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DISCRETE GROUPS, SYMMETRIC SPACES, AND Gl,OBAL 
HOLONOMY.* 

By JOSEPH A. WOLF.' 

1. Introduction. Let M be a connected simply connected Riemannian 
manifold and let r be a properly discontinuous group of isometries such that 
M/r is compact. If every sectional curvature of M is negative, in particular if 
M is a noncompact irreducible symmetric space of rank 1, then a method of iR. 
Cartan shows that every abelian subgroup of r is either finite or the product of 
a finite group with an infinite cyclic group. If M is the Euclidean space Rn, 
then a calculation shows that every abelian subgroup of r is the product of 
a finite group with a free abelian group on ? n generators. These phenomena 
are unified by one of the conclusions of our Theorem 6. 2: If M is Riemannian 
symmetric and v is the maximum of the dimensions of those totally geodesic 
submanifolds of M which are isometric to Euclidean spaces, then every abelian 
subgroup of r is the product of a finite group with a free abelian group on 
< v generators, and r has a subgroup which is free abelian on v generators. 
We also prove that an abelian subgroup of r must preserve a flat connected 
totally geodesic submanifold of M; if M/r is a manifold, it follows that M/r 
contains a maximal connected flat totally geodesic submanifold which is closed, 
and every abelian subgroup of -r,(Mr/) can be represented by closed geodesic 
arcs lying in a connected flat totally geodesic submanifold (Corollary 6. 6). 
In addition, we analyze the group of components of the homogeneous holonomy 
group of a locally symmetric Riemannian manifold N (Theorem 7. 1), prove 
that N has compact homogeneous holonomy group if N is compact 2 (Corollary 
7.2), and give conditions for every manifold locally isometric to N to have 
compact homogeneous holonomy group (Corollary 7. 3). 

Our bounds are obtained by estimating the "size" of abelian subgroups 
of discrete uniform subgroups of Lie groups L =E X G where E is a semi- 
direct product of a compact group and a vector group, such as the Euclidean 
group, and G is a reductive Lie group with only finitely many components. 

* Received October 26, 1961; revised August 4, 1962. 
1 The author thanks the National Science Foundation for fellowship support during 

the preparation of this paper. 
2 If N is flat, this is just the classical Bieberbach Theorem [3]. This does not give 

a new proof of the Bieberbach Theorem because that result is used in our arguments. 
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The estimates are first made for reductive groups (Theorem 4. 2), and then 
extended by a generalization of Bieberbach's Theorem (Theorem 5. 1). 

Let r be a discrete uniform subgroup of a reductive Lie group G, where 
G has only finitely many components, and let A be an abelian subgroup of r. 
Our main idea is that the size of A can be estimated by finding a Cartan 
subgroup H of G which is normalized by A, and observing that A n H has 
finite index in A. In order to find H, we first prove that every element of r 
is a semisimple element of G (Theorem 3. 2), and then apply a result of 
A. Borel and G. D. Mostow (Corollary 3. 7). The main tool in our proof 
of Theorem 3. 2 is a geometric characterization of the semisimple elements of 
G (Lemma 3. 6). 

2. Preliminaries. 

2.1 Lie groups. Given a Lie group G, Go will denote the identity 
component, (M will denote the Lie algebra, and exp: S -> G will denote the 
exponential map. G and (M are called reductive if the adjoint representation 
of (M (or, equivalently, of Go) is fully reducible, i. e., if (M is the direct sum 
of an abelian ideal SC and a semisimple ideal WY; then SC is the center of (M, 
A = exp (C) is the identity component of the center of Go and is called the 
connected center of G,,, (' is the derived algebra of S and is called the semi- 
simple part of (M, G' exp (E') is called the semisimple part of G,, and there 
is a natural homomorphism (a, g) -> ag of A X G' onto Go. 

If S is reductive, then the Cartan subalgebras of (M are the subalgebras 
of the form SC 0 &', where 0 denotes direct sum of ideals and &' is a Cartan 
subalgebra of WY; thus the Cartan subalgebras of (M are abelian. By Cartan 
subgroup of a Lie group G, we mean a (necessarily connected) group of the 
form exp (.e) where & is a Cartan subalgebra of (S. 

