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1. Introduction and summary. 1.1. K. de Leeuw and H. Mirkil [6] recently

studied the closed rotation-invariant subalgebras A of the Banach algebra of

continuous complex valued functions on the n-sphere, n > 1. Assuming that A

contains the constants, they proved that there are only three possibilities: the

constants, the whole algebra, and the algebra consisting of all functions/ such

that/(xj) =/(x2) whenever xx is antipodal to x2. Their proof depended on the

high degree of transivity of the rotation group on the sphere, and this led I.

Glicksberg to conjecture that their result should generalize to the compact two

point homogeneous spaces (see [7] for these spaces; they are the spheres, the

real,complex and quaternionic projective spaces, and the Cayley projective plane).

Here their result is generalized to a much larger class of spaces, the class of all

compact connectedRiemannian symmetric spaces which are not locally isometric

to a product in which one of the factors is a circle, a group manifold SU(n) (n > 2),

SO(4n + 2) or E6, oracoset space SU(n)/SO(n) (n > 2), Sl/(2n)/Sp(n) (n > 2),

S0(4n + 2)/SO(2n + 1) x SO(2n + 1), E6/F4, or E6/(Sp(4)/ {± /}).

I am indebted to I. Glicksberg both for the idea of working on this problem

and for many valuable suggestions.

1.2. Let X be a compact connected Riemannian symmetric space. We study

the action of the largest connected group G of isometries of X upon the Banach

algebra C(X) of all continuous complex valued functions on X, looking for

necessary and sufficient conditions on a closed G-invariant subspace V of C(X)

that V be self adjoint(2), i.e., that V be closed under complex conjugation of

functional values. If X is the sphere, then G is the rotation group, as in [6]. Some

sufficiency conditions are obtained in §2 which ensure, for X in the class of

symmetric spaces mentioned in §1.1, that every closed G-invariant subspace of

C(X) is self adjoint. If X is not locally isometric to a product of lower dimensional

spaces and the subspace is a subalgebra A properly containing the constants, then

results of §7 (which do not depend on preceding results) show that it is C(Y) lifted

to X where F is a Riemannian symmetric space which admits a G-equivariant

covering X -*■ Y ; all possibilities are given in §7.4. The results of [6] are a special
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case. Necessity conditions are much more difficult; tools are developed in §3, and

the bulk of §§4-5 is devoted to the exibiting of a closed G-invariant subspace of

C{X) which is not self adjoint whenever X is not in the class mentioned in §1.1.

These results are summarized as Theorem 6.1. §4 is of independent interest ; some

new results are proved relating the algebraic structure and the representation ring

on a compact group.

1.3. We are forced to assume mild familiarity with Riemannian symmetric

spaces and compact Lie groups, but recall the basic notions in order to establish

notation.

Let X be a Riemannian manifold. The group of all isometries of X onto itself,

endowed with the compact-open (uniform convergence on compact sets) topology,

forms a Lie group. We will be concerned with the identity component G ofthat

group. An isometry s of X of order two with xelas isolated fixed point, is called

the symmetry of X at x; if X is connected and s exists, then s is unique because

it induces — I (7 = identity) on the tangentspace Xx. X is symmetric if it has a

symmetry at every point. If X is symmetric and connected, then G is transitive

on the points of X : by continuity it suffices to show that the group of all isometries

is transitive, and this is done by joining two given points by a broken geodesic

arc and applying the product of the symmetries at the midpoints of the smooth

pieces.

Let X be connected and Riemannian symmetric. Then there is a Riemannian

covering n :X-+ X (covering of Riemannian manifolds where the projection is

a local isometry), % simply connected and Riemannian symmetric. Then À' is a

metric product X0 x Xx x ••• x Xr where X0 is a Euclidean space and the

X¡ii > 0) are irreducible (not Euclidean, and not locally a product). The niXj)

are the local factors of X. Now let X be compact. Then Xt is compact for i > 0.

It follows that we can collapse X0 and obtain a Riemannian covering %':X' -* X

where X' = X'0 x Xx x ••• x Xr and X'0 is a flat torus.

Let X be a compact irreducible Riemannian symmetric space. Then there are

only two possibilities. If G is not simple (in the sense of Lie groups), then X is

itself a compact Lie group, and G consists of all transformations

iu,v) :x-* uxv"1; u,v,xeX.

Otherwise, G is simple.

The compact classical groups are the unitary groups l/(n) in n complex variables,

the special unitary groups SI/(n) consisting of elements of determinant +1 in l/(n),

the orthogonal groups 0(«) in n real variables, the special orthogonal (rotation)

groups SOin) consisting of elements of determinant + 1 in 0(h), the universal

covering groups Spinin) of SOin), and the symplectic groups Spin) in n quatern-

ionic variables, which are the quaternionic analogues of l/(n). There are also

the compact simply connected exceptional groups G2, F4, £6, E7 and £8 which

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1964] SELF ADJOINT FUNCTION SPACES 301

are not easily described; only £6 and £7 have nontrivial centers, those centers

being cyclic of respective orders 3 and 2, yielding quotient exceptional groups

which are not simply connected.

We refer to Helgason [5] for details on Lie groups and symmetric spaces.

2. Group theoretic criteria. É. Cartan has shown [3, §16] that the symmetry

to a compact Riemannian symmetric space sends every invariant function space

to its adjoint. The following is a variation in which the identity transformation

replaces the symmetry.

2.1. Theorem (joint work with I. Glicksberg). Let X be a coset space

G/K of a compact topological group by a closed subgroup. If g_1 eKgK

for every geG, then every closed G-invariant subspace of CiX) is self adjoint.

Proof. Given xeX we have geG with x = g(w) where weX is represented

by the coset K. The hypothesis provides k and k'inK with kg~í — gk'. Define gx

= kg~1; now gxiw) = x and g^x) = w.

