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On Locally Symmetric Spaces of Non-negative Curvature
and certain other Locally Homogeneous Spaces

by Josepa A. WoLr!, Princeton (N.J.)
To Professor Georges de Rham on his sixtieth birthday

1. Introduetion and summary

This paper is a study of the global structure of the complete connected
locally symmetric RiEMANNian manifolds N in which every sectional curva-
ture is non-negative. Our main result is that the fundamental group =, (N)
is a finite 2-group if the EULER-POINCARE characteristic (singular theory)
2(N) #% 0. In fact, that result is proved under slightly weaker conditionson N.

The first principle result (Theorem 3.1) states that there is a real analytic
covering N’'— N of finite multiplicity and a real analytic deformation
retraction of N onto a compact totally geodesic submanifold, such that
N =E X T X M' where F is a EvcLIDEan space, T' is a torus, M' is a
compact simply connected RIEMANNian symmetric space, and the deformation
retraction of N lifts to a deformation retraction of N’ onto 7' X M'. In
particular, the betti numbers (singular theory) of N are finite and the
EuLER-PoINCARE characteristic y(N) is defined. Theorem 3.1 then states
that y(N)=0, and that the fundamental group =;(X¥) is a finite 2-group
if y(N)#0.

The second principle result (Theorem 3.2) gives a general method of con-
structing all manifolds N with x (V) £ 0. Application of this method is a
combinatorial problem which requires a classification (up to global isometry)
of the space forms of the irreducible compact simply connected RIEMANNian
symmetric manifolds 8 with x(S) 54 0. That classification problem is solved
in § 5. We first prove (Theorem 5.1) that S is equal to any of its space forms
unless § is a GrAssMANN manifold, SO(2#n)/U(n), Sp(»)/U(n), E;/4, or
E,/E;- T'. We have already classified the space forms of GRASSMANN mani-
folds of nonzero characteristic [13]; the result is recalled as Theorem 5.3.
We then (Theorems 5.4 —5.7) classify the space forms of the other possibilities
of 8. From these classification theorems we are able (Theorem 6.2) to give
a necessary and sufficient condition on the set of factors of a product M’

1) The author thanks the National Science Foundation for fellowship support during the period
of preparation of this paper. His present address is: Department of Mathematics, University of
California, Berkeley 4, California,
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of manifolds §, that every space form of M’ have abelian fundamental group.
If M’ is irreducible, the condition is automatically fulfilled. Finally, in § 6.5,
we give a good description of the possibilities for a manifold N with ¥ (N) % 0
when, in the universal RIEMANNian covering manifold M x M’ (M, EvucrLipean
and M’ compact; this is the M’ which occurs in N'), M’ satisfies the commu-
tativity conditions of Theorem 6. 2.

Some parts of Theorem 3.1 do not fully use the hypotheses on N. This
leads us to define a Rirmannian nilmanifold to be a RIEMANNian manifold
which admits a transitive nilpotent group of isometries. We prove (Theorem
4.2) that a connected RiEMANNian nilmanifold is isometric to a connected
nilpotent Lie group in a left invariant RIEMANNian metric, that the nilradical
of its connected group of isometries is the only connected transitive nilpotent
group of isometries, and that its full group of isometries is the semidirect
product of this nilradical with an isotropy group. Now let N be a RiEMaNNian
manifold with universal RIEMANNian covering manifold of the form M, x M’
where M, is a RiEMaNNian nilmanifold and M’ is a compact RIEMANNian
homogeneous manifold. Theorem 4.1 provides a real analytic covering

N =E XN' XM —~>N

of some finite multiplicity » > 0, where £ is a EvoLipean space and N' is a
compact nilmanifold. While I am unfortunately unable to retract N onto a
compact submanifold unless M, is a EvcLiDean space (and so cannot prove
the betti numbers of N to be finite, and so cannot assert that y(N) is defined)

it is shown (Proposition 4.4) that y*(N) = % x(N') is a topological invariant

of N. Theorem 4.1 then states that y*(N) is an integer, that x*(N) =0,
that y*(N) = g¢(&) if M, is a EvcrLipean space, that =, (N) is finite if
2¥(N) #£ 0, and that =, (N) is a finite 2-group if x*(N) 20 and M’ is
RieMaNNian symmetric.

The ‘“rational EULER-PoINCARE characteristic” y* was invented by C.T.C.
WarL [10] in another context. D.B.A. EpPSTEIN suggested that I use it here,
and gave valuable suggestions for adapting it to noncompact spaces and then
proving it well defined.

By Theorem 3.1, we mean the theorem in § 3.1. Similarly, Theorem 3.9
is the theorem in § 3.9, etc.

Added in proof: By different methods, J.C.SANWAL has obtained the flat
case of the fourth corollary of §4.2 and has shown that the fundamental
group of a complete flat RIEMANNian manifold is isomorphic to that of a
compact flat RiEMaNNian manifold, special case of our Theorem 3.1.
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2. Preliminaries and notation

We will assume familiarity with LI groups and discrete subgroups, RiE-
MANNian manifolds, and covering spaces.

2.1. LIE groups and algebras. If ¢ is a Lie group, then G, will denote its
identity component, ® will denote its Lir algebra, exp: ® — G, will be the
exponential mapping, and adjoint representation of G on & will be denoted by
“ad”. If H is a LiE subgroup of G, then §) is viewed as a subalgebra of &.
If $ is a subalgebra of &, then the corresponding analytic subgroup of G is
the analytic (= connected LIE) subgroup generated by the image of & under
the exponential mapping of G.

If G and H are LiE groups and f: H — Aut(@) is a continuous homomor-
phism of H into the group of automorphisms of @, then the semidirect product
G- gH (denoted G- H when there is no possibility of confusion) is the manifold
G x H with group structure (g, %,) (95, ko) = (91 B(Ry) G2, 1bs). G- H is
a Lie group, G and H are closed subgroups under identifications g— (g, 1)
and hA— (1,h) (we always use 1 to denote the group identity), and G is a
normal subgroup. The two extreme cases are when g is trivial, so G- H is
the direct product G X H, and when g is faithful (trivial kernel), so H may
be viewed as a group of automorphisms of G if S(H) is closed in Aut(@G).

The compact classical groups are the orthogonal groups O(n) in n real
variables, the identity components, SO (z), the special (= determinant 1) ortho-
gonal groups, the unitary groups U(n) in n complex variables and the special
unitary groups SU(n), the symplectic groups Sp(n) which are the unitary
groups in » quaternion variables, and the universal covering groups Spin(n)
of SO (n). T™ will denote an m-torus. 4,, B,,C,, D,, @, F,, By, E, and E,
will refer both to the CarTaAN classification types and to compact connected
groups of those types. In boldface, these letters will denote the compact
simply connected groups. For example, A, = SU(n + 1), B, = Spin(2n+41),
C,= Sp(n), D, = Spin(2n), and F, is the group of isometries of the CAYLEY
elliptic plane.

2. 2. Diserete groups. A subgroup I' of a topological group G is called
discrete if it is a discrete subset, i.e., if there is a neighborhood U of 1 ¢ G such
that I'n U = {1}. I is called uniform in G if (I denotes the topological
closure) G/I" is compact.

Let I' be a topological group and let X be a topological space. An action of
I' on X is a homomorphism of I" into the group of homeomorphisms of X such
that the associated map I" X X — X is continuous. We write y(z) for the
image of (y, z). The action is effective if 1 £ y ¢ I' implies y(x) #* « for
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some element xz e X; the action is free if 1 £ y ¢ I' implies y(z) #% x for
every element e X; the action is properly discontinuous if every zeX has
a neighborhood which meets its transforms by only a finite number of ele-
ments of I".

Let I' and K be subgroups of G, K closed in G. Then there is a natural
action y:gK —ygK of I' on the coset space G/K. If G is a Lir group,
or even locally compact with only finitely many components, and if K is
compact, then the action is properly discontinuous if and only if I" is discrete
in G'. In any case, the action is free if and only if 1 is the only element of I"
conjugate (in () to an element of K, and the identification space of (/K under
I' is the double coset space '\ G/K.

2. 3. Isometries and product structure. An isometry of a RiEMANNian mani-
fold is an automorphism of the RiEmaNNian structure. If M is a RiEMANNian
manifold, then its full group of (= group of all) tsometries is a L1k group denoted
I(M); the connected group of isometries is the identity component I(M),;
following tradition, we write I,(M) for I(M),. M is homogeneous if 1(M)
is transitive on the points of M. If M is homogeneous and connected, and if
x e M, then g— g(x) induces differentiable homeomorphisms of M with the
coset spaces I(M)/K and I,(M)/(I(M)~ K) where K = {gel(M):g(x) =z}
is the isotropy subgroup of Y(M) at z; K is compact. If s eI(M) has square 1
and has x ¢ M as an isolated fixed point, then s is a symmetry to M at x; if
M is connected, s is unique because it induces — I (I = identity) on the
tangentspace M,. M is symmetric if it has a symmetry at each of its points.
If M is connected and symmetric, then any two points  and y can be joined
by a broken geodesic, and the product of the symmetries to M at the midpoints
of the geodesic segments will send = to y; thus M is homogeneous.

Let M be complete and simply connected. Then [7] M is isometric to a
product M, X M; X ... X M, where M,is a EucrLiDean space (the Evcripean
factor of M) and the other M,, the irreducible factors of M, are irreducible,
i.e., are non-EucrLipean and not locally products of lower dimensional mani-
folds. This pe REam decomposition is unique up to the order of the factors.
M is homogeneous (resp. symmetric) if and only if each of the M; is homo-
geneous (resp. symmetric). Identifying M with M, X ... X M, and letting
I(M,) act on M by acting on M, in the usual way and by acting trivially on
the other M, ,I(M) is generated by the I(M,) and by all permutations on
sets of mutually isometric factors M,. In particular, I,(M) = I,(}M,) X

X L(M,) X ... x Li(M,).

