
HOMOGENEITY AND BOUNDED ISOMETRIES IN
NEGATIVE CURVATURE

MANIFOLDS OF

BY

JOSEPH A. WOLF

1. Statement of results
The obiect of this paper is to prove Theorem 3 below, which gives a fairly

complete analysis of the structure of Riemannian homogeneous manifolds of
nonpositive sectional curvature. The main tool is

THEOREM 1. Let M be a complete connected simply connected Riemannian
manifold with every sectional curvature nonpositive. Let be an isometry of M;
given m M, let X,, be the (unique by hypothesis on M) tangentvector to M at m
such that exp(X) /(m); let X be the vectorfield on M defined by the
Let Mo be the Euclidean factor in the de Rham decomposition of M, so
M Mo X M where M is the product of the irreducible factors. Then these
are equivalent"

(1) There is an ordinary translation "o of the Euclidean space Mo such that
the action of " on M Mo X M’ is given by (m0, m’) (o too, m’).

(2) X is a parallel vectorfield on M.
(3) / is a Clifford translation of M.
(4) / is a bounded isometry of M.

In particular, if Mo is trivial, then every bounded isometry of M is trivial.

As an immediate consequence of Theorem 1, we have

THEOREM 2. Let M be a complete connected simply connected Riemannian
manifold of nonpositive sectional curvature, and let F be a properly discontinuous
group of fixed-point-free isometries of M. Then these are equivalent:

(1) M/F is isometric to the product of a fiat torus with a complete simply
connected Riemannian manifold of nonpositive sectional curvature.

(2) Every element of F is a Clifford translation of M.
(3) Every element of F is a bounded isometry of M.

In particular, if one of these conditions holds, then M/F is diffeomorphic to the
product of a torus and a Euclidean space.

To prove the following theorem, which is our goal, one notes that (1)
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implies (2) trivially, that (2) is known to imply (3) [3, Thorme 2], that
(3) implies (4) trivially, and that (4) implies (1) by Theorem 2.

THEOREM 3. Let M be a connected simply connected Riemannian homo-
geneous manifold of nonpositive sectional curvature, and let F be a properly
discontinuous group of fixed-point-free isometries of M. Then these are equiva-
lent:

(1) M/F is isometric to the product of a fiat torus with a simply connected
Riemannian manifold (which is necessarily homogeneous and of nonpositive
sectional curvature).

(2) M/F is a Riemannian homogeneous manifold.
(3) Every element of F is a Clifford translation of M.
(4) Every element of F is a bounded isometry of M.
The fact that (2) implies (1) above has a number of consequences, most

of which are immediate from Theorem 1:

COROLLnY 1. Let N be a connected Riemannian homogeneous manifold
with every sectional curvature nonpositive. Then

(a) N is isometric to the product of a fiat torus with a simply connected
manifold.

(b) N is diffeomorphic to the product of a torus and a Euclidean space.
(c N admits a transitive solvable group of isometries.
(d) If there is no Euclidean factor in the de Rham decomposition of the

universal Riemannian covering manifold of N, then (d) N is simply connected,
(d) every bounded isometry of N is trivial, (da) every transitive group of isome-
tries of N is centerless, (d) a transitive Lie group of isometries of N cannot
admit a nontrivial bounded inner automorphism, and (d) N is Riemannian
symmetric if it admits a transitive semisimple Lie group of isometries.

As our final result, Corollary 1 (d) will give us result due to J. Tits"

CoRon 2. Let be a bounded automorphism of a connected semisimple
Lie group G. Then induces the identity transformation on every noncompact
normal simple analytic subgroup of G.

Remark. It is conceivable that Corollary 1 could be the basis for clussi-
fication of the Riemannian homogeneous manifolds of nonpositive sectional
curvature.

Background. Corollary 1 (d) is an affirmative answer to "question (a)"
raised by S. Kobayashi in his paper [2], and thus extends the main result of
[2]. Kobayashi’s paper led R. Hermann to conjecture Corollary 1 (b), and
Hermann had already proved a slightly weaker statement when he learned
of my result.

Acknowledgements. I am indebted to S. Kobayashi for showing me the

An automorphism of a topological group G is called bounded if G has a compact
subset C such that t(g)’g- C for every g G.



16 JOSEPH A. WOLF

proofs of [2], to R. Hermann for telling me his conjecture, and to L. W. Green
for drawing my attention to a result in his thesis which is basic to the proof
of Theorem 1.