Let L be a closed G-invariant subspace of CiX). As G is compact, L is the closed

span of finite dimensional irreducible G-invariant subspaces, and L is self adjoint

if these subspaces are. Thus we may assume that G acts irreducibly on L and that

L has a basis {m¡} on which G acts by unitary matrices. Evaluation at w being

linear, we may also assume that u¡(w) = ôxi.

Let xeX.u¡-gx= ¿Zja^Uj with (ay) unitary; thus ui-g~1= S; aj¡Uj.Now

aix= L^jüijUjiw) = uligxiw)) = uiix) = uiig;1iw))= £j;a^u/vv) = a~xl. Thus ux(x)

is real. Now ux is real valued, so ux e L O L, and L — L follows by irreducibility.

Q.E.D.
2.2. Cartan subalgebras and the Weyl group. Let X be a compact connected

Riemannian symmetric space; then X is a coset space G/K where G is the largest

connected group of isometries and K is the isotropy subgroup of G at some point

xeX. The Lie algebra 'S of G is a vector space direct sum ¿f + SP where the

differential of the symmetry s at x is + 1 on C3 and — 1 on &, and where 3fis the

Lie algebra of K. P = exp^) is the set of "transvections" through x, and every

element geG has expression g = kp with k e K and peP. Every subalgebra of 'S

contained in 0> is commutative, the maximal such subalgebras are called Cartan

subalgebras of the symmetric pair ('S, Jf), and any two Cartan subalgebras of

(fS, 3T) are conjugate by an element of K. Let sé be a Cartan subalgebra of

('S, Jf); we define A = expisé), and it follows that every element of P is of the

form fcafc_1with aeA and keK; in particular, G= KAK. We refer to [5] for

details on this and on the following.

Let sé be a Cartan subalgebra of ('S, X"). Given geG, ad(g) will denote both

the automorphism h^ghg'1 of G and the automorphism induced on 'S.

Consider the normalizer N = {keK : ad(k) sé = sé} of sé in K. Conjugation by

elements of N induces a finite group of linear transformations of sé; this group
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is called the Weyl group of X, and we will say that it "contains —I" if it contains

the transformation 0 -> — 0 of si.

If X is a compact connected Lie group and T is a maximal toral subgroup,

then the Weyl group of X (as Lie group) is the group of linear transformations of

the Lie algebra 3~ induced from conjugation by elements xeX with ad(x)y = &".

Endow X with a bi-invariant Riemannian metric; it becomes a Riemannian

symmetric space where the symmetry at 1 is x -* x~1 and the largest connected

group G of isometries consists of the transformations

iu,v) :x -yuxv~1;      u,v,xeX.

Then S? = 3C ® 3C, Jf consists of all (0,0) with 0 e 9C, and 0> consists of the (0, - 0).

Now 0->(0, —9) maps 3d onto ^, mapping 5" isomorphically onto a Cartan

subalgebra si of if&, Jf), and sending the Weyl group of X (as Lie group) iso-

morphically onto the Weyl group of X (as symmetic space). So there is no ambi-

guity in speaking of the Weyl group of X.

2.3. Theorem. Let X be a compact connected Riemannian symmetric space.

If the Weyl group of X contains —I, and if G denotes the largest connected group

of isometries of X, then every G-invariant closed subspace ofCiX) is self adjoint.

Proof. Let sí be a Cartan subalgebra of if¡§, CtiT), A = exp(^), and choose

keK inducing —I in the Weyl group. Then ad(fc)0= —0 for 9esi, so

ad(fe)a = a ~x for a e A. Now let g eG. As G = KAK we have g = kxak2 with

aeA and k¡eK. This gives

g'1 = k~2xa~xk~xxeKa~xK = Kk~la~lkK = KaK = Kkxak2K = KgK.

Now Theorem 2.1 shows that every closed G-invariant subspace of C(X) is self

adjoint. Q.E.D.
2.4. Remark. If K contains the symmetry s, then s induces the element —I

in the Weyl group of X, and we may apply Theorem 2.3. Here it is useful to know

that the following conditions are equivalent: (i) K contains the symmetry,

(ii) the Lie groups G and K have the same rank (= common dimension of

maximal toral subgroups), (iii) the Euler-Poincaré characteristic xiX) # 0. In

particular these conditions are satisfied if G admits no outer automorphism.

2.5. Remark. If X is a compact connected two point homogeneous space of

dimension = 2, then X is a Riemannian symmetric space whose Weyl group

contains —I, so Theorem 2.3 applies.

2.6. Remark. The condition that the Weyl group contain -I is preserved

under formation of Riemannian products and passes down under Riemannian

coverings. This is the main virtue of Theorem 2.3.

2.7. Proposition. Let X be a compact connected hermitian symmetric or

2-point homogeneous space. If X is not a circle, and if G is the largest connected
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group of isometries of X, then every closed G-invariant subspace of CiX) is self

adjoint.

This is immediate from Remarks 2.4 and 2.5.

3. Representation theoretic criteria. This section is based on the Peter-Weyl

Theorem, a result of É. Cartan on induced representations, and

3.1. Lemma (I. Glicksberg). Let H be a compact topological transformation

group on a space Y, and let Ebe a self adjoint H-invariant finite dimensional

subspace of C{Y). Then E has a basis of real valued functions on which H acts

by orthogonal matrices.

Proof. As £ is self adjoint, we have £ = ER ®R C = ER + iER direct sum of

real vector spaces where ER consists of the real valued functions in £. H preserves

each summand for, given he H and e 6 £, both e and /i(e) take the same set of

values. ER has a (real) basis {/¡} on which H acts by orthogonal matrices; the

lemma follows because {/¡} is a (complex) basis of £. Q.E.D.

3.2. Recall that the contragredient of a linear representation n of a compact

group f/ on F is the representation 71* induced on the dual space of V, and that

n is called self contragredient if it is equivalent to n*. If % is the character of

7i, then the complex conjugate x is the character of n* ; thus n is self contragredient

if and only if its character is real valued.