2. 4. Curvature, characteristic and submanifolds. If S is a two dimensional
subspace of a tangentspace M, to a RIEMANNian manifold M, then in a neigh-
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borhood of x the geodesics of M through x tangent to S form a surface; the
sectional curvature of M at (S, x) is the GAUSSIAN curvature of that surface
at . In a EucLipean space, every sectional curvature is zero. In a compact
RiemMaxNian symmetric space, every sectional curvature is = 0. In a non-
compact irreducible RiEMANNian symmetric space, every sectional curvature
iIs =0 and some are < 0. In particular, if M is a complete simply con-
nected RIEMANNian symmetric space, then M has every sectional curvature
= 0 if and only if every irreducible factor of M is compact.

A submanifold of M is totally geodesic if and only if every geodesic of the
submanifold is a geodesic of M, i.e., if and only if the submanifold contains
every geodesic of M to which it is tangent. If X is a totally geodesic submani-
fold of M,z ¢ X and S is a two dimensional subspace of X,, then it is clear
that M and X have the same sectional curvature at (S, ). In particular,
the sectional curvatures of X satisfy any bounds satisfied by those of M.

The rank of a compact Lik group is the common dimension of its maximal
toral subgroups. If K is a closed subgroup of a compact LIE group G, then [8]
the EULER-POINCARE characteristic (in any homology or cohomology theory)
2(G/K) = 0, and y%(G/K) > 0 if and only if rank. @ = rank. K.

2. b. RiEMANNian coverings and loeally symmetric spaces. A Riemannian
covering is a covering n: M — N of connected RiEMANNian manifolds where x
is a local isometry. It is then easily seen that the group I"of deck transformations
of # (homeomorphisms y: M — M with = = x-y) is a discrete subgroup
of I(M) acting freely and properly discontinuously on M. If M is simply
connected, then I" is identified with the fundamental group =,(N) and N is
identified with the quotient space M/I'. Conversely, if M is a connected
Riemannian manifold and I' is a subgroup of I(M) acting freely and properly
discontinuously, then M/I" admits a unique RIEMANNian structure such that
the projection M — M/I" is a RIEMANNian covering.

A Riemannian manifold M is locally symmetric if every x ¢ M has an open
neighborhood which, in the induced RIEMANNian structure, admits a symmetry
at . This is the case if M is symmetric, if M is a RIEMANNian covering mani-
fold of a locally symmetric RIEMANNian manifold, or if M admits a RiE-
MANNian covering by a locally symmetric RiEmaNNian manifold. M is com-
plete, connected and locally symmetric, if and only if its universal RIEMANNian
covering manifold is symmetric. In particular, M is a complete connected
locally symmetric Riemannian manifold with every sectional curvature =0,
if and only if the universal Riemanyian covering manifold of M s the product
of a EuciLipean space and a compact stmply connected Riemannian symmetric
space. This is the sort of manifold with which we shall concern ourselves here.
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3. The structure theorems for locally symmetrie spaces

Our main results on the structure of locally symmetric spaces of non-
negative curvature are: '

3. 1. Topological Structure Theorem. Let N be a complete connected locally
symmeltric Riemanyian manifold with every sectional curvature = 0. Then:

1. There 1s a real analytic covering N'— N of finite multiplicity where N’
18 the product of a Evcripean space, a torus, and a compact simply comnected
Riemannian symmetric space. This covering need not be Riemannian. In par-
ticular, the fundamental group 7, (N) has a free abelian subgroup of finite indezx.

2. There ts a real analytic deformation retraction of N onto a compact totally
geodesic submanifold which lifts to a deformation retraction of N' onto the product
of its toral and compact simply connected factors. In particular the betti numbers
of N are finite for singular homology and cohomology, and the EvLER-POINCARE
characteristic y(N), alternating sum of the befte numbers, 18 a well defined
integer. We have y(N)=0.

3. If x(N) # 0, then n,(N) 18 a finite 2-group (finite of some order 2%).

Given the first and second statements above, it is easily seen that ()
must be finite when y(N) % 0, but it is a bit surprising that =, (V) must be
a 2-group. This comes from an examination of the universal covering of N
and the form of the elements of =, (N), and from E.CarTaN’s determination
[4] of the full groups of isometries of symmetric spaces:

3. 2. Geometrie Strueture Theorem. Let M = M, X M, X ... X M, where
M, is a Evcripean space and each M, (i > 0) 1is a compact connected simply
connected irreducible RiEmManNian symmetric space with y(M;) > 0. Let X be
a group of isometries acting freelyon M, X ... X M,, let {f be a homomorphism
of X into the orthogonal group of M,, and let I' be the group of isometries of M
consisting of all y = f(o) X o. Then I'is isomorphic to X and is a finite 2-group,
and M|I' is a complete connected locally symmetric Riemannian manifold with
every sectional curvature = 0 and Evurer-Poincart characteristic y(M/I') > 0.
If an element of X has order 2%+ then it induces a transformation

(g, .. ) > (T2, 1, o ooy X py)

on a product of m distinct mutually isometric factors M, of M, where either
m = 2% and t 18 a fixed point free involutive isometry, or m = 2¥~1 and (for
some n = 2) each of these M, ts isometric to the oriented real Grassmany manifold
S0 (47n)/S0(2n) X SO(2n), and 1% 8 a fixed point free involutive isometry.

Conversely, every complete connected locally symmetric RiEMannian manifold,
with all curvatures = 0 and monzero characteristic, 18 isometric to a manifold
M|I" described above.
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3. 3. Outline of proof. The remainder of § 3 is devoted to proving Theorems
3.1and 3.2.

We identify =, (N) with the group I" of deck transformations of the uni-
versal RIEMANNian covering M — N. To obtain the finite covering and the
retraction of NV, we find a free abelian subgroup 4 of finite index in I" and sub-
mit M, A and I' to various deformations. The existence of A4 (§ 3.4) is due
to L. AusLANDER. The deformations of 4 (§ 3.5) are done in sufficient gene-
rality for their applications in § 4 as well as in § 3. It is then (§ 3.8) proved
that, if % (N) 20, then x(N)> 0, =, () is finite, and the converse of
Theorem 3.2 holds; this is done by combining the retraction and the finite
covering. It then suffices to prove that X' is a 2-group whose elements induce
the transformations given; this is done in §§ 3.10—3.11, and is based on a
theorem (§ 3.9) that 7* has a fixed point if 7 is an isometry of an M.

3. 4. The free abelian subgroup of finite index in =, () will be exhibited
as a consequence of a result of L. AusLaANDER ([2], Th.3) which requires some
interpretation. The precise statement, slightly sharpened, is:

Proposition (L. AUSLANDER ([2], Th. 3)). Let D be a discrete subgroup of & semz-
direct product H - C, where H is a connected simply connected nilpotent L1k group
acted upon (by automorphisms, but mot mecessarily effectively) by a compact
Lig group C. Then D* = D ~ (DH), ts a subgroup of finite index in D, and
D*¥ =4 X B where A 1is a finite abelian group and B s isomorphic to a
discrete subgroup with compact quotient vn some connected subgroup H* of H.

Proof. The first two paragraphs of L. AUSLANDER’s proof ([2], pp. 279-280)
show that, after conjugation by an element of H, D* ¢ W-T where W
is a connected subgroup of H and 7 is a torus in C which centralizes W .
For the sharpening, we replace the third paragraph of a slight variant. D*
is finitely generated because it is discrete in the connected solvable group
W-T ([5], Th.1"), so D*/[D*, D*] is a finitely generated abelian group. Thus
D*|[D*, D¥] = A’ X B’ where A’ is the torsion subgroup. [D*, D*] ¢ W
because 7' is abelian and centralizes W ; thus the projection

f: D*— D*/[D*, D*] maps A =D~ T
isomorphically onto 4’; it follows that D = A4 X B where B = f1(B’).
Now let g: W-T — W be the projection and define H* to be the smallest
analytic subgroup of W which contains g(B).g maps B isomorphically onto
g(B), g(B) is discrete in H* because 7 is compact, and it is standard that
H*|g(B) is compact. , Q.E.D.

3. 5. The deformation of the free abelian subgroup and the corresponding
quotient manifold is given by:
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Deformation Theorem. Let G = S - C be a semaidirect product of Lie groups,
let D be a torsion free subgroup of G with generating set {d,,...,d,} such that,
gwen deD, there is a unique set {u;} of integers such that d = dj1dy?...d;»;
suppose that D acts freely and properly discontinuously on G/C by d:gC—dgC,
and assume that the projection of D into C lies in a torus A which centralizes
D. Write d;, = s;a, with s;e8 and a,e A, choose elements X, in the Lik
algebra of A such that a; = exp(X,), define d{¥ = d,-exp (— tX,) =
=s,-exp ((1 — t)X,), and let D be the group generated by {d?}. Then

1. DO =D .and DV c 8.

2. If K 1is a closed subgroup of C, so P = G|K 1is an analytic manifold on
which G actsby g: hK —ghK, then each D acts freely and properly discon-
tinuously on P; in particular, the projections P — P/D) are coverings of
analytic manifolds.

3. The maps d? — d¥ define isomorphisms (the ‘deformation isomorphisms”)
of D™ onto D, and these isomorphisms induce analytic homeomorphisms of
P/D®" onto P|D®.

