HOMOGENEITY AND BOUNDED ISOMETRIES IN MANIFOLDS OF NEGATIVE CURVATURE

BY

JOSEPH A. WOLF¹

1. Statement of results

The object of this paper is to prove Theorem 3 below, which gives a fairly complete analysis of the structure of Riemannian homogeneous manifolds of nonpositive sectional curvature. The main tool is

THEOREM 1. Let M be a complete connected simply connected Riemannian manifold with every sectional curvature nonpositive. Let γ be an isometry of M; given $m \in M$, let X_m be the (unique by hypothesis on M) tangent vector to M at msuch that $\exp(X_m) = \gamma(m)$; let X be the vector field on M defined by the X_m . Let M_0 be the Euclidean factor in the de Rham decomposition of M, so $M = M_0 \times M'$ where M' is the product of the irreducible factors. Then these are equivalent:

(1) There is an ordinary translation γ_0 of the Euclidean space M_0 such that the action of γ on $M = M_0 \times M'$ is given by $(m_0, m') \rightarrow (\gamma_0 m_0, m')$.

(2) X is a parallel vectorfield on M.

(3) γ is a Clifford translation² of M.

(4) γ is a bounded isometry³ of M.

In particular, if M_0 is trivial, then every bounded isometry of M is trivial.

As an immediate consequence of Theorem 1, we have

THEOREM 2. Let M be a complete connected simply connected Riemannian manifold of nonpositive sectional curvature, and let Γ be a properly discontinuous group of fixed-point-free isometries of M. Then these are equivalent:

(1) M/Γ is isometric to the product of a flat torus with a complete simply connected Riemannian manifold of nonpositive sectional curvature.

(2) Every element of Γ is a Clifford translation of M.

(3) Every element of Γ is a bounded isometry of M.

In particular, if one of these conditions holds, then M/Γ is diffeomorphic to the product of a torus and a Euclidean space.

To prove the following theorem, which is our goal, one notes that (1)

Received July 11, 1962.

¹ This research was done at the N. S. F. Summer Institute in Relativity and Differential Geometry, University of California at Santa Barbara, 1962.

 $^{^{2}}$ An isometry of a metric space is called a *Clifford translation* if the distance between a point and its image is the same for every point.

³ A bounded isometry of a metric space is an isometry such that the distance between a point and its image is at most equal to some bound.

implies (2) trivially, that (2) is known to imply (3) [3, Théorème 2], that (3) implies (4) trivially, and that (4) implies (1) by Theorem 2.

THEOREM 3. Let M be a connected simply connected Riemannian homogeneous manifold of nonpositive sectional curvature, and let Γ be a properly discontinuous group of fixed-point-free isometries of M. Then these are equivalent:

(1) M/Γ is isometric to the product of a flat torus with a simply connected Riemannian manifold (which is necessarily homogeneous and of nonpositive sectional curvature).

- (2) M/Γ is a Riemannian homogeneous manifold.
- (3) Every element of Γ is a Clifford translation of M.
- (4) Every element of Γ is a bounded isometry of M.

The fact that (2) implies (1) above has a number of consequences, most of which are immediate from Theorem 1:

COROLLARY 1. Let N be a connected Riemannian homogeneous manifold with every sectional curvature nonpositive. Then

(a) N is isometric to the product of a flat torus with a simply connected manifold.

(b) N is diffeomorphic to the product of a torus and a Euclidean space.

(c) N admits a transitive solvable group of isometries.

(d) If there is no Euclidean factor in the de Rham decomposition of the universal Riemannian covering manifold of N, then (d_1) N is simply connected, (d_2) every bounded isometry of N is trivial, (d_3) every transitive group of isometries of N is centerless, (d_4) a transitive Lie group of isometries of N cannot admit a nontrivial bounded⁴ inner automorphism, and (d_5) N is Riemannian symmetric if it admits a transitive semisimple Lie group of isometries.

As our final result, Corollary 1 (d_4) will give us a result due to J. Tits:

COROLLARY 2. Let β be a bounded automorphism of a connected semisimple Lie group G. Then β induces the identity transformation on every noncompact normal simple analytic subgroup of G.

Remark. It is conceivable that Corollary 1 could be the basis for a classification of the Riemannian homogeneous manifolds of nonpositive sectional curvature.

Background. Corollary 1 (d₁) is an affirmative answer to "question (a)" raised by S. Kobayashi in his paper [2], and thus extends the main result of [2]. Kobayashi's paper led R. Hermann to conjecture Corollary 1 (b), and Hermann had already proved a slightly weaker statement when he learned of my result.

Acknowledgements. I am indebted to S. Kobayashi for showing me the

⁴ An automorphism β of a topological group G is called *bounded* if G has a compact subset C such that $\beta(g) \cdot g^{-1} \in C$ for every $g \in G$.

proofs of [2], to R. Hermann for telling me his conjecture, and to L. W. Green for drawing my attention to a result in his thesis which is basic to the proof of Theorem 1.

