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1. Introduction. The purpose of this note is to prove:

Theorem. Let M be a Riemannian manifold which admits a transi-

tive connected noncommutative nilpotent Lie group of isometries. Given

xEM, there exist 2-dimensional subspaces R, S and T of the tangent-

space Mx such that sectional curvatures satisfy

(*) KiS) < 0 < KiT)    and   P(P) = 0.

Corollary. Let G be a connected nilpotent Lie group, let B be a

positive definite symmetric bilinear form on the Lie algebra & of G, and

let M be the Riemannian manifold obtained by left translation of B to

every tangentspace of G. Then these are equivalent :

1. M has a positive sectional curvature.

2. M has a negative sectional curvature.

3. G is not commutative.

To prove the Corollary from the Theorem, one simply observes

that M must be flat if G is commutative.

The interest of the Theorem and its Corollary is based on the deep

similarity between nilpotent Lie groups and Riemannian manifolds of

nonpositive sectional curvature. Two striking points of similarity

are their coverings (compare [4] with §4.2 of [3]) and their exponen-

tial mappings. The results of this note show that the class of Rie-

mannian manifolds obtained by placing left invariant metrics on nil-

potent Lie groups is quite different from the class of Riemannian

manifolds of nonpositive sectional curvature. In the nonflat case one
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expects a manifold of the former class to have a negative sectional

curvature, but it is surprising to see that it also has a positive sec-

tional curvature.

Finally we remark that the Theorem does not extend to manifolds

admitting a transitive noncommutative connected solvable Lie group

of isometries, for the Iwasawa decomposition shows that this class of

manifolds includes the irreducible Riemannian symmetric spaces of

nonpositive sectional curvature.

2. The positive curvature. The existence of the plane section T

of the Theorem will be derived later as a consequence of:

Lemma 1. Let G be a connected transitive nilpotent Lie group of

isometries of a Riemannian manifold M of nonpositive sectional curva-

ture. Then G is commutative.

Proof of Lemma 1. The universal Riemannian covering manifold

of M admits a covering group of G as a connected transitive Lie group

of isometries [2, proof of Théorème 1 ] ; thus we may assume M simply

connected. M is complete by homogeneity so one has the de Rham

decomposition; this induces M= MoXM', where M0 is a euclidean

space and M' is a product of irreducible non-euclidean Riemannian

manifolds; the latter induces a decomposition IiM) = IiM o) XliM')

of full groups of isometries. Now every element gEG is of the form

g= (go, g') with goEIiMo) and g'EIiM'). Let Go be the group gener-

ated by the go, let G' be the group generated by the g', and let H

be the closure of G0XG' in IiM).

Let T be the isotropy subgroup of H at x G M. H is transitive on

M because GEH, and H is nilpotent by construction. T is compact

because H is closed in IiM), and T is connected because H is con-

nected and M is simply connected, whence T is a torus. Now a

glance at the kernel of the universal covering, and the exponential

map of the universal covering group, of H shows that T is central in

H because H is nilpotent. Thus T= {1} because H acts transitively

and effectively on M. This proves that H is simply transitive on M.

As G is transitive and GEH, it follows that G = H. We conclude that

G = GoXG' as direct product of closed subgroups.

Let Z be the center of G. Z = Z0XZ', where Z0 is the center of Go

and Z' is the center of G'. An element z'EZ' induces an isometry of

constant displacement of M because z' centralizes a transitive group

G of isometries. It follows from the hypothesis that M is of nonposi-

tive sectional curvature [4, Theorem l] that z' acts by a translation

along Mo and is trivial on M'. This proves Z' = {1}. As G' is nil-
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potent, it follows that G' = {1}. Transitivity of G now implies M'

= (point). We have proved that M is a euclidean space. Looking at

bases, nilpotency of G implies that G is the group of all ordinary

translations of M. Thus G is commutative. This completes the proof

of Lemma 1.

3. The negative curvature. The existence of the plane section 5

in the Theorem is given by:

Lemma 2. Let G be a connected noncommutative transitive nilpotent

Lie group of isometries of a Riemannian manifold M. Then M has a

negative sectional curvature.

Proof of Lemma 2. As in Lemma 1, we may assume M to be

simply connected, and it then follows that G is simply transitive on

M. Thus we view M as the Riemannian manifold obtained from G

by left translation to every tangentspace of some positive definite

symmetric bilinear form B on the Lie algebra ®.

Orthogonality will now refer to B. Let ®° = ®, define ®i+1 = [@, ®{],

and choose the subspaces 21*01®* such that ®* = 21!'+®i+1 is an

orthogonal direct sum. Let / be the smallest integer such that 21' has

an element which is not central in ®. We have orthogonal direct

sums © = 21+®' and ®' = 2l<+®'+1, ®t+1^0 because © is not com-

mutative, and §1 is central in ®.

Suppose first that [21', SI'] 5^0. Then we have an orthonormal basis

{X, Y} of a plane SCSI' such that [X, Y] = Z^0.

(**) X ±[X, ®],    X±[Y, ®]    and    F ± [X, ®].

For the statements of (**), one observes that [X, ®] and [F, ©]

lie in [®', ©] = ©'+!.

Now suppose that [21', 21'] =0. 21' has an element X of length 1

which is not central in®, so 93= [X, ®]^0. Observe that 93= [A,®'+1]

by choice of t and hypothesis on 21'. Let x be the transformation

W—>[X, W] of ®'+1 into itself. There is an orthogonal direct sum

®'+1 = U + 93, and tl has the same dimension as the kernel of x. If

x(U)=0, then x: 93—>93 would be 1-1, which is impossible because

93^0 and x" = 0 for some k. Thus U has an element F of length 1 with

[X, Y]=Z^0. Now observe that

(**) X JL [X, ®J,   X _L [Y, ®]    and    F L [X, ®]

by construction. Let 5 be the plane spanned by X and F.

We will prove in both cases that the sectional curvature K (S) <0.

Let öl be the curvature tensor of the Levi-Civita connection on G.
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As {X, Y} is an orthonormal basis of S, we have

P(S) = - J?(<R(jr, Y)X, Y).

Let a: ®X@—>® be the connection function of K. Nomizu [l]. In

our case, according to Nomizu [l, formula 9.6],

(RiX, Y)X = a(X, a(Y, X)) - a(Y, a(X, X)) - ai[X, Y], X).

a is given by a( V, W) = (1/2) [ V, W] + £/( V, W), where

(***) BiUiV, W), A) = - (1/2){P([F, A], W) + Bi[W, A], V)}.

Observe that our formula (***) differs from Nomizu's formula 13.1

of [l] by a sign. If the reader follows Nomizu's derivation of [l,

formula 13.1], he will see that (***) is correct and Nomizu's suffers

from a misprint.

From (***) and (**), we see that UiX, X) = 0 because X±[X,@]

and that UiX, Y) =UiY,X) = 0 because X ± [ Y, ® ] and Y _L [X, ®}.

It follows that (R(X, Y)X=il/i)[X, [Y, X]] + (l/2)UiX; [Y, X])
-(1/2)[[X, Y], X]-Ui[X, Y], X). The first and third terms are

orthogonal to Y by (**), and the second and fourth terms total

-(3/2)C7([X, F], X). Applying (***) for the second equality and

0 t^ Z = [X, Y] for the final inequality, this gives us P(S)

= i3/2)BiUi[X, Y],X), F)=-(3/4){P([Z, Y],X)+Bi[X, Y], Z)}
= — (3/4)P(Z, Z) <0. Lemma 2 is proved.

4. Proof of Theorem. Let G be a transitive connected noncom-

mutative nilpotent Lie group of isometries of M, and choose xEM.

Noncommutativity of G and Lemma 1 show that there is a tangent

2-plane V to M at some point y with P(P) >0. Noncommutativity

of G and Lemma 2 provide a tangent 2-plane S' to M at some point

z with PJ(S')<0. Let T = g*iV) and S = h*iS') where g, hEG with
giy) = hiz)=x; then P(S) <0<P(P). K is a continuous function on

the Grassmann manifold of tangent 2-planes to M at x; it must van-

ish on some plane P. The Theorem is proved.
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