3.3. Theorem. Let G be a compact topological group; let X = G/ K where

K is a closed subgroup; let D be the set of equivalence classes of irreducible

representations of G; given neD, let n„ denote the multiplicity of the trivial

representation of K in the restriction n \K. Then every closed G-invariant sub-

space of CiX) is self adjoint if and only if neD implies (i) n„ ^ 1 and (ii) n is

self contragredient if n„ = 1.

3.4. Let V be an irreducible nonzero G-invariant subspace of CiX), let n be

the representation of G on V, and suppose that n satisfies conditions (i) and(ii) of

the theorem ; we must show that V is self adjoint. If ß e D, then ß* denotes the

contragredient, Wß is the representation space, Eß = Wß ® Wß* is the space of

matrix coefficients, and (£?)K denotes the eigenspace of +1 for 1 ® ß*iK). iEß)K

consists of the functions in Eß invariant under right translation by elements of AT,

and we have Fourier-Peter-Weyl developments

(*) CiG)~ I £",   C(X)~ I (E")K.
ßeD ßeD

Thus conditions (i) and (ii) on n, together with the fact that V ¥= {0} implies

nn 5* Oby(*),saythatF = (E^and/c is self contragredient. Let V * be the adjoint

of V ; then a glance at functional values show that G acts by 71* on V*. As n = n*

this implies V* c (£*)* = V ; thus V is self adjoint.
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3.5. Let every closed G-invariant subspace of CiX) be self adjoint and let

7t e D ; we must prove (i) and (ii). There is nothing to prove if n„ = 0, so we may

assume n„ > 0. Then U = (£")x # 0. U is self adjoint by hypothesis, and finite

dimensional and G-invariant by construction ; thus the representation x of G on U

is self contragredient by Lemma 3.1. As x = nn • n , n is self contragredient. This

proves (ii).

Now suppose n„ > 1 and let £ be the real vector space consisting of the real

valued functions in £". Self contragredience of the representation n of G implies

that the character x of n is real valued, so 0 ^ /e£, and thus £ # {0}. As

£" is an irreducible 7t(G) ® 7t*(G)-invariant subspace of CiG), this implies that £*

is self adjoint, so £" = £ ®RC by Lemma 3.1. Define F = (£")Kn £; as £ is

TC(G)®7i*(G)-invariantbyconstruction,itfollowsthat[/ = (£':)i:satisfies[/=F®J{C.

Now F = Fx ® ■ ■ • ® F„, n = n„, where F¡ is G-invariant and G acts on Ui = F¡®RC

by 7i. Let {//, ••-,/'} be a basis of F; over R (and thus of U¡ over C) such that,

given ge G, g acts on the various U¡ with the same matrix in these bases. Define

f =f\ + if I and let W be the subspace of U spanned by the G- translates of/;

W is self adjoint by hypothesis. Thus W contains/} = Re./ andf2x = Im./,

so IF = Ux ® U2. But the action of G on W is 7t, thus irreducible, by construction

of IF. This contradicts nu > 1.

Theorem 3.3 is proved. Q.E.D.

As we worked with only one representation at a time in the proof of Theorem

3.3, we have in fact proved

3.6. Corollary. Let G be a compact topological group, let X = G/ K where

K is a closed subgroup, and suppose for every irreducible representation n of G

that the trivial representation ofK has multiplicity at most 1 in n\K. Let V be

a closed G-invariant subspace of CiX). Then V is self adjoint if and only if the

representation of G on V is self contragredient.

In order to apply Theorem 3.3 and Corollary 3.6 to symmetric spaces, we need

the following lemma which is a mild extension of a result of É. Cartan [3, §17].

3.7. Lemma. Let G be the largest connected group of isometries of a compact

connected Riemannian symmetric space X. Let F be the representation of G

on CiX) and letf be an irreducible representation of G. Then the multiplicity

of f in F is at most 1.

Proof. Let K be the isotropy subgroup of G at x e X, let s be the symmetry to

X at x, and define

G' = G U s ■ G and K' = K U s • K.

Then X = G'jK'. Let the Lie algebra ^= Jf + & and define P = exp(^) as in

§2.2. Then G' = K' • P because G = K ■ P, and sps ~ * = p "x for every peP. Let

geG;  g = kp with keK' and peP. Now
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g'1 = p"1fc-1 eK'p'1 K' = K'sp'1 s'1 K' = K'pK' = K'gK'.

Thus every closed G'-invariant subspace of CiX) is self adjoint by Theorem 2.3.

Let F' be the representation of G' on C(Z) and let/' be an irreducible represen-

tation of G'. Then Theorem 3.3 says that the multiplicity off ' in F' is at most 1.

Consider the Fourier-Peter-Weyl development C(X) ~ £(£")* under G. If G

is reducible on iEf)K, then we choose a subspace VX®V2 of\Ef)K where G acts

irreducibly on each V¡. Define W¡ = V¡ + s(V¡). Then G' acts on both Wt by the same

irreducible representation, so Wx = W2. Now we may assume V2 = s(Vx), and it

follows from Schur's Lemma that s commutes with every element of G. This

implies s 6 G, so Vx = V2 in contradiction to reducibility of G on (Ef)K. Now G

acts irreducibly on (Ef)K. Our assertion follows. Q.E.D

3.8. Theorem. Let X be a compact connected Riemannian symmetric space.

Let G be the largest connected group of isometries of X and let V be a closed

G-invariant subspace of CiX). Then V is self adjoint if and only if the represent-

ation of G on V is self contragredient.

Proof. Let % be an irreducible representation of G. Comparing the Fourier-

Peter-Weyl developments of CiG) and CiX), we see that the multiplicity of n in

the representation of G on C(X) is equal to the multiplicity of the trivial represen-

tation of Ki= isotropy subgroup of G on X) in n | K. The former multiplicity

being at most 1 by Lemma 3.7, the latter multiplicity is at most 1. The theorem

now follows from Corollary 3.6. Q.E.D.