2. Proof of Theorem 1

Let γ be a bounded isometry of M, and assume $\gamma \neq 1$. Given $x \in M$, let h_x be a geodesic on M containing both x and $\gamma(x)$. x cannot be a fixed point for γ because distinct geodesics through x diverge; thus h_x is uniquely deter-Now choose $m \in M$, and let g be a geodesic through $m, g \neq h_m$. mined. Let S_g be the union of all h_x with $x \in g$. $\gamma(h_x) = h_x$ because they both contain $\gamma(x)$ and they do not diverge from each other; thus $\gamma(S_g) = S_g$. As the strip on S_q between g and $\gamma(q)$ is a regularly imbedded surface in M, for g and $\gamma(g)$ do not meet, because they are distinct and do not diverge apart, it follows that S_g is a regularly imbedded surface in M, and that any point of S_g is contained between some pair $(\gamma^{t-1}(g), \gamma^{t+1}(g))$ of nondivergent geodesics. Furthermore, any point z of S_q lies on some geodesic h_x of M which is contained in S_q , so the Gaussian curvature of S_q at z is bounded above by the sectional curvature in M of the tangentplane to S_g at z, and they are equal if and only if this plane is parallel along h_x at z. This shows that S_a is of nonpositive Gaussian curvature, and that S_g is totally geodesic in M if it is By using the ruling of S_g by the h_x and the striping of S_g by the $\gamma^i(g)$, flat. it is easy to see that S_q is complete and simply connected; as S_q is of nonpositive Gaussian curvature and any point lies between two nondivergent geodesics (of the form $\gamma^{t}(g)$), a deep result of L. W. Green [1, Corollary 4.2] shows that S_q is flat, and it follows that S_q is totally geodesic in M. Now γ is a bounded isometry on the Euclidean plane S_q ; it follows that γ is an ordinary translation of S_{g} [3, proof of Théorème 4], and thus that γ is of constant displacement on S_q for the induced metric. As S_q is totally geodesic, γ is of constant displacement on S_q for the metric of M. M is the union of the various S_g , and each S_g contains m; thus γ is of constant displacement on M. This shows that (4) implies (3).

Let γ be a Clifford translation of M. In particular, γ is a bounded isometry of M, and we can apply the constructions above. Given $m \in M$, let $\{X_m; Y_2, \dots, Y_n\}$ be a basis of the tangentspace M_m . Let g_i be the geodesic through m tangent to Y_i , and let $S_i = S_{g_i}$. Each S_i is totally geodesic in M, is isometric to the Euclidean plane, and is invariant under γ , and γ induces an ordinary translation in each S_i . Thus the restriction of X to S_i is a parallel field of tangent vectors to S_i ; in particular, X is parallel along each g_i , and along h_m . Thus every covariant derivative of X vanishes at m. As m was arbitrary, it follows that X is parallel over M. This shows that (3) implies (2).

Let X be parallel on M. If we look at the de Rham decomposition, it is clear that, at every point of M, X is tangent to the Euclidean factor. This shows that the action of γ on $M = M_0 \times M'$ is of the form

 $(m_0, m') \rightarrow (\gamma_0 m_0, m')$

where γ_0 is an isometry of M_0 . γ_0 is a Clifford translation of M_0 because X has constant length; it follows [3, Théorème 4] that γ_0 is an ordinary translation of M_0 . This shows that (2) implies (1).

It is trivial that (1) implies (4). Theorem 1 is now proved, Q.E.D.

3. Proof of the corollaries

Theorem 1 has been proved, and Theorems 2 and 3 follow; only the corollaries remain to be proved.

Proof of Corollary 1. Statements (a), (b), (d₁), and (d₂) are immediate from Theorems 1 and 3, (d₃) follows from (d₂) because [3, Théorème 2] a central element of a transitive group of isometries would be a Clifford translation, and (d₄) follows from (d₂) because an element inducing a bounded inner automorphism of a transitive Lie group of isometries would have to be a bounded isometry. Symmetry provides a transitive semisimple group of isometries in (d₅) because N has no Euclidean factor. Conversely, if G is a transitive semisimple group of isometries in (d₅), then we may assume G connected, and G is centerless by (d₃); as N = G/K with K maximal compact in G because N is diffeomorphic to a Euclidean space, N is symmetric.

Only (c) remains, and Theorem 3 shows that (c) need only be proved in case N is simply connected and without Euclidean factor. Let G be a connected transitive Lie group of isometries of N, let R and S be the connected radical and a Levi-Whitehead complement, and decompose $S = S_N \cdot S_G$, where S_N is the product of the noncompact normal simple subgroups, and S_C is the product of the compact ones. An isotropy subgroup K of G is maximal compact because N is diffeomorphic to Euclidean space; thus we may assume S chosen so that $K = K_N \cdot S_C \cdot K_R$ with K_N maximal compact in S_N and K_R maximal compact in R. The Iwasawa decomposition of S_N provides a solvable subgroup B such that $S_N = B \cdot K_N$; now

$$(B \cdot R) \cdot K = B \cdot K \cdot R = G,$$

so $B \cdot R$ is a solvable transitive group of isometries of N. Corollary 1 is now proved, Q.E.D.

Proof of Corollary 2. By passing to the adjoint group of G and then dividing out by the maximal compact normal subgroup, it is easily seen that it suffices to prove that $\beta = 1$ provided that G is a product of noncompact centerless simple groups. If β is inner, now, it must be trivial by Corollary 1 (d₄) because G can be realized as a transitive group of isometries of a Riemannian symmetric space of nonpositive curvature. It follows that β is of finite order, and thus semisimple; now it is easy to see that β is inner, and thus trivial, Q.E.D.

References

1. L. W. GREEN, Surfaces without conjugate points, Trans. Amer. Math. Soc., vol. 76 (1954), pp. 529-546.

- 2. S. KOBAYASHI, Homogeneous Riemannian manifolds of negative curvature, Bull. Amer. Math. Soc., vol. 68 (1962), pp. 338-339.
- 3. J. A. WOLF, Sur la classification des variétés riemanniennes homogènes à courbure constante, C. R. Acad. Sci. Paris, t. 250 (1960), pp. 3443-3445.

UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA