THE AFFINE GROUP OF A LIE GROUP

JOSEPH A. WOLF¹

1. If G is a Lie group, then the group $\operatorname{Aut}(G)$ of all continuous automorphisms of G has a natural Lie group structure. This gives the semidirect product $\mathbf{A}(G) = G \cdot \operatorname{Aut}(G)$ the structure of a Lie group. When G is a vector group \mathbf{R}^n , $\mathbf{A}(G)$ is the ordinary affine group $\mathbf{A}(n)$. Following L. Auslander [1] we will refer to $\mathbf{A}(G)$ as the affine group of G, and regard it as a transformation group on G by $(g, \alpha) : h \rightarrow g \cdot \alpha(h)$ where $g, h \in G$ and $\alpha \in \operatorname{Aut}(G)$; in the case of a vector group, this is the usual action on $\mathbf{A}(n)$ on \mathbf{R}^n .

If B is a compact subgroup of A(n), then it is well known that B has a fixed point on \mathbb{R}^n , i.e., that there is a point $x \in \mathbb{R}^n$ such that b(x) = x for every $b \in B$. For A(n) is contained in the general linear group $GL(n+1, \mathbb{R})$ in the usual fashion, and B (being compact) must be conjugate to a subgroup of the orthogonal group O(n+1). This conjugation can be done leaving fixed the (n+1, n+1)-place matrix entries, and is thus possible by an element of A(n). This done, the translation-parts of elements of B must be zero, proving the assertion.

L. Auslander [1] has extended this theorem to compact abelian subgroups of A(G) when G is connected, simply connected and nilpotent. We will give a further extension.

THEOREM. Let G be a connected Lie group and let S be the identity component of the radical of G. Then the following conditions are equivalent:

1. If B is a compact subgroup of the affine group A(G), then G has an element x such that b(x) = x for every $b \in B$.

2. Every compact subgroup of $\mathbf{A}(G)$ is conjugate to a subgroup of $\mathbf{Aut}(G)$.

3. G has no nontrivial compact subgroup.

4. G is homeomorphic to Euclidean space.

5. S is simply connected and G/S is a direct product of copies of the universal covering group of the real special linear group SL(2, R).

6. G is simply connected, and every simple analytic subgroup of G is a 3-dimensional noncompact group.

Equivalence of (3) and (4) is contained in the Cartan-Iwasawa theorem [3, Theorem 13]. Equivalence of (4) and (5) follows from

Received by the editors March 12, 1962.

¹ National Science Foundation Fellow.

Chevalley's theorem on the topology of solvable groups [2], the fact that the universal covering of $SL(2, \mathbf{R})$ is the only simple Lie group homeomorphic to Euclidean space, and the global Levi-Whitehead decomposition of G. It is not difficult to see that (5) is equivalent to (6) and it is clear that (1) is equivalent to (2). Finally, a nontrivial compact subgroup of G is a compact subgroup of $\mathbf{A}(G)$ which is not conjugate to a subgroup of $\mathbf{Aut}(G)$; thus (2) implies (3). The proof of the Theorem is now reduced to the proof that (3) implies (2).

2. Suppose that G has no nontrivial compact subgroup. Then G is simply connected, and it follows that $\operatorname{Aut}(G)$ has only finitely many connected components because $\operatorname{Aut}(G)$ is isomorphic to the group $\operatorname{Aut}(\mathfrak{G})$ of automorphisms of the Lie algebra \mathfrak{G} of G, and $\operatorname{Aut}(\mathfrak{G})$ is a real algebraic matrix group. Thus $\operatorname{A}(G)$ has only finitely many connected components. The Cartan-Iwasawa theorem [3, Theorem 13] is valid for Lie groups with only finitely many components; thus $\operatorname{A}(G)$ has maximal compact subgroups and, if K is one of them, every compact subgroup of $\operatorname{A}(G)$ is conjugate to a subgroup of K. The proof that (3) implies (2) is now reduced to the proof that $\operatorname{Aut}(G)$ contains a maximal compact subgroup of $\operatorname{A}(G)$.

Let $K \ \subset \operatorname{Aut}(G) \subset \operatorname{A}(G)$ be a maximal compact subgroup of $\operatorname{Aut}(G)$; we will prove that K is a maximal compact subgroup of $\operatorname{A}(G)$. Let K' be a maximal compact subgroup of $\operatorname{A}(G)$ with $K \subset K'$; we must prove K = K'. It is easily seen that K meets every component of $\operatorname{A}(G)$; it follows that we need only prove that K and K' have the same identity component. Again because $K \subset K'$, it suffices to show that dim $K = \dim K'$. Let $f: \operatorname{A}(G) \to \operatorname{Aut}(G)$ be the canonical homomorphism $(g, \alpha) \to \alpha$ with kernel G. $K \cap G$ and $K' \cap G$ are compact subgroups of G and thus are trivial by hypothesis. Furthermore K = f(K)= f(K') because K is a maximal compact subgroup of $\operatorname{Aut}(G)$, and because f(K) is contained in the compact subgroup f(K'). This gives dim $K = \dim f(K') = \dim K'$ which proves the Theorem.

3. It is worth remarking that the main part of the Theorem—the equivalence of (1), (2) and (3)—can be proved in the same way when G is assumed to have only finitely many connected components.

References

1. L. Auslander, A fixed point theorem for nilpotent Lie groups, Proc. Amer. Math. Soc. 9 (1958), 822-823.

2. C. Chevalley, On the topological structure of solvable groups, Ann. of Math. (2) 42 (1941), 668-675.

3. K. Iwasawa, On some types of topological groups, Ann. of Math. (2) 50 (1949), 507-558.

THE INSTITUTE FOR ADVANCED STUDY

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use