4. Function spaces on group manifolds.   The goal of this section is :

4.1. Theorem. Let X be a compact topological group and define G to be the

group of transformations of X generated by the right and left translations.

Then the following three conditions are equivalent.

(1) Every closed G-invariant subspace of CiX) is self adjoint.

(2) Every linear representation of X is equivalent to its contragredient.

(3) Every element of X is conjugate to its inverse.

Suppose further that X is a compact connected Lie group in bi-invariant

Riemannian metric. Then G is the largest connected group of isometries of X,

and the list of equivalent conditions extends to include the following three

conditions.

(4) X is semisimple, and none of its simple components is locally isomorphic

to SUin) in > 2), to SO(4n + 2), nor to £6.

(5) The Weyl group of X contains —I.

(6) Every central element of the universal covering group of X has square 1.

4.2. Corollary. Let =Sf (resp.L) be a real or complex semisimple Lie algebra

(resp.  connected Lie group).  Then every finite dimensional representation of
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J§?(resp. L) is equivalent to its contragredient, if and only if, no simple ideal

o/=Sf (resp. no simple component ofL) is of Cartan classification type Anin > 1),

norD2n+1,norE6.

Remark. Corollary 4.2 is due to E. B. Dynkin [4] for complex Lie algebras.

We find it easier to work directly than to reduce to Dynkin's result.

4.3. (1) implies (2). Let D denote the set of equivalence classes of irreducible

representations of X. Given neD, dn is its degree, n* is its contragredient,

IF" is the representation space, and £"= W" ® WK* is the space of matrix

coefficients. We have the Peter-Weyl development

CiX) ~ I E*

and the £" are the irredicible G-invariant subspaces of CiX). Now assume (1),

i.e., suppose that each E" is self adjoint. Lemma 3.1 provides a basis {/¡} of £"

on which G acts by orthogonal transformations; in particular the subgroup

X x 1 of G acts on {/} by real matrices, so the character / of this representation

of X is real. But that reprerentation is n ® •■■ ©n (íL. times), so the character

Xn of n is real, and x** = &Triow implies x*= X*»- This proves that n is equivalent

to n*, completing the derivation of (2) from (1).

4.4. (2) implies (3). Let every linear representation of X be self contragredient.

Then every character on X is real. If x e X and x is the character of a representation

n, one sees that %(x~ * ) = x(x) by diagonalizing 7t(x) ; thus xi*~ *) = xix)-As tne

characters separate conjugacy classes it follows that x is conjugate to x_1,

completing the derivation of (3) from (2).

4.5. (3) implies (1). Let every element of X be conjugate toits inverse and let

K be the isotropy subgroup of G at leX. K consists of all ia,d) :x->axa_1

for aeX. Given g = («,i;)eG, g:x-+«xy_1, our hypothesis provides

beX such that ¿»(iT1«)*»-1 = u~1v. Thus g_1 =iu~1,v~t)eKiu~1,v~i)K

= Ki\, tT^uX«-1,«-1)* - K(l, v~%u)K = Kib^XUv'1«)^'1, b~l)K

= Kil,u~1v)K = Kiu,u)il,u~lv)K = Kiu,v)K = KgK. Now every G-invariant

subspace of CiX) is self adjoint by Theorem 2.1, so (1) has been derived from (3).

This completes the proof of equivalence of the first three statements of Theorem

4.1. We now assume that X is a compact connected Lie group.

4.6. (5) implies (1) by Theorem 2.3.

4.7. (1) implies (6). Assume (1); then (2) follows, so every representation of

X is self contragredient. X is semisimple because it cannot have a circle group

for homomorphic image. Now let X' -> X be the universal covering group, and

let Z' and Z be the respective centers of .Y' and X; X'/Z' = X/Z and Z' is finite

of some order n.

We first check that every representation of X' is self contragredient. If AT' has a

representation which is not self contragredient, then some irreducible summand
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ß is not self contragredient, so the character Xß is not real. Let y = ß® ■■■ ®ß

in times), representation of X' with character xy = iXß)"- If z eZ', then z" = 1 so

ßiz) = e2n,kl"I for some integer k by Schur's Lemma; now yiz)ivx® ■•■ ®v„)

= vx® ■■■ ®vn; thus Z' is in the kernel of y. Now y induces a representation a

of X'/Z' = X/Z; composition of a with X-> X/Z is a representation 7t of X

whose character x„ assumes the same values as xy - X*. is real by our hypothesis that

n is self contragredient; thus Xßix)n is real for every xeX'. Choose xeX' with

Xeix) not real and let {x(} be a one parameter subgroup of X' with Xj = x. Then

t^Xßixt) is a smooth curve in the complex plane. As Xßixt)" is real, the curve is

confined to the n or n/2 lines through 0 and e2mkl", and thus lies completely in

one of those lines because it is smooth. This is impossible because Xßixx) and

Xßix0) cannot lie on the same line. We remark that there is an alternate argument :

the highest and lowest weights of the complex Lie algebra representation induced

by ß are not symmetric about zero, and one can prove that it follows that the

same is true for the greatest irreducible summand of y.

Now every representation of X' is self contragredient. Let j? be a faithful finite

dimensional representation of X' ; ß = ßx © ••• © ßr where the ßt are irredicible,

and the character of ß{ is real. If xeZ', then ßfz) is scalar by Schur's Lemma

and has real trace, so ßfz) = ±1 ; thus ßiz)2 = /, and it follows that z2 = 1. We

have derived (6) from (1).

4.8. (6)imp/ies(4). Assume (6) and let X' -» X be the universal covering group.

X is semisimple because X' cannot have a vector group as direct factor. If a simple

componentofXislocalIyisomorphictoSi/(n)(n > 2)(resp.S0(4n + 2),resp.E6),

then X' has a direct factor SUiri) in > 2) (resp. Spini4n + 2), resp.£6) which

is impossible because the center of that direct factor is cyclic of order n > 2

(resp. of order 4, resp. of order 3). This completes the derivation of (4) from (6).

4.9. (4) implies (5). Let W be the Weyl group of X with respect to a maximal

torus T ; W is the group of transformations of its Lie algebra 9~ induced from

conjugation by elements geX such that gTg-1 = T. Assume (4); we wish to

find weW inducing the transformation 9 -» — 9 on J~. The existence of w is

equivalent to the existence of a corresponding element in the Weyl group of each

simple factor of X, so we may assume X simple. Locally isomorphic Lie groups

have isomorphic Weyl groups, so we may check any group locally isomorphic

toX

S0(2mor2m + l).In2 x 2 blocks let

M¡ = diag.{o,-,0,í_°27t   2^,0,-,0,(l)j.

Then the u¡ form a basis of 9~, W acting by all signed permutations in the 2m + 1

case, and W acting by all permutations with an even number of sign changes in

the 2m case. Thus W contains —I except in the 2m case with m odd. That case

was excluded.
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Spin), ^"has a basis on which W acts by all signed permutations; thus —IeW.

G2. G2 has a subgroup isomorphic to SO(4), and we choose T <rS0(4). Now

IF contains the Weyl group of S0(4), which contains —7.

F4. £4 has a subgroup locally isomorphic to S0(9). Apply the trick used for G2.

E7. E7 has a subgroup H locally isomorphic to Sl/(8) whose normalizcr

N = H u aH where conjugation of H by a is induced by complex conjugation

of unitary matrices [9, §5.7]. Choose 9~ c X corresponding to the diagonal

pure imaginary 8x8 matrices; now a induces —IeW.

E8. E8 has a subgroup locally isomorphic to S0(3) x E7. Apply the trick used

for G2.

We have derived (5) from (4). This completes the proof of Theorem 4.1. Q.E.D.

4.10. Proof of Corollary 4.2. Let ß represent an object A on a finite dimensional

hermitian vector space V. If it can be defined, the contragredient ß* is the repre-

sentation induced on the dual space V*. If the superscript ' denotes transpose of

matrices, the matrices representing linear transformations via an orthonormal

basis B of F, then V is identified to V* by the hermitian form and

(i)  if A is a group, then ß*ia) = 'ßiaf1 ;

(ii) if A is a Lie algebra, then ß*ia) = — 'ßia).

Now suppose that A is a connected Lie group with Lie algebra si, and let /?„.

denote the representation of si induced by ß; as /3# is the differential of ß, it is

easily verified that/? is self contragredient if and only if /»„.is self contragredient.

Every finite dimensional representation of a Lie algebra being induced by one of

the corresponding connected simply connected Lie group, the proof of Corollary

4.2 is reduced to the proof of the statement on groups.

Let L be a connected semisimple Lie group, let 3? be its Lie algebra, and let n

represent L on a finite dimensional vector space V. If L is a real Lie group, let 'S

be the complexification of n^iST) and let G be the corresponding analytic matrix

group. If L is a complex Lie group, let 'S = n^i^C) and G = tt(L). Let x :x -» x

(resp. ß : z -» z) denote the identity representation of niL) (resp. of G); n is self

contragredient if and only if x is self contragredient, i.e., if and only if the identity

representation a+ of 7t+(jSf) is self contragredient. If a+ is self contragredient,

then there is a nonsingular matrix b such that — b'xb~1 = x for every x e 7t^(^f).

As every element of 'S has form x + iy, i2 = — 1, x and v in n^i^C), this gives

— b'zb = z for every zeS, so ß* is self contragredient. On the other hand,

if ßc is self contragredient, so there is a nonsingular matrix c such that — ¿zc~ * = z

for every ze^, then —c'zc'1 = z if ze7t+(JSf) c S, so oí* is self contragredient.

This proves that n is self contragredient if and only if ß^ is self contragredient.

Let K be a maximal compact subgroup of G, let Jf be the corresponding real

subalgebra of ^, and let y be the restriction of ß to K. It is standard from Lie

theory that 'S is the complexification of X; thus the argument above shows that

y is self contragredient if and only if /5% is self contragredient. This proves that n

if self contragredient if and only if y is self contragredient.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1964] SELF ADJOINT FUNCTION SPACES 309

If no simple component of L is of type Anin > l),D2n+1 nor £6, then the same

is true of £?, thus of n^iSC), thus of 'S, thus of 3Í, and thus of K; it then follows

that K has every representation self contragredient by Theorem 4.1, and this

now implies that 7tis self contragredient.

Finally, let L have a simple component S of type A„ in >1), D2n+X or £6,

and let M be the compact connected centerless Lie group ofthat type. By Theorem

4.1 there is a representation S of M which is not self contragredient. Now ô

complexifies to a representation a of the centerless connected complex group N

of the same type as S, and N has a subgroup isomorphic to the quotient S/ Y of

S by its center. Let Z be the center of L ; then S/ Y is a direct factor of L/Z; let

p be the projection. Define t to be the representation of L obtained by L-* L/ Z

followed by p followed by S/ Y -» N. We know from above that self contra-

gredience of t is equivalent to that of 6; thus t is not self contragredient.

This completes the proof of Corollary 4.2. Q.E.D.

5. Function spaces on symmetric quotient manifolds of simple groups.   We

will prove:

5.1. Theorem. Let X be a compact conected Riemannian symmetric space,

let G be the largest connected group of isometries of X, and suppose that G is

simple. Then the following conditions are equivalent:

(1) Every closed G-invariant subspace of CiX) is self adjoint.

(2) The Weyl group of X contains —I.