Under the adjoint representation of a Lie group G, an element g C G 
induces an automorphism ad(g) of (M; we will call g semisimple if ad(g) is 
a fully reducible linear transformation of (M. If g is a semisimple element 
of a reductive Lie group G, and if Z is the centralizer of g in G, then not 
only is Z reductive but the adjoint representation of G induces a fully reducible 
representation of 8 on (S. 

If S and T are subsets of a group G, then the commutator [s, T] 
denotes the set of all elements [s, t] sts-'t-1 where s C S, t C T. 

If S and T are groups and q is a homomorphism of S into the group of 
automorphisms of T, then the semidirect product S pT is the set S X T 
with the group structure (s1,t,) (s2,t2) = (s1s2, (cp(s2-) (t,))t2). If S is 
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given as a group of automorphisms of T, then the semidirect product is 
denoted S. T. 

2. 2. Discrete groups. A subgroup r of a topological group G is discrete 
if G has an open set U such that r n u is just the identity element 1 E G. 
A subgroup H of G is uniform if the coset space G/I (I7 is the closure of 
H in G) is compact. 

Let r be a discrete uniform subgroup of G. C. L. Siegel [9] has shown 
that G is locally compact, and, if every covering of G by open sets has a 
countable refinement,3 then G has a compact subset F such that r- F= G, 
every g E G has a neighborhood contained in a finite union of the yF, 
rF = {y C r: yF meets F} is finite, and rF generates r if G is connected. 
It follows that P finitely generated if G/Go is finitely generated, but this is 
better seen directly [7]. F will be called a fundamental domain for the 
action of r on G by right translations. 

2. 3. Symmetric spaces. It is well known that a connected simply 
connected Riemannian symmetric space M is isometric to a product 
MOX X lX X . X Mt where MO is a Euclidean space and each M, (i > 0) 
is an irreducible Riemannian (non-Euclidean and not isometric to a product 
of lower dimensional Riemannian manifolds) symmetric space; Mo is the 
Euclidean part of M, ' =-1 X . . . X Mt is the non-Euclidean part of M3, 
and the MT (i > 0) are the irreducible factors of 3. We will say that M is 
strictly non-Euclidean if M M= M', i. e., if dim. MO = 0, and will say that M is 
strictly noncompact if every irreducible factor of M is noncompact. If M is 
strictly noncompact, then every sectional curvature on M is ? 0. 

Full groups of isometries are related by I(M) =I((MO) X I(M), and 
I (M') is generated by I (M1) X . . . X I (Mt) together with all permutations 
on mutually isometric sets of Mi. Connected groups of isometries are related 
by Io (M) = Io (Mo) X Io (Ml) X . . . X Io (Mt), and I (M)/Io (M) is finite. 
I (Mo3) is the Euclidean group E (dim. Mo ), I (MI) is a compact semisimple Lie 
group if M,, is compact, and Io (Mi) is a noncompact centerless real or complex 
simple Lie group if M, is noncompact (i > 0). 

Let S be a maximal connected flat (all sectional curvatures zero) totally 
geodesic submanifold of M. I(M) acts transitively on the set of all such 
submanifolds, and the rank of M (denoted rank. M) is defined to be their 
common dimension. S is isometric to a product MO X S, X . * X St where 
Si is a maximal connected flat totally geodesic submanifold of Mi, whence it 

3 Siegel requires that G have a countable basis for open sets, but uses only this 
weaker property. 
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is easily seen that S is a closed submanifold of M. The symmetry to MI at a 
point of Si induces a symmetry of Si; it follows that each Si (and thus S) 
is a connected Riemannian symmetric manifold of constant curvature zero. 
Thus Si is a flat torus if Mi is compact and Si is a Euclidean space if Mi 
(i> 0) is noncompact; to see this, we use [10, Theoreme 4] or [11, ? 14] 
together with the fact that Si is the orbit of some Cartan subgroup of maximal 
vector rank in I (Mj). If MC is the product of the compact irreducible factors 
of M and MN is the product of MO with the noncompact irreducible factors of 
M, it follows that S is isometric to the product of a flat torus of dimension 
rank.Mc with a Euclidean space of dimension rank.MN. For this reason, 
we define the vector rank of M (denoted v-rank. M) to be rank. MN. Observe 
that v-rank. M - dim. MO + v-rank. M'. 

