertion.

Next we prove that S CcarD. Let E€ 8, it is sufficient to show
that E can be transformed into the element ol € cs_rD) by an element of
ad(ca-r)Bol. Let V=— (I 4 u(F;))E,; then

Ny =exp(([ —ra_rv)(V)) € NI
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carries E into an element B’ =FE’;, + 0+ E;. Now let U=-—Re E’;; then
n, —exp(U) € N~ carries B’ into E” —=1iF 40+ E;, with F' real. As we
showed above, NT- preserves S, so we have

Im B”, —Re Agry(B"o, B”,) = F € I

Now there exists an element % € Ka-r,,* such that k-F=—10"; k carries

E” into B” = o' + 0 4+ E;. Finally, since E; € Dr, there exists g€ Gr° such

that g- B;=0. Tt follows that gkn,n,-E=of, and gkn,n,€ ad(ca-r)BT.
Q.E.D.

UNIVERSITY OF CALIFORNIA, BERKELEY.
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