4. P/D 1is analytically homeomorphic to (S/DM) x (C/K).

Proof. The first statement is obvious. If 22 is a group relation and
R(8,...,8,) =1, then Rd,,...,d,)eA
because 4 is abelian, A contains the a,, and A centralizes the s,. But
D~rA c D~C={1}

because D acts freely on G/C; thus S#(d,,...,d,) = 1. This shows that the
d, satisfy every relation satisfied by the s,; it follows that d{® —d, induces
a homomorphism of D® onto D. Every element of D has some expression
(@)1 (dP)%2. .. (dP)“n because the s, satisfy every relation satisfied by the
d;, and every element of D has unique expression djldg2...dy; it follows
that the epimorphism D® — D is an isomorphism. This gives the defor-
mation isomorphisms.

For the second statement, we note that D) — @ acts freely and properly
discontinuously on G/C, if and only if D® < §- A acts freely and properly
discontinuously on (8- 4)/4. As A4 is compact, and as D® is discrete (because
DW ig discrete in S, consequence of proper discontinuity of D on G/C) and
torsionfree (because it is isomorphic to the torsionfree group D), D¥ must
be free and properly discontinuous on (S-4)/4. This proves the second
statement; the third follows because the deformations are along analytic arcs.

For the last statement, view P/D® as the double coset space D\ G/K.
Writing ~ for analytic homeomorphism, we then have

P|D ~ P/DW ~ (DW\8) - (C/K) .

18 CMH vol. 37
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Now observe that (s,c)—>sc induces S X C>~G=~8-C and s-—>s
induces DO\ S =~ §/DW; it follows that P/D =~ (8/DV) x (C/K). Q.E.D.

3. 6. The finite covering. Identify =, (N) with the group I" of deck transfor-
mations of the universal RIEMaNNian covering M —>N. M = M, x M’
where M, is a EucLIDean space and M’ is a product of irreducible RIEMANNian
symmetric spaces, for N is complete, connected and locally symmetric. As N
has every sectional curvature = 0, the same is true for M’; it follows that
M' is compact because a noncompact irreducible RIEMANNian symmetric
space has a negative sectional curvature. In particular, the full group of iso-
metries I(M') is compact.

I(M,) is the ordinary EvucLipean group on 7 = dim. M, variables, and
may be viewed as a semidirect product R"-0(n) where R” is the vector
group and O(n) is the orthogonal group. This allows us to view I(M) =
= I(M,) X I(M’') as a semidirect product R"-C where C = 0(n) X I(}M’').
As I' is a discrete subgroup of I(M), Proposition 3.4 gives a finitely generated
free abelian subgroup 4 of finite index in I" corresponding to the group B there.

By construction, the projection of 4 into C lies in a torus. The condition
of Theorem 3.5 for expression of elements in terms of generators is obvious
for finitely generated free abelian groups. 4 acts freely and properly discon-
tinuously on I(M)/C because C is compact and 4 is discrete and torsion free.
Now Theorem 3.5 shows that M/A4 is real analytically homeomorphic to
(M,y/4") x M' where A'is a discrete group of pure translations of M, which is iso-
morphic to 4. Define N’ = (M,/4') X M' and recall that M/4 - M|/I'=N
is a finite RIEMANNian covering. This proves the first statement of Theorem 3. 1.

3. 7. The deformation retraction of N onto a compact submanifold is accom-
plished by a deformation of I" onto another group I, followed by a I''-equi-
variant deformation retraction of M. We retain the notation I'y M, M', M,
and 4 from § 3.6, except that we may replace 4 by the intersection of its
conjugates in I', and thus assume 4 normal in I".

Every y eI is of the form y, X ' where y, eI(M,) and y' eI(M’). For
a choice of origin in M, y, is further decomposed into (y,,y,) where y, e M,
indicates a translation and y, is a rotation. By construction of 4, we may
choose the origin so that é,: d,— 6, for every de 4. The origin so chosen,
M, is identified with the vectorspace R”, and we have an orthogonal direct
sum decomposition My, = U + V where V is the subspace spanned by the
8;. Every y, preserves V, and thus preserves U, because 4 is normal in I'.

Given y eI, we have y,=9yy + yr with ypeU and ppeV. If s is
a real number, define »® = (syy + yv, 9,) X ' and let I', be the subgroup
of I(M) generated by the . It is easily checked that y— y'® defines an
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isomorphism of I" onto I',. I, is discrete in I(M) because it contains 4 as a
subgroup of finite index; thus I', acts properly discontinuously on M . Now if
»* has a fixed point, it must have finite order, whence y has finite order; it
follows that either y =1 or 5’ has no fixed point; »* = 1 because the
latter would prevent y'® from having a fixed point. Thus I', acts freely on M.
We now have a one parameter family of manifolds N, = M/I', which are
analytically homeomorphic to N = N,. It will be clear that this isotopy of
the metric of N is the identity on a compact totally geodesic submanifold
onto which N is retracted. For the proof of Theorem 3.1, then, we may
replace N by N,. In other words, we may assume each y,¢ V.

We have M as a RiEmManNian product U X V X M’ where U and V are
EvucLipean spaces with vectorspace structure, and every v e I'" is of the form
Y1 X ¥ X 9" where p, is a rotation of U, y, is an isometry of ¥V, and 4’
is an isometry of M'. Define f,: M - M by f,(u,v,m') = (su,v,m'); f, is
I'-equivariant because each v, is a linear transformation. Thus f, induces a
map ¢,: N— N. This gives a deformation retraction of N = g,(N) onto
go(N). But ¢,(N) = fo(M)/I'=(V x M'))I" admits a covering by (V X
X M)A, and, as in § 3. 7., Theorem 3.5 shows that (V X M’)/4 is homeo-
morphic to (V/4’') X M’ where A’ is the group of translations consisting of
the §,. V/4' is a torus, compact by definition of V'; thus g,(&) is compact.

We have now exhibited a deformation retraction of N onto a compact
submanifold. As singular homology and cohomology satisfy the homotopy
axiom, the betti numbers of N are finite, and the EULER-PoINCARE charac-
teristic y (N) is a well defined integer, in those theories.

Observe that the deformation of I' did not move any points of g,(N). It is
now clear that g,(N) is totally geodesic in IV, for it is the image of a totally
geodesic submanifold V x M’ of M.

3. 8. Finiteness of the fundamental group. We have seen that the defor-
mation retraction g¢,(N) admits a covering of some finite multiplicity » by
T x M', where T is a torus with =z,(7') isomorphic to the subgroup 4 of
finite index in I. As ¢,(N), 7T and M' are compact manifolds, we have

1 1
1(N) = 2(9o (V) = — (T x M) == x(T)- 3 (2.
Now suppose x(N) %= 0. Then x(7T) # 0 #% x(M'). x(T) # 0 means that
T is a single point, so y(N) = %x(M’) and 4 = {1}. As A has finite index

in I', I' = n,(N) must be finite. Now y(M’) 7% 0 implies y(M') > 0 because
M’ is a quotient space of a compact Li group I(M’) by a closed subgroup
[8]; thus x(&N)> 0.
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The second statement, and the finiteness assertion of the third statement,
of Theorem 3.1 are now proved.

Suppose again that x(N) £ 0. As I'is finite, the y, of § 3.7 form a finite
group; it is classical that some point of M, must be fixed under every y,.
Changing the origin in M, I" is the group of isometries of M consisting of all
f(o) X o, as ¢ runs through a finite group X' of isometries acting freely on
M', where f is a homomorphism 9’ — y, of X' into the orthogonal group of
M,. Now y(M')#0, so x(M;)#0(¢>0) where M' =M, X ... X M,
is the decomposition of M’ into irreducible factors. It follows that y(M,) > 0
[8] and every group of isometries acting freely on M’ is finite [11]. This proves
the converse and finiteness condition of Theorem 3.2, and that the manifold
M|I’ there is a complete connected locally symmetric RIEMANNian manifold
with every sectional curvature = 0 and 4 (M/I") > 0.

To complete the proofs of Theorems 3.1 and 3.2, now, we need only prove
that every element of the group 2 of Theorem 3.2 has some order 2%+ and
induces a transformation of the type exhibited there.

3.9. In order to study the elements of X', we need some information on
fixed points:

Fixed Point Theorem. Let © be an isometry of a compact connected simply
connected tirreducible Riemannian symmetric space S with % (S) #£ 0. If <2
has no frxed point, then S 18 isometric to a real GrassMaNN manifold
SO (4%)/S0(2k) x SO(2k), k=2, and v* has a fizxed point.

Proof. Let K be an isotropy subgroup of ¢ = I(S). The identity component
K, contains a maximal torus of G, because y(G,/K;) = %(S) % 0, by Sa-
MELSON’s theorem [8], so every element of G, is conjugate to an element of K.
In other words, every element of Gy has a fixed point. Let ¢ be the image of
Tin G/G,; t™ has a fixed point if ™ = 1.

Suppose that 72 has no fixed point. Then G/G, has an element of order
greater than 2. It follows from CARTAN’s construction of I(S) [4] that

S = S0(4%)/SO (2k) X SO (2k)

where k = 2; if, further, G/G, has an element » with «* % 1, then k= 2
and % has order 3. But if 2 =1, then 7 eI ;(S) = G,, so 7® is homotopic
to the identity. It is known that v must be fixed point in this case ([14],
§§ 5.5.9—5.5.10), so 72 has a fixed point. This contradicts ® = 1. The only
other possibility is that # =1 and t* has a fixed point. Q.E.D.

3.10. 2-groups. We will see that I" and X' are 2-groups.
If g is an isometry of M' = M, X ... X M,, then we have decompositions
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M=XX...XX,,9=¢ X ... X¢,

where g, is an isometry of X; which cyclically permutes its irreducible factors.
Thus, under appropriate isometric identifications, we have X, = 8§, X ... X §;
(v, factors) with S, irreducible, and

Gt (Syseevy 8p) = (Ti8,, 81, v o v s Spy_1)
gives the action of g, on X, for some isometry 7, of §,. Now if g has order m,
then each v; must divide m, say m = v;m,; g* induces the transformation
7, X ... X1; on X,, and 7{% = 1.