Let r be a subgroup of I (M). The action of r on M is properly dis- 
continuous if every element of M has a neighborhood which meets its trans- 
forms by only a finite number of elements of r; this is equivalent to r being 
a discrete subgroup of I (M). The action of r on M is free if 1 #& y C r and 
x C M implies y(x) # x. M -- M/r is a covering space if and only if r acts 
freely and properly discontinuously on M. If M is strictly noncompact, then 
the isotropy subgroups of I (M) are the maximal compact subgroups, and, 
if r acts properly discontinuously on M, it follows that r acts freely if and 
only if every element 7 I1 of r has infinite order. If r acts properly discon- 
tinuously on M, then M/r is a llausdorff topological space (although it need 
not be a manifold), and il/r is compact if and only if r is a uniform sub- 
group of I(M). 

2.4. Holonomy groups. The homogeneous holonomy group H (M, x) 
of a Riemannian manifold M at a point x C M is the group of linear trans- 
formations of the tangentspace Ma, obtained by parallel translation of tangent- 
vectors along sectionally smooth closed arcs based at x. The Riemannian 
metric gives M$, a positive definite inner product; H (M, x) is a subgroup of 
the corresponding orthogonal group and carries the induced topology. The 
restricted homogeneous holonomy group is the identity component H0 (M, x), 
consists of those elements of H (M, x) obtained from nullhomotopic closed 
arcs, and is a closed subgroup of the orthogonal group of Mx; in particular, 
Ho (M, x) is compact, and now H(M, x) is compact if and only if it has only 
finitely many components. Thus we have a natural homomorphism of the 
fundamental group 7ri (M, x) onto the quotient H (M, x) /H0 (M, x). If M is 
connected, then we speak of H (M) and H, (M) in the same sense as 7r1 (I). 

Suppose that M is a connected simply connected Riemannian symmetric 
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space, and M- M X M1 X * X Mt is the decomposition into Euclidean 
and irreducible non-Euclidean parts. Then H (Me) = 1 and H (Mi, x) is the 
group of linear transformations of (Mi) induced by the isotropy subgroup 
of I,(Mj) at x. 

If M1 and N are Riemannian manifolds, x C M and y C N, then 

H(M X N, (x, y)) ==H(M, x) X H(N, y). 

3. Semisimplicity of discrete uniform subgroups. 

3. 1. If a Cartan subgroup of a semisimple Lie group G is normalized 
by an element g C G, then it is known [5, Proposition 7. 7] that g is a semi- 
simple element of G. In order to make the estimates described in ? 1, then, 
we need: 

3.2. THEOREM.4 If r is a discrete uniform subgroup of a reductive 
Lie group G such that G/GO has no element of infinite order, then every 
element of r is a semisimple element of G. 

The essential part of the reduction to the semisimple case is given by: 

3. 3. LEMMIA. Let r be a discrete uniform subgroup of a connected 
reductive Lie group G, let A be the connected center of G, let G' be the semi- 
simple part of G, and let r'={g'E G': g'=- ay for some aC A, yC r}. 
Then r' is a discrete uniform subgroup of G' and r n A is a discrete uniform 
subgroup of A. 

Proof. It is sufficient to consider the case where Uo has no compact 
factor, for replacing G' by G'/K, where K is the maximal compact normal 
subgroup of G', affects neither hypotheses nor conclusions of the Lemma. 
Similarly, we may assume G- A X G'. 