2. Proof of Theorem
Let /be a bounded isometry of M, and assume , 1. Given x M, let

h be a geodesic on M containing both x and (x). x cannot be a fixed point
for /because distinct geodesics through x diverge; thus h is uniquely deter-
mined. Now choose m e M, and let g be a geodesic through m, g hm. Let
S be the union of all h with x e g. (h) h because they both contain
-(x) and they do not diverge from each other; thus ,(S) S. As the
strip on S between g and ,(g) is a regularly imbedded surface in M, for g
and ,(g) do not meet, because they are distinct and do not diverge apart, it
follows that S is a regularly imbedded surface in M, and that any point of
Sg is contained between some pair (,t-1 (g), ,t+l (g)) of nondivergent geodesics.
Furthermore, any point z of Sg lies on some geodesic h of M which is con-
tained in S, so the Gaussian curvature of S at z is bounded above by the
sectional curvature in M of the tangentplane to S at z, and they are equal
if and only if this plane is parallel along h at z. This shows that S is of
nonpositive Gaussian curvature, and that S is totally geodesic in M if it is
flat. By using the ruling of S by the h and the striping of S by the ,(g),
it is easy to see that S is complete and simply connected; as S is of non-
positive Gaussian curvature and any point lies between two nondivergent
geodesics (of the form ,(g)), a deep result of L. W. Green [1, Corollary 4.2]
shows that S is flat, and it follows that S is totally geodesic in M. Now , is
a bounded isometry on the Euclidean plane Sg it follows that , is an ordinary
translation of S [3, proof of Thorme 4], and thus that , is of constant
displacement on S for the induced metric. As S is totally geodesic, , is of
constant displacement on S for the metric of M. M is the union of the vari-
ous S, and each S contains m; thus , is of constant displacement on M.
This shows that (4) implies (3).

Let be a Clifford translation of M. In particular, , is a bounded isometry
of M, and we can apply the constructions above. Given m e M, let
{Xm Y2, Yn} be a basis of the tangentspace Mm. Let g be the geodesic
through m tangent to Yi, and let S S. Each S is totally geodesic in
M, is isometric to the Euclidean plane, and is invariant under , and , in-
duces an ordinary translation in each S. Thus the restriction of X to S is a
parallel field of tangentvectors to S in particular, X is parallel along each
g, and along hm. Thus every covariant derivative of X vanishes at m. As
m was arbitrary, it follows that X is parallel over M. This shows that (3)
implies (2).

Let X be parallel on M. If we look at the de Rham decomposition, it is
clear that, at every point of M, X is tangent to the Euclidean factor. This
shows that the action of , on M M0 M’ is of the form
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(m0, m’) -- (’0m0,
where ’0 is an isometry of M0. 0 is a Clifford translation of M0 because X
has constant length; it follows [3, Th6orme 4] that ’0 is an ordinary transla-
tion of M0. This shows that (2) implies (1).

It is trivial that (1) implies (4). Theorem 1 is now proved, Q.E.D.

3. Proof of the corollaries
Theorem 1 has been proved, and Theorems 2 and 3 follow; only the corol-

laries remain to be proved.
Proof of Corollary 1. Statements (a), (b), (dl), and (d) are immediate

from Theorems 1 and 3, (d3) follows from (d) because [3, Thorme 2] a
central element of a transitive group of isometries would be a Clifford trans-
lation, and (d4) follows from (d) because an element inducing a bounded
inner automorphism of a transitive Lie group of isometries would have to be
a bounded isometry. Symmetry provides a transitive semisimple group of
isometries in (ds) because N has no Euclidean factor. Conversely, if G is a
transitive semisimple group of isometries in (ds), then we may assume G
connected, and G is centerless by (d3); as N G/K with K maximal compact
in G because N is diffeomorphic to a Euclidean space, N is symmetric.

Only (c) remains, and Theorem 3 shows that (c) need only be proved in
case N is simply connected and without Euclidean factor. Let G be a con-
nected transitive Lie group of isometries of N, let R and S be the connected
radical and a Levi-Whitehead complement, and decompose S S.
where S is the product of the noncompact normal simple subgroups, and
So is the product of the compact ones. An isotropy subgroup K of G is
maximal compact because N is diffeomorphic to Euclidean space; thus we
may assume S chosen so that K K. Sc.K with K maximal compact in
SN and K maximal compact in R. The Iwasawa decomposition of S pro-
vides a solvable subgroup B such that S B.KN now

(B.R).K B.K.R G,
so B. R is a solvable transitive group of isometries of N. Corollary 1 is now
proved, Q.E.D.

Proof of Corollary 2. By passing to the adioint group of G and then dividing
out by the maximal compact normal subgroup, it is easily seen that it suffices
to prove that 1 provided that G is a product of noncompact centerless
simple groups. If is inner, now, it must be trivial by Corollary 1 (d4) be-
cause G can be realized as a transitive group of isometries of a Riemannian
symmetric space of nonpositive curvature. It follows that is of finite
order, and thus semisimple; now it is easy to see that is inner, and thus
trivial, Q.E.D.
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