Suppose now that g has odd order m, and retain the notation above. Each
7, must have odd order, so 7, is a power of 7}. As y(M') #£ 0, we have
2(8;) # 0, and Theorem 3.9 shows that each 7, has a fixed point s; e S,.
Define z; = (s;,8;, ...,8;) € X;; then ¢,(x;,) = z,. It follows that

) T

= (X, Ta,...,%
is a fixed point for g. P 2

If I' is not a 2-group, then it has an element y of odd order m > 1. y =
= f(6) X o where o has order m in 2. The considerations above show that o
has a fixed point, contradicting the hypothesis that X act freely on M'.

This proves that I" and X are 2-groups.

3.11. The form of the group elements now comes easily. Let 1 s£g¢2.
Then g has some order m = 2%*! % = 0. Retain the notation of § 3.10 for
the decompositions of M’ and g. Then m; = 2% and v, = 2% where
a; +b;,=u 4+ 1. As g2 has no fixed point, some ¢%* has no fixed point.
For this index ¢, it is easily seen that b, < wu, say w = b, + w, whence
g =" X ... X ©2°. It follows that v} has a fixed point on S, if and only
if k& is a multiple of 2“*!; by Theorem 3.9, w = 0 or 1, and 8§, is isometric
to S0(47n)/S0(2n) X SO(27n) (n = 2) in case w = 1.

This completes the proof of Theorems 3.1 and 3.2. Q.E.D.

4. RIEMANNian nilmanifolds
and a strueture theorem for locally homogeneous spaces

The proof of some parts of Theorem 3.1 do not make full use of the hypo-
theses. We will prove the following extension to locally homogeneous spaces.

4. 1. Theorem. Let M —> N be a universal Riemanvian covering where
M= M, x M', a nilpotent Liz group acts transitively by isometries on M,
and M' is a compact RiEmannian homogeneous manifold. Then there is a real
analytic covering N'— N of some finite multiplicity r >0 where N' =
=FE X N"x M', N" is a compact coset space of a milpotent Lie group by a
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discrete subgroup, and E is diffeomorphic to a Eucripean space; if M, s iso-
metric to a Evcripean space, then N" 18 a torus and there is a real analytic
deformation retraction of N onto a compact totally geodesic submanifold which
lifts to one of the deformation retractions of N' onto N" X M'. In particular,
the EuLEr-PoINcARE characteristic y(N') of singular theory is a well defined

wnteger; now x*(N) = —}7 2 (N'), the so called rational EvuLer-PoINcaRE char-

acteristic of N , 18 a well defined non-negative integer, and y* (N) = x(N) if M, is
Evcripean. If y*(N) 0, thenthe fundamental group mu, (N) vs finite. If y*(N) %0
and M' is RiEMannNian symmetric, then m (N) 18 a finite 2-group.

I am indebted to Davip B. A. EpsTEIN for drawing my attention to C.T.C.
WALL’s rational EULER characteristic [10] and for suggesting a way of adapting
it to this context. § 4.4 is based on conversations with him.

4. 2. RiemanNian nilmanifolds are defined to be RiEMANNian manifolds
which admit a transitive nilpotent group of isometries. The structure of M,
is clarified by:

Theorem. Let B be a positive definite bilinear form on the Lik algebra S of
a connected nilpotent Liz group S, let K be the group of all automorphisms of
S which preserve B, and let X be S with the left invariant Riemannian
metric derived from B. Then X 1is a connected Riemanwnian nilmanifold, I1(X)
18 the semidirect product S - K acting by (s, k): x—s8-k(x), S 18 the nilradical
(maximal connected normal nilpotent subgroup) of I,(X), S is a maximal con-
nected nilpotent subgroup of I,(X), and S is the only transitive connected nil-
potent subgroup of 1(X). Conversely, every connected Riemannian nilmanifold
18 180metric to one of the manifolds X described above.

Corollary. If X 18 a connected Riemannian nilmanifold and x e X, then
the Riemannian structure on X defines a unique structure of milpotent Lir
group in which z = 1.

Corollary. Let m: Y— X be a Riemannian covering where X 18 a Rik-
mannian nilmanifold, and let ye Y. Then Y ts a Rigmannian nmilmanifold.
Endow Y (resp. X) with its canonical nilpotent Lie group structure for which
y=1 (resp. m(y) = 1). Then = is an epimorphism of Lir groups, and the deck
transformations of m are left translations by the elements of the kernel of .

Corollary. Let I' be the group of deck transformations of a universal Rie-
Mannian covering X — Y where X 18 a Riemannian nilmanifold. Then these
are equivalent:

1. Y is a Rigmanwian nilmanifold.

2. Y 18 a Riemannian homogeneous manifold.
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3. I' consists of isometries of constant displacement.
4. I’ consists of isometries of bounded displacement.

Corollary. Let n: X — Z be a Riemannian covering where Z 18 compact and
X is a Riemanwian nilmanifold. Then = factors into Riemanmian coverings
x:X—>Y and B: Y—>Z where Y s a compact nilmanifold and f s of
finite multiplicity; Y is a Riemannian nilmanifold if and only if it is 1sometric
to a flat torus.

We complete § 4.2 by deriving the Corollaries from the Theorem; the Theo-
rem will be proved in § 4. 3, and we will then go on to the proof of Theorem 4.1.

The first Corollary is clear because § < I(X) is unique and acts simply
transitively on X in the Theorem. For the second, we give X its Lim structure
with #(y) =1, let § c I(X) denote the left translations, and lift the action
of S to Y after backing off to the universal covering group of S.

The third Corollary is a little more complicated. It is clear that (1) implies (2)
and that (3) implies (4), and it is known [12] that (2) implies (3); thus we need
only prove that (4) implies (1). Choose x ¢ X and give X the nilpotent Lik
group structure S in which x = 1. In the notation of the Theorem, we must
prove every element of I" to be central in §; then § induces a transitive nil-
potent group of isometries of Y, and (1) is proved.

Let g eI(X) be an isometry of bounded displacement, g = (s, k) with
seS and ke K in the notation of the Theorem. As K is compact, there is
a compact set C c I(X) with hgh'eC for every hel(X); h = (t1,1)
gives (t71-s-k(t),k) eC, and it follows that S has a compact set which
contains ¢t'-k(t) for every teS. The exponential map exp:S—8 is a
homeomorphism and £ is linear on & ; it follows that ¥ = 1 because the linear
isotropy representation of K is faithful. Now g = (s, 1). Every (tst™, 1) e C,
so the closure of the conjugacy class of s in § is compact. Let 7' be the centralizer
of s in 8; now S/T is compact. Let P ¢S with exp(P) = ¢, and suppose
Q € S; itis easily seen that [P,Q] = 0 if and only if s commutes with exp(Q);
thus 7' is connected. It follows that S/7' is homeomorphic to a EucLIDean space.
As S/T is compact, we must have § = T'; thus s is central in §. This com-
pletes the proof of the third Corollary.

For the fourth Corollary, let X' be the group of deck transformations of the
universal RIEMANNian covering u: W —Z and let 4 be the deck trans-
formations of »: W—> X. L.AUsLANDER has proved [1] that I'= 2~ Sw
has finite index in 2'; as 4 < X and we have just seen 4 < Sy (for 4 is
central in Sw), we have 4 — I'. Now define Y = W/I', and the existence
of & and B is clear. If Y is a RIEMANNian nilmanifold, then Y = Sw/I' is a
group, and so Sw/I" is a torus. This proves the fourth Corollary.
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4.3. Proof of Theorem 4.2. Let W be a connected RiEmaNNian nilmani-
fold. There is a transitive nilpotent group of isometries of W ; its identity
component 7' is transitive. 7* will denote the closure of 7" in I(W); T* is nil-
potent and transitive. Write W as a coset space 7*/Z where Z is the isotropy
subgroup of 7* at we W. Z is compact because 7'* is closed in I(W); thus
Z is contained in a maximal compact subgroup Z* of 7*. Z* is connected
because T'* is connected, and a compact connected subgroup of a nilpotent
Lie group can be seen to lie in the center by looking at the universal covering
group and its exponential mapping; thus Z is central in 7*. 7™* acts effectively
on W; it follows that Z = {1} and 7'* is simply transitive. As 7' < T'*
and 7 is transitive, this proves that 7' is closed in I(W) and simply transitive
on W; it also proves that 7' is maximal among the connected nilpotent sub-
groups of I,(W).

Suppose that we can prove 7' to be contained in the nilradical N of I, (W).
Then 7= N, so T is normal in I(W). If H is the isotropy subgroup at
we W, then H~ T = {1} because T is simply transitive, so I(W) is a semi-
direct product 7' - H. The representation of H on the LIE algebra I is equi-
valent to the linear isotropy representation of H on the tangentspace W,
and is thus faithful; now H may be viewed as a group of automorphisms of 7'.
Identify 7' with W, viewing 7' as a L1 group with left invariant RIEMANNian
metric specified by some positive definite bilinear form 4 on ¥. Then H pre-
serves A, and must contain every automorphism of 7" which preserves 4 be-
cause it contains every isometry of W which fixes w. Writing (W) =T H,
now, the action on 7' is necessarily (¢, h):v—1¢-h(v). As the manifold X
of Theorem 4.2 is a RIEMANNian nilmanifold under the group 8 there, this will
prove Theorem 4.2.

We now need only prove 7' < N where N is the nilradical of I,(W). Let
w: W — W be the universal RIEMANNian covering; we can lift the action of
T on W to the action of a covering group 7" of T'on W', and 7" will be transitive
on W'. Let I'" be the group of deck transformations of the covering, let N’
be the nilradical of I,(W’), and let P be the normalizer of I'in I(W'). = induces
a homomorphism #* of P onto I(W) with kernel I', and 7' < P by construc-
tion. If 7" ¢ N’, then TV « P~ N’, and the latter lies in the nilradical
N”" of P. It is clear that n*(N") = N and =*(7") = T, it will follow that
T c N.