Let {yi'} -> 1 be a sequence in r'; this gives us a sequence {yi} in r 
with yi = aryi', at C A. A being central in G, { [ym,y] } = { [y/, y] } -> 1 for 
every -y C r; thus yi commnutes with y for large i because r is discrete. r being 
finitely generated, it follows that yi is central in r for large i. Now let 
7r: G-> G' be the projection; r'= w7r(r). Being uniform in G, r has the 
Selberg density property (S) in G ([8, Lemma 1] or [4, Lemma 1. 4]); thus 
r' has the property (S) in G' [4, ? 1. 2]; it follows that the centralizer of r' 
in G' is just the center df G' [4, Corollary 4. 4], whence yl' is central in G' 

4As the proof will show, the essential case is that of a semisimple linear group, 
for which the result is known; see Borel and Harish-Chandra, "Arithmetic subgroups 
of algebraic groups," Annals of Mathematics, vol. 75 (1962), pp. 485-535, esp. ? 11. 2. 



532 JOSEPH A. WOLF. 

for large i. As G' has discrete center, this contradicts {y1'} > 1. Thus F' is 
a discrete subgroup of W'. 

Let F be a compact fundamental domain for the action of r on G by 
right translations. r' is a uniform subgroup of G' because r(F) is compact 
and G'== r' r(F). 

Our proof that r n A be uniform in A is a modification of an argument 
of A. Weil.5 Let a C A and retain the notation above. Then a = yf for 
some f C F and some y C r such that 7r(y) C 7r(F)-1 nf r(r). vr(F )t' is compact 
and 7r(r) was just seen discrete; this gives {y<, * *,yt} C r such that the 
7r(yi) exhaust 7r(F)1 l n7r(r); it follows that y =87yi for some i and some 

t t 
a CFr nA. In other words, a C (r n A). U yF for every a C A. As U yF is 

_=1 j=1 

compact, it follows that A/ (r n A) is compact. q. e. d. 
The semisimple case is reduced to the linear semisimple case by means of: 

3.4. LEM1A. Let r be a discrete uniform subgroup of a connected 
semisimple Lie group G, let Z be the center of G, and let 7,: G- G/Z be the 
projection. Then 7r(r) is a discrete uniform subgroup of G/Z and r has 
finite index in r F Z. 

Proof. It suffices to show r -Z discrete in G, and for this we may 
assume that G has no compact factor. Let {yizi} -e 1 be a sequence in r z 
with y CE r and z EC Z. Given y C r, { [y y] } { [iz, y] } ->1; thus yi is 
central in r for large i because r is discrete and finitely generated. As in 
the previous lemma, it follows that y* C Z for large i, whence yizi C Z for i 
large. Z being discrete, this contradicts {yiz} -> 1. q. e. d. 

3. 5. Proof of Theorem 3. 2. rn Go is a discrete uniform subgroup of 
Go, Go satisfies the hypotheses of the Theorem, every element of r has a finite 
power in r n Go, and ym cannot be semisimple unless y is semisimple. Thus 
we may assume G connected. Semisimplicity of y depending only on the 
automorphism ad(y) of S, Lemmas 3.3 and 3.4 now allow us to assume 
that G is a centerless semisimple Lie group. Finally, every automorphism 
of a compact simple Lie algebra being semisimple (because it preserves the 
Killing form, which is negative definite), we may factor G by its maximal 
compact normal subgroup and assume that G has no compact factor. In 
summary, we need only consider the case where G is a product of noncompact 
centerless connected simple Lie groups. 