(3) X is not locally isometric to one of the spaces

(3a) SUin)/ SOin),n > 2, or

(3b) Sl/(2n)/Spin), n > 2, or

(3c) SO(4n + 2)/SO(2« + 1) x SO(2n + 1), n>0, or

(3d) E6/FA, or

(3e) £6/(Sp(4)/{ + /}).

The proof makes essential use of É. Cartan's classification [1].

5.2. (3) implies (2). If the Euler-Poincaré characteristic xiX) ¥= 0, i.e., if the

isotropy subgroup K of G at x e X contains the symmetry s to X at x, then s

induces -/ in the Weyl group. Now suppose xiX) = 0. According to É. Cartan's

classification [1], X must be locally isometric to (a) St7(n)/SO(n), n > 2, or (b)

SUi2n)/Spin), n > 1, or (c) SOip + q)/SOip) x SOiq), p and a odd, or (d)

E6/ F4, or (e) E6/ (Sp(4)/ { + /}). The hypothesis (3) and the fact thatSl/(4)/Sp(2)

is the same as the 5-sphere SO(6)/SO(5) x SO(l) eliminates all of these except

SOip + <l)/SOip) x SOiq), P and q odd, p + q. We must show that the Weyl

group contains —fin that case.

Let X = GIK be locally isometric to SOip + q)/SOip) x SOiq). P and g odd,

p # q; we may assume p < q. Now the space g? of §2.2 consists of all
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0        b

-1b       0

where b is a real p x q matrix, and it is straightforward to verify that the Cartan

subalgebra si may be chosen to be subset of SP consisting of all b* for which

b is of the form

b =

&i 0 0

bp 0

We now define, using p <q,

f /„
K = -I

P+l

',-p-l   J

observe that KeK because p + 1 is even, and check that ad(>c)b* = — b* for

every b* e si. Thus the Weyl group of X' = SOip + q)/SOip) x SOiq) contains

-1 ; it follows that the Weyl group of X contains — I. This completes our checking

that (3) implies (2).

5.3. (2) implies (1) by Theorem 2.3.

5.4. (1) implies (3). The proof is by contradiction. Let X = G/ K be one of the

spaces (3a) - (3e). We need a closed G-invariant subspace of CiX) which is not self

adjoint.

Suppose first that X = G/ K is simply connected. By Theorem 3.8 we need

only construct a subspace F of CiX) on which G acts by an irreducible represent-

ation % which is not self contragredient. This is easy in cases (3d) and (3e), for

there the center Z of G is cyclic of order 3, and, the representation of G on CiX)

being faithful, we have a subspace V on which G acts by an irreducible

representation n which does not annihilate Z; then n is not self contragredient

because its character takes the value (dim V)e2"'/3 which is not real.

In case (3a), we let x denote the usual representation of Sl/(n) and define

n = s2(a), second symmetrization, action on homogeneous polynomials of degree

2 ; 7t is not self contragredient because n > 2, and its restriction to SOin) contains

the trivial representation because 7t(S0(n)) preserves Zz/; if n is even (so G

is SUin)/ { ± I} rather than SVin)), n induces a representation of G because it

annihilates — I ; now for any n > 2 we have a non-self contragredient representation

n of G on a subspace of CiX) by comparing the Fourier-Peter-Weyl developments

of C(G) and CiX). Case (3b) is similar; n is defined to be a\x), second alternation,
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action on antisymmetric tensors of degree 2 ; 7t(Sp(n)) preserves WXzjZj^. „ — zJ+nZj) ;

non-self contragredience of n follows from n > 2.

Finally suppose that we are in case (3c). If {eu —, em} is an orthonormal basis

of the usual real representation space of G = SO(4n + 2), m = 4n + 2, then the

complex Clifford algebra M is the complex algebra generated by {l,e1; •••,em}

withe^- + e^j = o¡¡. The universal covering group Spinim) of G is a multiplicative

subgroup of M ; it projects to G by sending ( Za^X T.b¡e¡) to the product of

reflections in the corresponding hyperplanes. The spin representation a of Spinim)

is induced by the minimal faithful representation of M ; it is a sum ax © o2 with

ol irreducible and not self contragredient (half spin representations)but ox*-= a2.

Let if be the subgroup of Spinim) over K, H = Spini2n + 1) x Spin(2n + 1). If

x is the spin representation of Spini2n + 1), one checks that c¡ \ H — x ® x. o¡ has

no bilinear invariant, not being self contragredient, but x (thus x ® x) has one

because it is self contragredient. Let N be the normalizer of H in Spinim); it

follows that <7,(A) has a bilinear invariant r\. Now either s2iox) or a2(cr2) (in fact

[4, Theorem 1.4] shows it is s2(<Ji)) has an irreducible suromand n whose restriction

to N contains the trivial representation, and which is not self contragredient. By

construction n annihilates the central element of order 2 in Spinim) and thus

induces a representation n of G; on G, n is not self contragredient, n is irreducible,

and n \K, contains the trivial representation of X* where

/     0 72„+1  \
K* = K u bK , b =

Ignoring b for the moment, we are done as in case (3a) by comparing Fourier-

Peter-Weyl developments. This finishes the case where X is simply connected.

We now treat the general case. Let G ' be the largest connected group of isometries

of the universal Riemannian covering manifold X' of X; G' -» G is a covering

group, and X' = G'/ K' where K" is the inverse image of K in G' and K' is the

identity component of K". In cases (3a), (3b), (3d) and (3e) one sees from [8,

§§5.5.3, 5.5.4, 5.5.14] that K is the image of K' in G; in case (3d) one sees from

[8, §5.5.11] that K is the image either of K' or of K* = K' u bK, in the notation

of the preceding paragraph. Thus K" is generated by K', the kernel of G' -* G,

and (case (3d) only) possibly b.

We have an irreducible representation n of G' on a subspace V of C(Z') which

is not self contragredient; in case (3d) we may view V <= CiG'/ K*). The center

of G' has some finite order r and thus acts trivially on U — {if: veV}; here

t)r(x') = vix'f. U is invariant under G' and thus spans an invariant (and finite

dimensional) subspace W of C(A"); we may view W c CiG'/K*) in case (3d).

