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1. Introduction. The hermitian symmetric spaces were first studied by E.
Cartan [3], who classified them by means of his classification [2] of the
Riemannian symmetric spaces. The work of Borel and de Siebenthal on sub-
groups of maximal rank in compact Lie groups [1] gives a simpler proof of
Cartan’s classification result. Other proofs result from H. C. Wang’s work on
C-spaces [7] and J. Tits’ work on parabolic groups [6]. We will give a direct
proof which appears to be the simplest available.

2. Preliminaries. In order to establish notation and terminology and to
reduce our problem to a problem on compact simple Lie groups, we recall
some basic notions on symmetric spaces. The reader is referred to Helgason’s
book [4] for details.

2.1. A Riemannian symmelric space is a connected Riemannian manifold M
such that, given z ¢ M, there is a (globally defined) isometry s, which preserves
z and has differential —I on the tangent space M,; s, is the symmetry lo M af
z. Given a complex manifold with hermitian metric, one obtains a Riemannian
manifold by taking the underlying real manifold and the real part of
the hermitian metric. If this Riemannian manifold is symmetric, and if the
symmetries are hermitian isometries, one says that the original complex mani-
fold with hermitian metric is a hermitian symmetric space. A hermitian sym-
metric space is always Kihlerian.

Let M be a complete simply connected Riemannian manifold. Then [5] §
is isometric to a product My, X M, X --- X M, where M, is a Euclidean space
and the other M, are irreducible (not Euclidean, and not locally isometric
to a product of lower dimensional Riemannian manifolds.) M is symmetric if
and only if each of the M, is symmetric. M is the real structure of a Kihler
manifold if and only if each of the M, is the real structure of a Kahler manifold,
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and then M = My X M, X --+ X M, may be viewed as a hermitian isometry.
In particular, # is hermitian symmetric if and only if each M; is hermitian
symmetric.

Let M be a hermitian symmetric space and let = : i1 — M be the universal
covering. Then there is a unique complex structure and a unique hermi-
tian metric on 7, such that = is locally a hermitian isometry. As the
symmetries of M lift, /7 is a hermitian symmetric space in these structures.
Now M = M/T where I is a discontinuous group of hermitian isometries, and
M= M, X M, X --- X M, where M, is a complex Euclidean space and the
other M, are irreducible simply connected hermitian symmetric spaces. Now
[8, §3] T preserves each M, , acts on M, as a group of pure translations, and
acts trivially on the other M; . We have proved:

Lemma 1. Every hermitian symmetric space admits a hermitian isometry
with a space M X M, X -+ X M, where M} is the quotient of a complex Eu-
clidean space by a discrete group of pure translations and the other M; are ir-
reducible simply connected hermitian symmelric spaces.

2.2. Let M be a simply connected Riemannian symmetric space. We obtain
a triple (§, ¢, B) and a decomposition @ = & + P as follows. G is the largest
connected group of isometries of M and K in the subgroup which leaves fixed
a point x ¢ M, so the coset space G/K is diffeomorphic to M under gK — g(z).
©® is the Lie algebra of G, o is the automorphism of @ induced from conjugation
by the symmetry s, , and @ = & + P is the decomposition into (41)- and
(—1)-eigenspaces; & is the Lie algebra of K and

22.1) ®RICR, RPICP and [B,PICK.

In particular the image adq(K) in the adjoint representation of G preserves $P.
Let m, be the differential at 1 € G of the map = : g — g(z) of G onto M;if k ¢ K,
let k&, be its differential at x. Then =, restricts to a linear isomorphism of P
onto the tangent space M, , and this isomorphism is K-equivariant in the
sense that

2.2.2) 1e(0d(0)X) = ky(ryX) for keK and Xe%P.

The Riemannian metric on M is determined by its G-invariance and its value
at z. The latter is a positive definite K, -invariant inner product on M, ; by
(2.2.2) it is specified by a positive definite adg(K)-invariant inner product B
on P.

Conversely (®, ¢, B) determines M up to isometry. For @ and ¢ give &
and P. If G’ is the simply connected group for ® and K’ is the analytic sub-
group for R, then we have diffeomorphisms

G/K'~G/K~M

by rendering G’ effective, and B determines the Riemannian metric of M.
Define $* = (—1)"? Pand G* = & + P* C G°. Extend o to &° and then let
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o* be the restriction to @*. Define B*(X, Y) = B((—1)"*X, (—1)"*Y) for X,
Y ¢ P* Now the dual of M is the simply connected Riemannian symmetric
space M* determined by (&*, o*, B¥). M* is well defined by (2.2.1) and (2.2.2),
and (M*)* is isometric to M.

Let M be irreducible. This is equivalent to irreducibility of ade¢(K) on P.
If 8 and g* are the Killing forms of @ and &*, it follows that 8|y = 7B and
B*|g» = (—r)B* for some nonzero real number r. (R, B) = 0 = B*(R, ),
and 3 and B* are negative definite on &, so just one of them is negative definite.
Thus the metric on M is determined up to a multiple by (@, &), and just one
of M and M* is compact. Furthermore M is the real structure of a hermitian
symmetric space if and only if K is not semisimple. In that case the center
of K is a circle group by irreducibility of ade(K) on P and by Schur’s Lemma,
the almost-complex structure of M being one of the two complex-vectorspace
structures on P in which this circle group acts as multiplication by unimodular
complex numbers. The hermitian metric is determined by the Riemannian
metric and the complex structure. Note that s, must be the nontrivial element
of square 1 in the center of K, so ¢ preserves every ideal of ®; irreducibility
now implies that @ is simple.

Duality and the remarks just above prove:

Lemma 2. In order to classify the irreducible hermitian symmetric spaces, it
suffices to classify the pairs (®, &) where

(1) ® is a compact simple Lie algebra,
(ii) R s the fixed point set of some involutive automorphism o of ®, and
(iii) R s not semisimple.

3. Reduction to a problem on roots. Let $ be a Cartan subalgebra of a real
semisimple Lie algebra @. Then $° is a Cartan subalgebra of ®&°, and we will
refer to the roots of ©° relative to 9° as the H-roots of ®. These roots are
linear functionals on $°. if A is an H-root of @, then &, will denote the root
space for N, complex subspace of dimension 1 in @° characterized by

[H,X] =MNH)-X for He ® and Xe®,.

Wehave §° = ©° + > Grand ® = § + > {& N (G, + G_y)}. H, wil
denote the unique element of $° such that ‘

B(H) , H) = NH) for every He $°,

where 8 is the Killing form of ®°.

A lexicographic ordering of the dual space of $° induces an ordering of the
roots and the notions of positive and negative root. Then a simple root is a
positive root which is not a sum of positive roots, and every positive (resp.
negative) root is a linear combination of simple roots with non-negative (resp.
nonpositive) integral coefficients. The set of all simple roots depends on the
ordering and is called a system of simple roots.
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Let ¥ = {p,¥1, «++, ¥,} be a system of simple H-roots of . We will say
that ¢ is of noncompact type if, for every H-root N of @, either A is of the form

3.1 A=%D a;, a0,

i=1

or A is of the form

(3.2) A= :b((o + Z ai‘Pi), a; = 0.

=1
In that case roots of the form (3.1) will be called p-compact and roots of the
form (3.2) will be called g-noncompact.

Lemma 3. Let ® be a semisimple Lie algebra, let O be a Cartan subalgebra,
and let ¥ = {p, Y1, -+, ¥,} be a system of simple H-roots of & such that ¢ is of
noncompact type. Define

R, =9+ 2 (BN (G + G0}, N p-compact,
and

B, = 2 {ON (G + G0}, N p-noncompact,

and let o, be the linear transformation of & which is +1 on &, and —1 on P, .
Then o, is an involutive automorphism of ®, &, is ils fixed point set, and &,
13 a subalgebra of & whose center has dimension one.

Conversely, if ® vs a stmple Lie algebra and & ¢s a non semisimple subalgebra
which is the fized point set of an involutive automorphism o of ®, then O, ¥ and ¢
exist as above such that & = &, and o = o, .

Proof. We have [®, , ®,] C &,,[R,, $,] C P, and [P, , P,] C &,
by (3.1) and (3.2). This proves that ¢, is an involutive automorphism of ©.
R, is its fixed point set by construction, and {D -, Hy,-C}* N $° (L relative
to the Killing form) is the center of R . As the {H, , Hy, , --- , H,,} is a
basis of $° and the (H,-€) N\ & and (H,;-e) N © span 9, the center of §,
has dimension one.

For the converse we may suppose & compact because ¢ commutes with a
Cartan involution of ®. Now let @ be the centerless group with Lie algebra @,
let K be the analytic subgroup with Lie algebra &, and let ® = & + P be
the decomposition into (+1)- and (—1)-eigenspaces of ¢. & is the direct sum
of a semisimple ideal and an abelian ideal because G is compact, so K = K'-U
where K’ is the derived group and U is the identity component of the center.
adg(K)|g is a faithful irreducible representation of K on P, and the restriction
of the Killing form to P is nondegenerate and ady(K)-invariant; now U is a
circle group by Schur’s Lemma. Let 11 be the Lie algebra of U; now there is an
element Z ¢ 1 such that ad(Z)® = 0 and ad(Z)|y has only ==(—1)""* as eigen-
values. In particular & is the full centralizer of U in ®@. Thus U C $ C & for
some Cartan subalgebra § of .
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O normalizes both & and PB; thus the set of H-roots of @ is partitioned into

classes A and B such that
°*=9°+ > © and P = > G .
Aed AeB

Now A(Z) = 0if Ae A, and A\(Z) = ==(—1)?if A ¢ B. Choose an ordering of the
H-roots of ® such that A(Z) = (—1)"* for A > 0 and A & B, and let ¥ be the
corresponding system of simple roots. Then ¥ = {¢;, «+« , 0 ;%1 , *** , ¥}
with ¢; e B and ¢; ¢ A. Let u be the greatest root;

M= Em:¢s+ En‘l/;

t=1

with m; > 0 and n; > 0. Now

t

t r
WD) = 3 med) + Tnb@ = (X m) (-0
Thus { = 1 = m, . As every positive root has coefficients at most those of p, it
follows that ¢, is of noncompact type, & = &,., B = B,. , and consequently
=0, . Q.E.D.