5 See his paper "; Discrete subgroups of Lie groups II," Annals of Mathematios, vol. 
75. Observer that the argument proves: If A is a discrete uniform subgroup of a con- 
nected group S and P is a closed normal subgroup of S, then A n T is uniform in P if 
and only if the image of A in SI/ is discrete. 
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Let K be a maximal compact subgroup of G and let 3 be the Riemannian 
symmetric space G/K; G is the identity component of the full group of 
isometries of M, whence r is represented faithfully on 31 by isometries; the 
action of r on M is properly discontinuous because r is discrete in G. The 
adjoint representation of G represents r faithfully as a definitely generated 
real matrix group, so r has a subgroup of finite index with no element # 1 
of finite order [8, Lemma 8]. We cut r down to this subgroup, and may 
thus assume that no element 7 1 of r has a fixed point on M, so M-> l/r 
is a covering of Riemannian manifolds which is a local isometry (a Rieman- 
nian covering). M/r is compact because G/r is compact. M being a complete 
connected simply connected Riemannian manifold with every sectional curva- 
ture ? 0, it follows [6] that every y C r preserves some geodesic on 31. 
Theorem 3.2 follows from: 

3. 6. LEMMA. Let 31 be a strictly non-Euclidean Riemannian symmetric 
space, let G =I (M), the full group of isometries of M, and let g C G. Then 
g is a semisimple element of G if and only if some power gin, m 70 O, preserves 
a geodesic on M. If g preserves a geodesic or through x C M and has no fixed 
point on r, then g =7ep = pk where kC U, ck (x) = x, and p is a transvection 
along 

Proof. Let g be semisimple. Then g normalizes a Cartan subalgebra 
E of 05 [5, Theorem 7.6]. Choose m1n> such that gmi E CH=exp(S4) ; this 
is possible because G is semisimple and G/GO is finite. There is an element 
xC 3M and a Cartan decomposition S == A +-$ where &? is the Lie algebra 
of the isotropy subgroup K of G at x, such that q = (.~ n f) + (& n $) 
This holds for compact Go by conjugacy of maximal tori and because an 
involutive automorphism must conserve a maximal torus; it is known for 
noncompact linear simple Go ([12], p. 107); it now follows in our case. 
Now gm= lkp with kEHnK and p=exp(X) for some XE1n$; thus 
gin preserves the geodesic a = {exp (tX)x} on M. 

Let gm preservTe a geodesic a- on M; we wish to show g semisimple, and 
it suffices to show gm semisimple. Thus we may assume g to preserve (r. 
As g2 preserves cr, we now replace g by g2 if g has a fixed point on a-. a being 
a totally geodesic submanifold of M, g induces an isometry of of onto itself, 
and the possible replacement of g by g2 shows that g: ot - Ut+a for some real 
number a, where t is arc length. Let x C c, say x = o7, and take the Cartan 
decomposition (S = R +$ at x; this gives X C $ with at = exp (tX) x. 
k = exp (- aX) g C K, and Ic commutes with X because it preserves every at, 
whence k commutes with p = exp (aX). Now g =k lp = plc, Ik is semisimple 
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because it lies in a compact group K, p is a transvection along a, and p is 
semisimple because it is represented on (M by a positive definite matrix. Being 
the product of two commuting semisimple elements, g is semisimple. q. e. d. 

3. 7. COROLLARY. If r is a discrete uniform subgroup of a reductive Lie 
group G such that G/Go has no element of infinite order, and if A is an abelian 
subgroup of r, then A normalizes a Cartan subgroup of G. 

Proof. Theorem 3. 2 says that ad (A) is an abelian group of semisimple 
automorphisms of (; thus ad (A) is diagonable on ( over the complex 
numbers, and it follows that ad (A) has a finitely generated subgroup D such 
that every D-invariant subspace of ( is ad(A)-invariant. Finitely generated 
and abelian, D is of type (MP) * (see [5, p. 404]); thus D leaves invariant 
a Cartan subalgebra ) of ( [5, Theorem 7. 6]. ) is ad (A) -invariant by choice 
of D, whence A normalizes the Cartan subgroup exp(g) of G. q. e. d. 

3. 8. Remark. If j is a subgroup of r which has normal subgroups *F 
such that * =- iJ D k1 D* D i1 D *o =1 with *j1/4t cyclic, then 
ad(F) is a group of semisimple automorphisms of type (MP) * of (, so j 

normalizes a Cartan subgroup of G by [5, Theorem 7. 6]. 