Now we assume W simply connected, and need only prove T' < N. Let
R be the radical (maximal connected normal solvable subgroup) of I,(W).
Then I,(W) = S:-R where S is a maximal connected semisimple subgroup.
Let B8:1,(W)—ad(S) be the composition of taking quotient by R with the
adjoint representation of S/S~ R. Every element g ¢ I(W) has unique and
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continuous decomposition g =th, {eT and he H = isotropy at w; thus
IL,(W)/T is compact; it follows that ad(S)/§(7) is compact. As B(T') is nil-
potent and ad(S) is a product of centerless simple LIk groups, ad(S) must
be compact. This proves that S is compact.

The identity component H, is an isotropy subgroup and a maximal compact
subgroup of I,(W); thus Hy= S-H' where H' = (H ~ R), is the identity
component of the center of H,,. Let §:1,(W)—I1,(W)/N=U. N ~ H is a compact
subgroup of N and is thus in a maximal compact subgroup of N ; this maximal
one is central in N, thus unique, and thus central in I,(W); it follows that
N~H={1} so U=8R where R' = R/N. R’ is abelian because [R, E]
is nilpotent and normal and thus in N ; it follows that R' = H' X V where V
is a vector group stable under §. Let M = g-1(V). M is a closed normal sub-
group of I (W) such that L,(W)/M is compact and I,(W) is semidirect product
M- H,. Thus dim. M = dim.I (W) — dim. H, = dim. T'. Let

o L(W) =L, (W)/M .

T M is closed in I,(W) because 7' and M are closed and M is normal. Thus
x(T) = (TM)JM = T/T ~ M is a torus. On the other hand, T~ M is con-
nected because it is an analytic subgroup of 7'. As T is connected, simply
connected and nilpotent, it follows that «(7) =7/T ~ M is homeomorphic
to a Evcripean space. Thus «(7') = {1}. This proves 7" ¢ M. As they are
connected groups of the same dimension, they must be equal. In particular,
T is normal in I;(W). This proves 7' ¢ N, completing the proof of Theorem
4.2. Q.E.D.

Remark. Theorem 4.2 shows that the notion of RiEmanwian nilmanifold
is but a mild generalization of the notion of RiEMANNian homogeneous mani-
fold of constant curvature zero. The essential part of the proof was exhibiting
of V above. This was essentially done by reducing to the case of constant zero
curvature.

Remark. One might define a RIEMANNian solvmanifold to be a RIEMANNian
manifold which admits a transitive solvable group of isometries, but the
IwasawA decomposition shows that this notion is not very restrictive. For
example, a RIEMANNian symmetric space with every sectional curvature < 0
is a RI1EMANNian solvmanifold.

4. 4. Rational EULER-POINCARE characteristic. All spaces are connected,
locally arcwise connected, locally simply connected, and with a basepoint
which will generally not be mentioned. Let C be the family of finite CW
complexes, & the family of spaces homotopy equivalent (respecting basepoints)
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to an element of ©, and C* the family of spaces which admit a finite covering
by an element of @. Given X ¢ @, we have the EULER-POINCARE charac-
teristic (of singular theory) y(X) = %x(Y) where X ~ Y ¢ C.

Proposition. If Z e C*, so Z admits a covering of some finite multiplicity
r>0 bysome XeC’, then y*(Z) = -—:.— 2(X) s a well defined rational number,

which we will call the rational Evrer-Poincart characteristic of Z. If Z, and
Zye O%, then y*(Z, X Zy) = y*(Z,)y*(Z,). If Z,eC* admits a t-fold
covering by a space Z,, then Z, < C* and y*(Z,) = ty*(Z,).

The main step in the proof is:

Lemma. Given a finite covering g: (U, u)— (X, z) and a homotopy equi-
valence h: (X, z)— (Y,y) of spaces with basepoint, let a:(V,v)—(Y,y) be
the covering with an,(V,v) = hgn, (U, u). Then there is a homotopy equivalence
b: (U, u)— (V,v) which covers h.

To prove the Lemma, one defines b by b(u) = v and by defining b to cover
h along any arc starting at « which is the lift of an arc starting at x; b is well
defined because of the condition on fundamental groups. Let &' : (Y, y) > (X, 2
be a homotopy inverse to 4, and let &':(V,v)— (U, %) be the map covering
k', defined from &' as b was defined from & ; it is easily seen that b’ is a homo-
topy inverse to b.

Proof of Proposition. To see that y*(Z) is well defined, choose zeZ and r,-fold
coverings f,: (X;, z;)—>(Z,z),X; e C'; we must prove %—x(Xl) = ri 1 (Xs) .
1 2

S; = fim(X,, z;) is a subgroup of finite index r; in =,(Z, z); thus § = §;~8,
is a subgroup of some finite index s,7, = 8,7, in x,(Z, 2z). This gives s,-fold
coverings g¢,:(U;, u;,)— (X,, z;) with f, 9,7 (U;,u;) =8. We have homo-
topy equivalences &, : (X;, z;)—> (Y;,y,) with Y,eC; ifa,: (V,,v,)>(Y,,y,) are
the s;-fold coverings with a7, (V;, v;) = h;9,7,(U;,u,), then it is obvious that
V,eC, and the Lemma gives homotopy equivalences b,: (U;, %;) > (V,,v;) .
Thus U,e® and x(U,) =s;2(X,). Now f,9,:(U,;, u;)—> (Z,z) are co-
verings with f,g,7,(U,, ;) = 8; thus U, is homeomorphic to U,; it follows
that s, x (X,) = 8, ¥ (X,) . Dividing by r,8, = 7,8,, we have ’”Lx x(X,) = % 2 (X,) ,
and x*(Z) is well defined. The other statements follow easily from the cor-
responding statements in &, but we must use the Lemma to prove Z,e C*
in the last statement. Q. E. D.

4. 5. Proof of Theorem 4.1. Let I' be the group of deck transformations
of the universal RiEMaNNian covering M = M, X M'—-> N of Theorem 4.1.
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M, is a connected simply connected RiEMANNian nilmanifold; the same state-
ment follows for each of its irreducible factors, so these irreducible factors are
homeomorphic to EucLipean spaces by Theorem 4.2. As M’ is compact, none
of its irreducible factors can be isometric to an irreducible factor of M. Thus
I(M) =1(M,) x I(M'). Theorem 4.2 shows that I(M,) is a semidirect pro-
duct 8:-K where S is a connected simply connected nilpotent LIt group
and K is compact. This allows us to view I(M) as a semidirect product §-C
where C = K X I(M') is compact. Proposition 3.4 now provides a torsionfree
subgroup 4 of finite index in I', an analytic subgroup §' < 8, and a toral
subgroup 7 c C which centralizes S’, such that 4 < 8 -7 and 8'/4' is
compact where 4’ is the projection of 4 on §'.
We now need

Lemma. Let D be a discrete subgroup of a connected simply connected nil-
potent Lie group U with U|D compact. Then D s torsionfree and has a
generating set {d,,...,d,} such that, given d e D, there is a unique set {v,}
of integers with d = djtd2...d,».

Proof of Lemma. D is torsionfree because U is torsionfree. Let r be the length
of the lower central series of U; let Z be the center of U. D ~ Z is the center
of D because an automorphism of U is trivial if and only if it is trivial on D.
As D is discrete, it follows that D Z is closed, so the imageof Z in U/D is closed,
whence Z/(D ~ Z) is compact. Let {d,,..., d,} generate the free abelian
group D ~ Z. By induction on r, we have a generating set {d,_ ,, ..., d,}
of the requisite sort for the group D/(D~ Z) in UJ/Z. Let d,.; be any
element of D mapping onto d ;. Q. E.D.

The Lemma shows that 4, being isomorphic to A’ under the projection of
S -T onto 8, satisfies the conditions on generators of the discrete group
of Theorem 3.5. The projection of 4 on C lies in the torus 7', and the action
of A is free and properly discontinuous on (8- C)/C because 4 is discrete and
torsionfree while C is compact. Thus M /4 is analytically homeomorphic to
M|A' by Theorem 3.5 .This provides the finite real analytic covering

N' = M/A' > M =N .

N' = (§/4') x M’, and 8/4’ is homeomorphic to E X (§'/4") where E
is homeomorphic to a EvcLipean space. Let N’ = §’/4’, and the decompo-
sition N = E X N" x M' is exhibited.
Let r be the multiplicity of the covering N'— N. If I' is infinite, then A’
1 1
is nontrivial and [6] ¥ (N") = 0. Thus y*(N) = —;x(N’) = ‘;Z(N”)X(M') = 0.

If I' is finite, then the projection of I" on I(M,) must have a stationary point
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because the maximal compact subgroups of I(#,) are isotropy subgroups;
thus I' projects isomorphically onto a subgroup 2 of I(M’) which acts freely
on M'. If ¢t is the common order of I"and X, then M'— M'/X is a covering

of multiplicity ¢. We have y(M'/Y) = —%«x(M ') because M’ is compact,

whence ¢ divides y(M'). Now y*(N)= —;— x (M) =~;— 2 (M) x (M) :% (M)

is an integer = 0.

We have proved that x*(N) is an integer =0 and that x*(N) #0
implies finiteness of x,; (N). If y*(N) £ 0 and M’ is RIEMANNian symmetric,
then x,(N) is a finite 2-group as in § 3.10. Similarly, the retraction of N
when M, is EucLipean is exhibited as in § 3. This completes the proof of
Theorem 4.1. Q.E.D.

b. Classification in the irreducible case

We will classify (up to global isometry) the complete connected locally
irreducible locally symmetric RiEMANNian manifolds of nonzero characteristic
and all curvatures = 0. This is the first step in implementing Theorems 3.1,
3.2 and 4.1.

b.1. The candidates for consideration are not numerous:

Theorem. Let S8 be a compact connected simply connected irreducible RIE-
mannian symmetric manifold with %(S) % 0, and suppose that S has a fized
point free isometry. Then S 18 a Grassmany manifold, SO (2n)/U(n) with
n>2, Sp(n)/U(n) with n>1, E;/4,, or E,/E;- T".