4. The simple roots of noncompact type. Lemmas 1, 2 and 3 reduce the
classification of hermitian symmetric spaces to the classification of simple roots
of noncompact type in compact simple Lie algebras.

We adopt the notation of the Cartan classification for the compact simple
Lie algebras. Thus ¥, is the Lie algebra of the special unitary group SU( + 1)
inl 4+ 1 complex variables, 9B, is the Lie algebra of the rotation group SO (21 + 1)
in 21 + 1 real variables, €, is the Lie algebra of the quaternionic unitary group
Sp(l) in I quaternion variables, D, is the Lie algebra of SO(2l), and @, , T,
G, , €, and G5 denote the exceptional structures. T denotes the (commutative)
Lie algebra of dimension 1.

Lemma 4. A complete list of the simple roots of noncompact type tn compact
stmple Lie algebras is given as follows.

A, has diagram 8—_—8_ ... .__8 and each o; is of nmoncompact type.
R =2 U DTD UAu- o -
B, has diagram E) .___._ _3 and only a; is of noncompact
type. 8., = B, D T.
G, has diagram a.' 8 8 . _8 and only a, ts of moncompact
type. Ra, = Ui @ T
O

as Qe

D, has diagram /o———o—— —8 and only a, , o, and a; are of
@O
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noncompact type. 8a, = R0 Z U P Tand 8. =D, D .

0—0
@5 has diagram \6__.6 and only a, and a, are of noncompact
O—O/

type. K., =2 R, 2D, P T.
0—0—0
&; has diagram \Q—O and only o, ts of noncompact

Oo—0

as

ag ar

type. Ko, =2 Es D T.

Proof. Let ® be a simple compact Lie algebra, choose a Cartan subalgebra 9,
and let ¥ = {a;, - -+, a;} be a system of simple $-roots of @, numbered in con-
formity to the diagrams above where this condition is applicable. Let
p = Y mia; be the greatest root. If X is any positive root, then A = > iy
with 0 = n; = m; . Thus «; is of noncompact type if and only if m; = 1.

A calculation (or see [1], p. 219) shows that the greatest root of & is given by

A: atadt: - +a

B, : 2, o+ - o)t

C: a+2tat - ta)

Dt ottt 2 tat s Fan) o

O, : 20; + 3c,

Ba : 2(a; + ) + 35 + 4ay

s : o + ay + 20 + oy + ag) + 3a;

G, : @ + 2@ + as + 7)) + 3z + a5) + 4as

G : 2(y + az) + 3(ez + o) + 4as + ag) + Saz + 6as

where ¥ is indexed appropriately for @, , . and &5 . The assertion on roots of
noncompact type follows.

Let o ¢ ¥ be of noncompact type. Then the diagram of the semisimple part
of §, is obtained by deleting « from the diagram of ®, by definition of &, and
and the standard construction of all positive roots from the simple roots. As
f. is the direct sum of its semisimple part and a one-dimensional ideal, our
assertions on §, are proved. Q.ED.

5. The classification. Let G be the largest connected group of isometries of
an irreducible hermitian symmetric space G/K. Then the center of K is a
circle group T; now K = K’-T where K’ is the derived group, C is the center of
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K'’, 5 :C — Tis a homomorphism, and K’-T = (K’ X T)/{(c™*, (c)}. When it is
convenient we write @,/K, for G/K, where G, is a covering group of G and K,
is the full inverse image of K. Finally, A;, - - - , Eg will denote the compact simply
connected group of Cartan classification type 4, ,- - -, Es ;and ad(A,), - - -, ad(Eg)
will denote the centerless version. We can now combine our four lemmas.

Theorem. Let M be a complex manifold with hermitian metric. Then M s a
hermitian symmetric space if and only if it is hermitian-isometric to a product

My X M, X -+ X M,

where M, s the quotient of a complex Euclidean space by a discrete group of pure
translations, and where each M ; (¢ > 0) is one of the Riemannian symmetric spaces

SU® + ¢)/[SU® + ¢ N {Up) X U(g)}]
SO + 2)/S0Mm) X SO(2)

Spn)/U(n)

SO(2n)/U(n)

ad(Es)/SO(10)- SO(2)

ad(Ey)/Eq-T

or s the dual of one of those spaces, and where each M ; has the hermitian metric
derived from the Riemannian metric and one of the two invariant complex structures.
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