4. Bounds for reductive groups. 

4. 1. Let G be a reductive Lie group. G has only a finite number of 
conjugacy classes of Cartan subgroups; let {H1, * * *, H-Jf} be a maximal 
collection of mutually nonconjugate Cartan subgroups of G. Hi being a 
connected abelian Lie group of dimension r = rank. G, it is isomorphic to 
the product of a vector group RTai with a torus Tr-at. The vector rank of G, 
denoted v-rank. G, is defined to be the maximum of the ui If G/GO is finite, 
then each Hi has finite index in its normalizer in G; in this case there is a 
smallest integer, which we define to be the torsion rank of G and denote 
t-rank, G such that every finite abelian subgroup of G (which will auto 
matically normalize a Cartan subgroup by [5, Theorem 7. 6]) can be expressed 
as the product of _ t-rank. G cyclic groups. 

4. 2. THEOREM. Let r be a discrete uniform subgroup of a reductive 
Lie group G such that G/Go is finite, and let A be an abelian subgroup of r. 
Then A can be expressed as the product of _ t-rank. G finite cyclic groups 
ilvith a free abelian group on -< v-rank. G generators; in particular, A is 
finitely generated. Furthermore, the second bound is best possible in the sense 
that r has a subgroup which is free abelian on v-rank. G generators. Finally, 
if X is a subgroup of r which is the product of a finite abelian group and a 
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free abelian group on m generators, if H is a Cartan subgroup of G normalized 
by X, and if r does not have an abelian subgroup I such that f n ' be of 
finite index in X but of infinite index in I, then Y n H is uniform in H. 

Proof. By Corollary 3. 7, A normalizes a Cartan subgroup A of G. A n A 
is finitely generated because it is a discrete subgroup of the connected abelian 
Lie group A, and A/ n A has finite index in A because A has finite index in its 
normalizer in G; thus A is finitely generated. The first statement now follows 
from the structure theorem for finitely generated abelian groups and the 
definitions of t-rank. G and v-rank. G. We need some lemmas for the other 
statements. 

4.3. LEMMA.6 Let r be a discrete uniform subgroup of a Hausdorff 
topological group G, let D be a finitely generated subgroup of r, and let GD 
and rD be the respective centralizers of D in G and r. Then rD is a discrete 
uniform subgroup of GD. 

Proof. Let 7r: G--> G/r be the projection. As rD r n GD and G/r 
is a compact Hausdorff space, rD is uniform in GD if and only if 7r (GD) is 
closed in G/r. If 7r(GD) is not closed in G/r, then 7r%,r(GD) is not closed 
in G, so there is a sequence {yi} in r of elements distinct mod GD and a 
sequence {gi} in GD with {yigi} e-> x for some x C G. Given d C D, { [yi, d] } 
= { [yigi, d] } -> [x, d], whence [yi, d] - [x, d] for large i because r is 
discrete, implying that y-lyj commute with d for large i and j. As D is 
finitely generated, y-yj E GD for large i and j, contradicting our choice of 
the sequence {yi}. q. e. d. 

4. 4. We will prove the last statement of the theorem, retaining the nota- 
tion of Lemma 4.3. Theorem 3.2 and an induction on the number of 
generators of Y show that Gz is a reductive Lie group, so its Lie algebra is a 
direct sum f 0 (E 0) XT with W abelian, 6 a sum of compact simple Lie algebras, 
and X a sum of noncompact simple Lie algebras. By Lemma 3. 3 and 
assumption on X, we see that % ==0; thus (Gz)o=TVXK where V is a 
vector group in exp (s) and K is a compact group containing exp (C). 

l n H having finite index in X, and H C (Gz) O, gives m ? v-rank. H ? dim. V. 
On the other hand, v n ry, is free abelian on dim. V generators by Lemmas 
4.3 and 3.3; thus dim. V < m by assumption on .. It follows that 
m = v-rank. H, proving the last statement of the Theorem. 