Remark. Here A, is a subgroup SU(8)/{4 I} in the compact simply
connected exceptional group E,, and FE;-T*' = (E; x TY)/{1, 2, 2%} where
T! is a circle group and z = (2', 2"), each component of order 3 and 2’ central
in Eg. Grassmany manifold means real, complex or quaternion GRASSMANN
manifold, and we use oriented subspaces for real GRASSMANN manifolds.

Proof. Let K be an isotropy subgroup of @ =1I(S). Both groups are com-
pact, and rank. K = rank. G@ because y(S) % 0. In particular, every element
of G, has a fixed point on S. Thus we need only examine the cases where
G # @,. According to CARTAN [4], these are, besides the ones mentioned in
the statement of the Theorem, only E¢/{SU(6) x SU(2)/discrete} and
E¢/{80(10) x S0(2)/discrete}. We will check that, for both of these spaces,
every isometry has a fixed point. Theorem 5.1 will then be proven.

5.2. Let M Dbe a symmetric space Eg/{SU(6) x SU(2)/discrete} or
E¢/{S0(10) x S0(2)/discrete}, andlet K be an isotropy subgroup of ¢ = I(H).
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Then K = K,vxK, and @G = G,v «G, where conjugation by « induces
outer automorphisms both on K, and G,. For conjugation by « is outer on K,
by construction of I(M) [4]. Now let n: Eq— G, be the projection; the kernel
D of = is the center of Eg, cyclic of order 3, and n—1(K,) is the centralizer of
an element s ¢ E; with s e D. As D has odd order, we may assume s> = 1.
It follows that K, is its own normalizer in G,. If conjugation by x were inner
on G, it would be inner on K, ; this it not the case.

Now let 4 and B be the centralizers of « in G, and K|, respectively. Checking
both cases, we see that both 4 and B have rank 4. It follows that B contains
a maximal torus 7" of 4.

Let ge (. If g ¢ Gy, then we know that g has a fixed point because rank. K=
=rank. . If g¢ @G,, then gexG,. Then, if ¥V is a maximal torus of 4,
hgh™ exV for some heG, ([9], Th.on p. 57). Let ¥V be the maximal torus
T above. Then V < K,, so hgh™ ex K. This shows that g has a fixed point,
proving Theorem 5.1. Q.E.D.

b. 3. Space forms of GRASSMANN manifolds. Theorem 5.1 tells us which
spaces should be studied in order to find the groups 4 of isometries acting
freely on a compact irreducible simply connected symmetric space § with
2 (8) # 0. Classification of these groups 4 up to conjugacy in I(S) is the same
as classification of the space forms §/4 of S up to isometry. In [13] we solved
the complicated case —the case where S is a GrRASSMANN manifold. For the
convenience of the reader, we will recall the results.

Let F be a field R (real), C (complex) or H (quaternion), and let F* denote
a left positive definite hermitian vectorspace of dimension n over F. If 0<g<n,
then the unitary group U(n,F) of F acts transitively on the set &, ,(F)
of g-dimensional subspaces (oriented if F = R) of F». We exclude G, ;(R)
and G, ,(R); then @, ,(F) has a unique (up to a scalar multiple) U(n, F)-
invariant RIEMANNian metric, and is always envisaged with that metric;
it is simply connected and RIEMANNian symmetric, and has topological
dimension ¢(n — q)r where r is the dimension of F over R. The characteristic
%x(G, ,(F)) % 0 except when F = R and ¢(n — ¢) is odd.

L(G, ,(F)) is the group of motions induced by U(n, F), (which is 80(n),
U(n) or Sp(n)). If ¢ =n — ¢, we have an isometry g given by orthogonal
complementation (and consistent with orientation if F = R). In any case,
we use f§ to assume g even if g(n — g)isevenand F = R. If F = C, we have
an isometry « induced by conjugation of C over R. If F = R, we have an
isometry w given by reversal of orientation. Let ¢,(0 < v =mn) be the iso-

metry induced by ({)""”_ IO) eU(n,F). If n = 2m, let k be the isometry
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induced by ( ? é’"
— tm

isometry induced by (

) eUn,F). If F=0C, let %,(0<v=<mn) be the
al 0

0 ) —al,
Z,, denote the cyclic group of order m. Now the space forms of GRASSMANN

manifolds of nonzero characteristic are classified ([13], Theorems 1, 2, 3) by:

) eU(n,C) where a =exp(xV — 1/n). Let

Theorem. Let A be a group of isometries acting freely on &, ,(F), where
q(n — q) 18 even (so we may apply f and assume q even)if F = R. If A # {1},
then A 1is conjugate in 1( G, ,(F)) to one of the groups:

F group isomorphic to conditions

H {1, Bg,} Z, 2 =n,0=5v<q
C {1, « k} Z, g and n—gq odd
C {1, B 920} Z, 29=mn,0=2v<q
C {1, Bhyy—1} Z, 2¢q=n, 1=520v—1<q
R {1, w} Z, none

R {1, 0k} Z, n even

R {1, BGsu} Z, 2q=n, 0=2v<q

R {1, B2y, @, © s} Zy, X Z, 2q=n, 0=2v<q
R {1, BGay—y, 0, ©BGap—1} Z, 29=n, 1=<20—1<q

Each of these groups acts freely on G, ,(F), and any two distinct ones are not
conjugate in 1(G, ,(F)).

5.4. The space forms of SO (4n)/U(2n) are given by:

Theorem. Let M be the Rigmannian symmetric manifold S0 (4n)/U(2n),

n>1, and let g, and k, el,(M) be the respective isomeiries induced by the
Ly, o, O . _

elements (0‘ 2 ”‘Iz) and diag. {(_} 8),..., (3 d; ¢~} of SO0(4n).
We have 1(M) = I,(M) v v - L, (M) where © 18 central, 12 =1 and v ¢ I,(M).
Let A be a nontrivial group of 1sometries acting freely on M . Then A is conjugate
in I(M) to one of the n groups {1,79,}, 0 < u<mn, orto {l,7k}. Con-
versely, these groups act freely on M and are mutually non-conjugate in I(M).

Proof. Let G =1(M). We have a point pe M at which the symmetry
is given by s = + diag. {(_3 3),..., (L] )}. Let K be the isotropy subgroup
of G at p. Then G, = 804n)/{+ 1}, K=U2n){£ 1}, G=0Gva-G,
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and K = K v «- K, where conjugation of G, by « is the same as conjugation
by a = 4 diag. {1, —1;...;1, —1}. Observe that a ¢ @Q,, define v = xa,
and note that the first statement is proved.

Let heG,. Then th has a fixed point on M if and only if uthu? =k
for some weG, and keK,. As wuthu!=tuhu?= xauhu?, this is
equivalent to auhu= = £k, i.e., to h being G,-conjugate to an element of
a K,. If primes denote representing matrices, we observe that a’ anticommutes
with 8’ and that U(2%) is the full centralizer of s’ in SO (4n). Thus 7/ has a
fixed point if and only if some SO (4n)-conjugate of A" anticommutes with s'.

Suppose further that A% = 1. Then A’ has square -+ I. Suppose first that
h'? = I; then A’ is conjugate to some g,, and we may assume » < n because
k' may be replaced by its negative. It 7h has a fixed point, then s’ must ex-
change the eigenspaces of 41 and of —1 for some conjugate of A’, and it
follows that v = 2%. On the other hand, if » = 2%, then A’ is conjugate
to @' and it follows that th has a fixed point.

Now suppose h'2 = — I. Thus &’ is S0 (4n)-conjugate to k| or to s’. Ob-
serve that k] and s’ are not conjugate in SO (4%), even though they are con-
jugate in O (4n). If 7h has a fixed point, then we may conjugate and assume
that A’ anticommutes with s'. Now s’ and A’ generate a quaternion algebra,
and it is easily seen that they are SO (47n)-conjugate. On the other hand, if A’
is conjugate to s, then we may assume that they generate a quaternion
algebra; this done, they anticommute and A has a fixed point. Thus 74 is
fixed point free if and only if A’ is SO (4n)-conjugate to k;.

A4 has at most one element in each component of I(M). As A4 5 {1}, it
follows that 4 = {1,th} where (vh)? =7hth=1*h*=h*=1, heG,. The
Theorem now follows. Q. E. D.

5. b. The space forms of SO (47 + 2)/U(2n + 1) are given by:
Theorem. Let M be the Rigmannian symmetric manifold
SO(4n + 2)/U2n + 1), n=1.
Then I(M)=0(4n + 2)/{F+ I} and we have isometries h,= 4+ (g"*z"’_ Z)
of M. Every nontrivial group of isometries acting freely on M 18 conjugate in

I(M) to one of the n groups {1, hy, 1}, 0 =< u < n. Conversely, these groups act
freely on M and are mutually non-conjugate tn I1(M).

Proof. M has a point p at which the symmetry is given by
8§ =+ dla’g {(-—-(1) (1))5 ) (—(1) (1))},
let K be the isotropy subgroup of @ = I(M) at p. Then G, = 80 (2m)/{4- 1}
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and K, = U(m)/{+ I} where we define m =2n + 1. G =Gy va-G, and
K = K, v« - K, where conjugation of G, by « is the same as conjugation by
a = 4 diag.{1, — 1; ... ; 1, — 1}. As this conjugation is an outer auto-
morphism of G, (because m is odd) we may identify « with @, viewing @ as
02m)/{+ 1} and K as {U(m)va-U@m)}/{+ I}. This proves the first
statement.