The argument of §4.7 shows that theaction of G' on W is not self contragredient,

so W is not self adjoint. As the center of G' is trivial on W, our analysis of K"
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above shows that we may view IF as a non-selfadjoint G-invariant subspace of

CiX).
Theorem 5.1 is proved. Q.E.D.

6. Function spaces on symmetric spaces. Combining the results of §§2-5,

we will prove:

6.1. Theorem. Let X be a compact connected Riemannian symmetric space.

If Gis the largest connected group of isometries of X, then thefollowing conditions

are equivalent.

(1) Every closed G-invariant subspace of CiX) is self adjoint.

(2) The Weyl group of X contains —I.

(3) The universal Riemannian covering manifold of X is a product of compact

irreducible symmetric spaces, none of which is isometric to SUin) in > 2),

SUin)/SOin) in > 2), Si/(2n)/Sp(«) (« > 2), Spin(4n + 2) (n > 0),

SO(4n + 2)/SO(2n + 1) x S0(2« + l)(n > 0), E6, E6/F4 nor E6/(Sp(4)/{ ± 7}).

(4) X is locally isometric to a product Xx x ■■■ x Xr where each Xt is one of

(i) complex Grassmann manifold, (ii) real Grassmann manifold except (2n + 1)-

planes in (4n + 2)-space, (iii) SO(2n)/ Vin), (iv) Spin)/ i/(n), (v) quaternionic

Grassmann manifold, (vi) G2/S0(4), (vii) Cayley plane, (viii) F4/Sp(3) -Sp(l),

(ix) EJSUi6)-SUi2), ix) E6/SOilO)-SOi2), (xi) £7/(St/(8)/{ ± I, ± il}),

(xii)E7/S0(12) -SÍ/(2),(xiii)E7/E6 -S0(2),(xiv)E8/SO(16),(xv)E8/E7 -Sl/(2),

(xvi) Spinin)for n ^ 2 (mod 4), (xvii) Spin), (xviii) G2, (xix) £4, (xx) £7, (xxi) £8.

Remark. Equivalence of (3) and (4) is immediate from É. Cartan's classification

[1], his classification of the compact simple Lie groups, and the existence of a

Riemannian covering X0 x Xx x ••• x. Xr-*X where X0 is a flat torus and

X¡ ii > 0) is a compact simply connected symmetric space.

6.2. In the decomposition S = Jf + 9, all three objects split as X is decomposed

locally into a direct product; thus the Cartan subalgebra si of iS, X) splits. Now

(2) and (3) are equivalent by Theorem 4.1 and 5.1. (2) implies (1) by Theorem 2.3.

(1) implies (3) by Theorems 3.8 and 5.1. Q.E.D.

7. Application to function algebras.   We will prove:

7.1. Theorem. Let X be a compact connected irreducible Riemannian sym-

metric space, let G be the largest connected group of isometries of X, and let A

be the centralizer of G in the group of all isometries of X.

1. If A is a G-invariant subset of CiX), then either A is a set of constant func-

tion, or the identification spaced) X/ A admits the structure of Riemannian

symmetric space in such a manner that the projection n :X -+X/ A is a G-

equivariant Riemannian covering.

(3) Let two elements x¡ e Xbe equivalent if a{x\) = a(x2) for every a e'A. Then X/A denotes

the set of equivalence classes with the strongest topology for which X-+ X/A is continuous.
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2. There are one-one correspondences between the subgroups T c A, the

Riemannian coverings X -» Y with Y Riemannian symmetric, and the closed

self adjoint G-invariant subalgebras A c CiX) which properly contain the

constant functions, given as follows:

(i) r yields the covering X -> X/T, and the algebra of all functions which

are invariant under every element ofT.

(ii) X -» Y yields the group of deck transformations of the covering, and the

algebra CiY) viewed as a subalgebra of C{X).

(iii) A yields the covering X -» X/ A, and the group of all isometries of X

which preserve every element of A.

Remark. For simply connected X, the groups A will be listed in §7.4. Then

the group corresponding to A for X/1 is A/ S. The groups A listed have very

simple structure, so it is easy to find all subgroups of all quotient groups, resulting

in a classification for compact irreducible symmetric X of all closed self adjoint

G-invariant subalgebras of CiX). Then Theorem 6.1 tells us in most cases that we

have classified all the closed G-invariant subalgebras of CiX).

7.2. Proof of 1. Let xeX; then X — G/ K where K is the isotropy subgroup

of G at x. Let y = 7î(x), image of x in X/ A. G acts on X ¡ A because GiA) = A ;

now X/ A = GIH where H is the isotropy subgroup of G at y; K c H c G.

H is a closed subgroup of G because X/ A = X/ À where À is the closure of A

in CiX); thus H is a Lie subgroup, and the Lie algebras Jf a Jf c 'S.

Irreducibility of X is equivalent to maximality of Jf among proper subalgebras

of ä?; thus ¿f =¿f or¿T=S?.

If^f = 'S, then G = exp(âf) = exp(^f) czH so G = H; this means that X/A

is a single point and A is a set of constant functions.

Now suppose 3Í = X. Then K is a subgroup of finite index in H, whence

n : X -> X¡ A is given by G/ K -> G/ K\H = G/ H, covering with finite fibre

K\H. G being compact, X/A admits a G-invariant Riemannian metric ds2.

The lift 7t*ds2 to X is a G-invariant Riemannian metric; by irreducibility of X it

must be a constant multiple of the original metric on X. Thus we may choose

ds2 so that 7t*ds2 is the metric on X, i.e., so that n is a local isometry, i.e., so that

n is a Riemannian covering. This done, (X/ A, ds2) is locally symmetric; but the

local transvections are globally defined because they are induced by the elements

of G which are transvections on X ; it follows that (X/A, ds2) is globally symmetric.

7.3. Proof of 2. Let T be a subgroup of A. A is finite because G is semisimple

and G has finite index in the group of all isometries of X; thus T is finite. If an

element y e T has a fixed point, y(x) = x, then y = 1 ; for given x'eXwe choose

ge G with x' = g(x), and then y(x') = ygx = gyx = g(x) = x'. This shows that

X -* X/ T is a covering; it is a Riemannian covering because r acts by isometries,

and r is the group of deck transformations of the covering. G preserves T-orbits

on X, thus acting on X/ T. As with X/A above, it follows that X/ T is Riemannian
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symmetric. Let A be the set {/eC(I) :y(/) =/ for every y eT}; it is trivial to

check that A is the algebra of all functions constant on T-orbits, and thus G-

invariant. In other words, A is CiX/T) lifted to X, and in particular^ is closed,

self adjoint, and properly contains the constants.

Let X -> y be a Riemannian covering with Y Riemannian symmetric. The

fundamental group nxiY) is commutative [8, Theorem 6.4] so nxiX) is injected

as a normal subgroup of 7r,(Y). This implies that the covering is of the form

X -» X/ T where T, the group of deck transformations of the covering, is a group

of homeomorphisms of X isomorphic to nxiY)/ nxiX). As the covering is

Riemannian, one easily checks that T is a group of isometries of Z.The symmetries

of Y lift to symmetries of X, so the symmetries of X send T-orbits to T-orbits,

whence transvections of X (being products of two symmetries) send T-orbits

to T-orbits. G is generated by the transvections to X; thus G sends T-orbits to

T-orbits. In other words, G normalizes T in the group of all isometries of X. As G

is connected and T is discrete, it follows that Ta A. Construction of C(Y) c CiX)

from X -» Y was explained in the preceding paragraph.

Let A be a closed self adjoint G-invariant subalgebra of CiX) which properly

contains the constants. Then X -> X/ A = Y is a Riemannian covering with Y

Riemannian symmetric, by §7.2. The Stone-Weierstrass Theorem ensures that A

is CiY) lifted to X. The correspondence between A and the group of deck trans-

formations of X -» Y has already been analyzed. Q.E.D.

7.4. Let X be simply connected ; we will list A for the various possibilities. If X is

a group manifold, then A is the center acting by left translation. The list is direct

verification from É. Cartan's work [2], using simplifications from [8, §2.4, §5].

a. The following is a complete list of the cases where A = {1}, i.e., where CiX)

and the constants are the only closed G-invariant self adjoint subalgebras of CiX)

which contain the constants, (i) complex Grassmann manifolds, except linear

p-planes in 2p-space, (ii) S0(4n + 2)/ l/(2n + 1), (iii) quaternionic Grassmann

manifolds, except linear p-planes in 2p-space, (iv) G2/S0(4), (v) Cayley projective

plane, (vi) F4/Sp(3)-Sp(l), (vii) E6/S17(6)-Sl/(2), (viii) E6/S0(1O)-SO(2),

(ix) E7/S0(12) -Sl/(2),(x) E8/SO(16), (xi) E8/£7 -SO(2), (xii) G2, (xiii) F4, and

(xiv) E8. In all of these cases, CiX) and the constants are the only closed G-

invariant subalgebras of C iX) containing the constants.

b. The following is a complete list of the cases where A is cyclic of prime order

r > 1, i.e., where CiX) and the constants and just one other are the only closed

G-invariant self adjoint subalgebras of CiX) containing the constants,

(xv) E7/E6 -S0(2), r = 2, A d: G; (xvi) £7/(Sl/(8)/{ ± /, ± il}),r = 2, A d: G;

(xvii) E6/ (Sp(4)/ { ± 7}), r = 3, A = center of G; (xviii)E6/ £4, r = 3, A = center

of G; (xix)Sp(n)/U(n), r = 2, A 4: G; (xx) quaternionic Grassmann manifold

of p-planes in 2p-space, A = {1,/?} where ß:x^xx for every xeX;

(xxi) S0(4n)/ l/(2n), r = 2, A d: G; (xxii) real oriented Grassmann manifold

lexcept p-panes in 2p-space, A = {1, a} where a reverses orientation of every
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p-plane; (xxiii) complex Grassmann manifold of p-planes in 2p-space, A = {l,ß}

asin(xx);(xxiv)E7,r = 2, (xxv)E6, r = 3,(xxvi)Sp(n), r = 2;(xxvii)Spin(2n + 1),

r=2;(xxviii) SU/iSO or Sp),see below. In cases(xv),(xix),(xxi),(xxii)for 2-planes

in (n + 2)-space, and (xxiii), X is a hermitian symmetric space and the nontrivial

element of A is antiholomorphic. Except in cases (xvii), (xviii), (xxv) and (xxviii),

every closed G-invariant subalgebra of CiX) containing the constants is CiX),

the constants, or the other one.

c. Let ZP denote the cyclic group of order r. The remaining cases are : (xxix)

St/(2n)/SO(2n), G = Sl/(2n)/ { ± / }, A =„Z x Z2 where Z„ is the center of G;

(xxx) St/(2/i + l)/SO(2n + 1), A = Z2n+1 = center of G; (xxxi) Sl/(2n)/Spin),

G = Sl/(2n)/ { + /}, A = Z„ = center of G; (xxxii) SUin), A = Z„; (xxxiii) real

Grassmann manifold of oriented p-planes in 2p-space A = Z2 x Z2 = {l,ot,ß,aß}

with ß as in (xx) and a as in (xxii) ; (xxxiv) Spin(4n), A=Z2 x Z2 ; (xxxv)Spin(4n+2),

A=Z4. In both case (xxxiii) for p even and case (xxxiv), the corresponding five self

adjoint subalgebras of CiX) exhaust all closed G-invariant subalgebras of

CiX) containing the scalars.
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