Given g eI(M), ¢’ will denote one of the two matrices in O(2m) repre-
senting g. If %, (v odd) has a fixed point on M, then &, is conjugate in
0(2m) to an element h, = a’k’ for some k' e U(m), whence s'h,s'1=—h.
This shows that 8’ exchanges the eigenspaces of + 1 and of — 1 for &, proving
that v = m. It follows that the groups {1, A,,.;} (0 =< u <mn) act freely on
M. As they are obviously mutually nonconjugate, the converse of the second
statement is proven.

Let 4 be a nontrivial group of isometries acting freely on M. As every
element of G, has a fixed point, 4 = {1,g} with det.g' = — 1. g2 =1
implies ¢'2 = 4- I, whence g’ = 4+ I because det.¢g’ = — 1, so ¢ is con-
jugate to some %, (v odd). We may take v < m because %, is conjugate to
hsm—»n, and then v < m because g is not conjugate to a. The second statement
follows. Q. E.D.

b. 6. The space forms of Sp(n)/U(n) are given by:
Theorem. Let M bethe Riemannian symmetric manifold Sp(n)/U(n),n > 1,

let Sp(n) be viewed as the group of all g e U (2n) suchthat gJig=J = (__3 g") ’

and let g, el (M) be the isometry induced by diag.{l,_,, — I,,1,_,, —I,}eSp(n).
We have 1(M) =L,(M) vv-I,(M) where v is central, 1> =1 and 7 ¢ 1,(M).
Let A be a nontrivial group of isometries acting freely on M. Then A is conjugate

wn I(M) to one of the [n 2

groups act freely on M and are mutually non-conjugate 1n I(M).

Proof. Let G =1I(M). Then Gy, =Sp(n)/{+ I} and
V-11, O
8§ = :t'_‘ <0 1 ) € Go

= ] groups {1,79,}, 0=Sv< % . Conversely, these

— V1,

is the symmetry at some pe M. Let K be the isotropy subgroup of G at p.

Then K, = U(n)/{£I} where U(n) consists of all (g ?b—l) for which b is

an » X n» unitary matrix, K= Kjvoa-K, and G = Gyva-G,, where
conjugation of G, by « is the same as conjugation by + J. As 4+ J eG,, the
first statement is proved by setting v =« - (+ J).



On locally symmetric spaces of non-negative curvature 289

Let he@Gy. Asin §5.4, vh has a fixed point on M if and only if h is G-
conjugate to an element of (4 J)- K,. Suppose that A* = 1, and let primes
denote representing matrices. If A2 = — I, then &' is Sp(n)-conjugate to J,
whence 7h has a fixed point. Now suppose %'2= 1. Then h is conjugate

to some g,. If g, is conjugate to Jk', k' = (b 0 ), then I = (Jk')2 =

O tb—-l
__tp—1. — h-1
:( b-b 0 ) shows ' = — b, whence Jk’=(_£ I()) ) This

0 _p.tpr
last is conjugate by (é"_ 2_1) eU(2n) to (g g) ; it follows that v = —7211 by

counting eigenvalues. On the other hand, if v = % , then it is not difficult to

see, using the WEYL group, that % is Gy-conjugate to (4 J)-k for every

ke K, such that &' — (g ?b_l) and % — —b.

The Theorem now follows. Q. K. D.

5. 7. The space forms of £,/(4A, or Eg-7") can be described, as in §§ 5.4
—5.6, in terms of the elements of square 1 in the group ad(E,) = E,/C where
C is the center of E,. These elements are known:

Lemma (E.Cartax [3]). The group ad(E,) has elemenis 1 = 887> Saps
Spy X i and 8p. X 4 of square 1 where the centralizer of sg tn ad(E,) is of
C4rran classification type H ; these four elements are mutually non-conjugate in
ad (E;) and any element of square 1 in ad(E;) s conjugate to one of them.

Complement to Lemma. Let xn:E,—ad(E;) be the projection and let
sg ew(sg). Recall that C = Ker.mw = {1 2z} cyclic order two. Then (3,'\;}7)2 =
= (8pg X 4t =1 and (s},)* = (8g, X 71 = 2.

Proof. The Lemma is CARTAN’s classification of RiEMANNian symmetric
spaces M with Ij(M) = ad (E;).

Let Z be the identify component of the centralizer of sy in ad(E,), observe
that Z' = n'(Z) is connected because Z contains a maximal torus; let S
and S’ be the respective centers of Z and Z’, and note that »: 8> 8 is
2—to—1 sending 2z to 1 and sy to sj.

If H= E, then §' has order two, so (sg)2 = 1.

If H= Dy X A,, then the universal covering group of Z' is Spin(12) X
X SU(2). That group has center isomorphic to Z, X Z; X Z;, and 8 is a
quotient of its center. Thus (8g)? =

In the other cases, we look at the linear isotropy representation on the
RremanNian symmetric space ad(E;)/Z. As this space is irreducible, it follows

19 CMH vol. 87
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that § = {1, sz} if H = A, and Sis a circle group if H = E¢ X T". Looking
at w: 8 — 8§, it is easily seen that (.9:17)2 = 2.

Let H= E¢ X T* and let Z”" be the group E; X T'. Z" has center S”
isomorphic to Z, X T'; we represent the elements of §” by pairs (u*, v)
where « generates the center of Eg and v is a unimodular complex number.

We have coverings Z”—iZ’-lZ, and S = #f(8") is a circle group. Thus
Ker. (zf) = L, X L, where L, is a finite cyclic subgroup of 7" and L, is
cyclic order 3 with a generator (v, w) where w® = 1. Now Ker. = L, X L,
where L, has index 2 in L, ; thus we may choose § such that Ker. § = L, and
L, is generated by (1, — 1). It follows that z = f((1, — 1)) and sz = =f
((1,V —1)). Thisshows sz tobe S((1, -V — 1)), whence (sz)?==z2. Q.E.D.

We can now enumerate the space forms of E,/4, and of E,/Es- T":

Theorem. Let M be one of the Rigmannian symmetric manifolds E,/4, or
E,/Eg-T'. We have 1(M) = L,(M) vt -1,(M) where T 18 central, 12 =1 and
t¢ I,(M). Let A be a nontrivial group of isometries acting freely on M. Then
esther A = {1,7} or A 1is conjugate in I(M) to {1,vsp,, 4,}. These two
groups act freely on M and are not conjugate in I(M).

Proof. The first statement is known [4], = being central because E, admits
no outer automorphism. Let K be an isotropy subgroup of ¢ =I1(M). Then
G,=ad(E;), K=K,va-K, and ¢ = G,v«-G, where > =1 and con-
jugation by « is the same as conjugation by a €G,; 7 = xa. Altering a by
an element of K, if necessary, we may assume that a is conjugate to s, .

As before, let C = {1,z} be the kernel of the projection =:E,— ad(E,)
and let primes denote representing elements in E,. Let 4 be the centralizer
ofa’ in E;; A =~ SU(8)/{+ I} as seen in the proof of the complement to the

Lemma, z is represented by + V' — 11, and o' is represented by
+ exp(2nlV — 1/8) - I;.
Let he@,, h'* =z. Replacing 2 by a conjugate, h' ¢ A and b’ is repre-

exp(2zV — 1/8)1, 0 .
sented by + ( 0 exp (27 — 5/8)[,,) where p + ¢ = 8.
That matrix must have determinant -+ 1; it follows that p and ¢ are even,
p = 24 and ¢ = 2v. Again replacing 4 by a conjugate, b’ € A is represented
by Sdiag. {el,, &1, ,¢el,, 51,} where ¢ =exp(2nV — 1/8).

Let s be the symmetry to M at the point at which K is isotropy subgroup of
G. Although s commutes with a because it commutes with «, s’ cannot com-
mute with a’ because conjugation by a induces an outer automorphism of
K,. Thus the commutator [s',a’] = 2. It follows that s’ normalizes A and
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that conjugation of 4 by s’ is an involutive outer automorphism. Thus we
may assume [3] s'gs'~! =gl =g for every ge A, or that s'gs’1= JgJ!
(J = (_ 34 g")) for every ge A. It follows that s'h’s'~! = h'z. Now let
B =h"a'. As 8'a’s'"1=a'z,h" must commute with s'. Thisimplies 7 (h") € K,
because z~1(K;) is connected and is the centralizer of ¢’ in E,.

We have now proved, given he@, with A2 =2z, that uhu! = ak for some
ke Ky ue@,. Thisgives auhul=1%Fk, i.e, xauhu'=ak,i.e., ruhulexK,,
i.e., Th conjugate to an element of x K,,. Thus 72 has a fixed point on M .

Now let heGy, h'2=1. We will see that 74 has no fixed point on M.
For if it had a fixed point, we would have uthu = ak with %G, and
ke K,. Then h would be conjugate to ak eaK,. Replacing » by that con-
jugate, ' = a'k’ with k' in the centralizer K' = z~1(K,) of s’ in E,. Now
B = A ~ K’ is both the centralizer of s’ in A and the centralizer of a’ in K'.
Every element of a’ K’ is conjugate to an element of a’ B. For K, v a K, is the
centralizer of s in ad(E,); if 7" is a maximal torus of the centralizer of a inK,,
then a result of DESIEBENTHAL ([9], Th. on p. 57) shows that every element of
a K, is K,-conjugate to an element of a7'; thus every element of a’ K’ is con-
jugate to an element of a’' -z~ (T') < o'’ B. Now we conjugate b and assume
h' = a'k'’ where k' commutes with both ¢’ and a'. Thus we have k' € A4.
Let double primes denote elements of SU(8) representing elements of
A=SU@8)/{+1}. " =a"k" is conjugate (by s") to A"2"; thus — I =Ah"2,
and it is conjugate in SU(8) to (A"2")2 = h"22"2 = (— I) (— I) = 1. This
being impossible, T/ cannot have a fixed point.

Our group 4 = {1, 7h} where 1 = (vh)? = 72h% = h*. Thus, by the Lemma,
h is conjugate to 1, 85, 4, 84, OF 8g,, pt. But A2 =1, as we have just
seen, because 7h has no fixed point; the Complement to the Lemma now
shows h conjugate to 1 or s, , 4 . On the other hand, the Complement

and the preceding paragraph show that {1,t} and {1, 78, , 4} act freely
on M.

b. 8. Combining Theorems 5.1, 5.3, 5.4, 5.5, 5.6 and 5.7, one has a global
classification for the space forms of compact connected simply connected irre-
ducible R1EMANNian symmetric manifolds of nonzero characteristic.

6. Reducibility and commutativity

6.1. Order. Let N be an irreducible compact connected simply connected
RiEmMaNNian symmetric manifold of nonzero characteristic. We have just seen
that a group of isometries acting freely on N must be of order 1, 2 or 4. We
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now define the order of N, written order. N, to be the maximal of the orders
of the groups of isometries acting freely on N. This concept is useful for:

6. 2. Commutativity Theorem. Let M’ be a compact connected simply con-
nected Riemannian symmetric manifold of nonzero characteristic. Then these are
equivalent :

1. A group of isometries acting freely on M' 1is necessarily abelian.

2. Any group of isomeiries acting freely on M' 18 a direct product of some
number m = 0 of groups Z,, or is cyclic of order 4.

3. If one of the irreducible factors of M' has order 4, then all the others have
order 1. If M' has two isometric irreducible factors of order 2, then all the others
have order 1.

Complement to the Commutativity Theorem. Let N be an irreducible com-
pact connected RiEManNian symmetric manifold of nonzero characteristic.

1. These are equivalent:

(a) N has order 2.

(b) Z, acts freely by isometries on N, but Z, does not.

(c) Z, acts freely by isomeiries on N, but Z, X Z, does not.

(d) N s isometric to G, ,(R) where n 5% 2q and q(n — q) s even, or to
G, (C) where either 2q =n or q(n — q) isodd, orto G,4,(H), orto SO(2n)/U(n)
where n > 2, or to Sp(n)/U(n) where n=1, or to E,/A;, or to E;/Eq- T".

2. These are equivalent:

(a) N has order 4.

(b) Z, acts freely by isometries on N .

(¢) Zy X Zy acts freely by isometries on N .

(d) N 18 isometric to Gy, 4,(R) where n> 1.

Here Z,, denotes the cyclic group of order m.

The Complement follows trivially from the results of § 5. The remainder
of § 6 is devoted to the proof of the Commutativity Theorem. As (2) obviously
implies (1) there, we need only prove that (3) implies (2) and that (1) implies (3).

6. 3. The proof that (3) implies (2) is based on Theorem 3.2 and on

Lemma. Let A be a nontrivial group of isometries acting freely on N X N
where N s a complete connected simply connected irreducible Riemannian sym-
metric manifold of nonzero characteristic and order 2. Then A is isomorphic to
Z,, 7, X 7, or Z,.

Proof. A4~ {I(N) X I(N)} has order <4 and has index <2 in 4, by
Theorem 3.2; it suffices to prove that 4 is not a nonabelian group of order 8.

Suppose 4 nonabelian of order 8. Then A4 is generated by an element y of
order 4 and an element § of order 2 or 4, where dyd— = y~1. By Theorem 3.2,
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we may assume y to be given by (x,y)— (ty, ) where 7 is a fixed point free
isometry of order 2on N. If 62 =1, then d(x,y) = (4,2, d,y) where §, is
an isometry of square 1 on N. Then dyd = ! implies §, = vd,; it follows
that yd(x,y) = (,y, 6,2); thus (z,d,x) is a fixed point for y4. This
proves & #* 1.

Now § must have order 4, and is thus given by (z, y)— (6,9, d,2) where
6, are isometries of N. Thus ¢ = dy is given by (z,y)— (0,2, 6,5¥) Where
o, are isometries of N. By Theorem 3.2 we have 02 = 1. But ¢® #% 1 because
4 is the quaternion group. The Lemma follows. Q.E.D.

We will prove that (3) implies (2) in Theorem 6.2. Assume (3) and let I"
be a group of isometries acting freely on M'. If yel’, then 9* =1 by
Theorem 3.2. If I" has no element of order 4, it must be a product of groups
Z,, and we are done. Now suppose that I" has an element of order 4. By our
assumption (3) and by Theorem 3.2, there is a R1iEMaANNian product decom-
position M’ = § X X where X is a product of irreducible manifolds of order 1
and either § is irreducible with order. S =4 or 8 =8, X 8,, 8§, isometric
to S;, with order. 8, = 2. Let 4 be the restriction of I" to 8. The restriction
I' > A is an isomorphism; thus it suffices to prove 4 isomorphic to Z,.

Observe that 4 acts freely on §. If § is irreducible of order 4, then 4 =~ Z,
by the Complement, by Theorem 5.3, and because it contains an element of
order 4. If 8 is reducible, then 4 ~ Z, by the Lemma above.

6.4. To prove that (1) implies (3) it suffices to exhibit a noncommutative
group of isometries acting freely on a direct factor of M’, in case the conditions
of (3) do not hold. For this noncommutative group will then act freely by
isometries on M’'. Thus we need only take compact connected simply con-
nected irreducible RIEMANNian symmetric manifolds N and L, order. L > 1,
and prove:

If order. N = 4, then there is a noncommutative group of isometries acting
freely on N X L. If order. N = 2, then there 18 a noncommutative group of
1sometries acting freely on N X N X L.

We will construct examples of such groups which are dihedral groups of
order 8.

Suppose that N has order 4. Then N = @y, 4,(R), » = 2, and (Theorem
5.3) Bga,—1 = v generates a cyclic group of order 4 of isometries acting freely
on N. Let y =9 X 1eI(N X L). Choose a fixed point free isometry = of
order 2 on L and define é = g,, ; X 7. Then y has order 4, § has order 2,
and 6yd = y~! because gy, ; g1 = wf. Now

I'={1,vy, 7% 9% 48, dy, 092, 67’3}
is the (dihedral) group generated by ¢ and . The powers of y act freely on the
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N-component, and the last four elements move every L-coordinate. Thus I
is a noncommutative group of isometries acting freely on N x L.

Suppose that N has order 2. Let » and 7 be involutive fixed point free iso-
metries of N and L, respectively. We define elements y and d of I(N X N X L)
by y(x,y,2) = (vy,x,2) and d(x,y,2) = (vx,y,t2). » has order 4 and
its powers act freely. J has order 2 and any &y* moves the L-coordinate.
d0yd = y~! is easily checked. Thus the group I" generated by y and é is a
noncommutative group acting freely by isometries on N X N X L.

Theorem 6.2 is now proven.

Remark. The other noncommutative group of order 8, the quaternion group,
can act freely by isometrieson N X N X N X N where N is as above with
order. N > 1.

6. 5. Corollary. Let M — N be the universal Riemannian covering of a
complete connected locally symmetric Riemannian manifold N with every
sectional curvature = 0 and characteristic y(N) #%= 0. Suppose, if one of the
compact trreducible factors of M has order 4, that all the others have order 1;
suppose, if M has a pair of isometric compact irreducible factors of order 2,
that all the others have order 1. Then the fundamental group =, (N) s a finite
direct product of groups Z,, or is cyclic of order 4.

This follows immediately from Theorems 3.2 and 6.2.

We can give a good description of the manifold N of the Corollary. One has

M=M,x M X... X M,

where M, is a EvcLipean space R™ and each M, (+ > 0) is compact and irre-
ducible with y(M;) >0. If =, (N) =~ Z,, there are two sorts of possibilities:
some M, has order 4 or two isometric M; have order 2. We permute the M,
and obtain M = M, X § X X where § is irreducible of order 4 or the pro-
duct of two isometric irreducible manifolds S; of order 2. N = M/I" where
I' is generated by an element y =y, X yg X vz, ¥o=1, Y5 =1, and yg
is given by: If § is irreducible, S8 = G,, 4,(R) with n = 2, then yg is conju-
gate to an isometry fBg,, , of §. In the other case, y¢ is conjugate to an iso-
metry (s;,8;) —> (t8;,8;) of §=8; X S, where 7 is a fixed point free invo-
lutive isometry of 8, = §,.

Suppose =, (N) #% Z,; then =,(N) is a product of some number %4 =0
of groups Z,, and N = M/I" for a group I’ isomorphic to x,(N) and given as
follows. I'" has generators {y;, ..., ¥:}. Suppose first that some M, (say S)
is of order 4, or that two isometric M, (say 8, and S,; let § =8, X ;) are
of order two. Then M = M, X § X X, where X is a product of irreducible
manifolds of order 1, k<2, and each y,=1y,0 X ¥;6 X ¥ix; Vi—>Vig
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is an isomorphism of I" onto a group 2’ of isometries acting freely on S and
each y, ¢ preserves each § if §; is a product, so the possibilites for 2’ are
given in § 5; the y, , commute and have square 1, as do the y, y. We now con-
sider the other possibility —the case where no M, has order 4 and no two M,
of order 2 are isometric. Re-ordering the M;, we may assume that M,, ..., M,
each has order 2 and is preserved by each y;, and that y; induces a fixed
point free involutive isometry of M,. Then M = M, x M; X ... X M XX,
Yi="Vio X oo X Vix X Vix> Vi~Vie €=0,1,...,k, X) is a homo-
morphism of I', and y, ; has no fixed point.
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