4.5. LEMMA. Let H be a Cartan subgroup of a reductive Lie group G, 

I This is essentially the same as A. Selberg's result [8, Lemma 2]. 
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and suppose that H has an element h such that, given g E G0, the number- of 
distinct absolute values among the eigenvalues of ad(h) (acting on () is at 
least as large as the number of distinct absolute values among the eigenvalues 
of ad(g). Then v-rank. H = v-rank. G. 

For ) has the maximal number of linearly independent real-valued roots 
among all Cartan subalgebras of S. 

4. 6.7 We will finish the proof of Theorem 4.2 by proving the second 
statement. Let g C G,, the number of whose absolute values of eigenvalues in 
the adjoint representation is maximal among the elements of Go. Taking 
powers only separates further the absolute values of the eigenvalues, so we 
have a neighborhood U of 1 in Go and an integer m such that: 

1. If ,u is the Hlaar measure on G/r and 7r: G--> G/r is the projection, 
then m > IA(G/r)/4-t(7r (U) ). 

2. If 1 ? a _< m and ui C U, then the number of distinct absolute values 
of eigenvalues of ad (u,gau2,l) is not less than the number for ad (g)v 

We choose [8, Lemma 1] the integer a and the ui C U such that u,gau,2-l 
= y C r, replace y by a power which lies in a Cartan subgroup H of G, and 
observe that v-rank. H = v-rank. G by Lemma 4. 5. We may take -y to be a 
regular element of G, whence H/ (H n r) is compact by Lemma 4. 3 with 
D = {y}. Thus HIn r has a subgroup which is free abelian on v rank. G 
generators. The Theorem is proved. q. e. d. 

5. Bounds for groups with Euclidean factor. Our tool for the treat- 
ment of groups with Euclidean factor is the following generalization of 
theorems of L. Bieberbach [3] and L. Auslander [1]: 

5. 1. THEOREM. Let K be a compact group of automorphisms of a 
connected simply connected nilpotent Lie group N, let E be the semidirect 
product KX N, let L E X G where G is a reductive Lie group with G/G, 
finite, and let r be a discrete uniform subgroup of L. Then r n (N X G) 
is a normal subgroup of finite index in r which is a discrete uniform subgroup 
of NX G. 

Proof.8 As in ? 3. 5, we may assume G to be connected and without 

7 Compare with paragraph 3, p. 151, of [8], where A. Selberg considers the case 
G=SL(n; R). 

8This Theorem can be proved as a consequence of [2, Theorem 1], to which it is 
similar. We find it more convenient, however, to give an argument which is a variation 
on the proof of that result. 
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compact normal subgroup; then G=A G' where A, the connected center 
of G, is a vector group and G', the semisimple part of G, is without compact 
factor. Let p: A X G'-* G be the projection; then (1 X p)-1 (r) is a discrete 
uniform subgroup of E X A X Go with the same projection on K as has r. 
Replacing N by N X A, we see that it suffices to prove the Theorem when G 
is semisimple and without compact factor. 

Let J be the closure of r * N in L, and let a: L-> G and /3: L ->K be 
be the projections. JO is solvable by the generalized Zassenhaus Lemma [2, 
Proposition 2], and J is clearly normalized by r; as a(r) has the Selberg 
density property (S) in G (for r has it in L), oa(r)normalizes x(J) and G 
is semisimple without compact factor, it follows [4, Theorem 4. 1 ] that a (J) 
has discrete closure in G. Thus a (r) is discrete, being contained in a (J) 
The proof of the last part of Lemma 3. 3 now shows r n E uniform in E. 

r n E being a discrete uniform subgroup of E, the generalized Bieberbach 
Theorem [1, Theorem 1] shows that (r n E) n N = r n N is a discrete uni- 
form subgroup of N. r n N is normal in r, and is thus normalized by /3(r). 
On the other hand, interpreting K as a group of automorphisms of N, uni- 
formity of r n N in N implies that an element of K is determined by its action 
on r n N [1, Theorem 2]. It follows that ,8(r) is finite. q. e. d. 

5. 2. COROLLARY. Let r be a discrete uniform subgroup of L =- E X G 
where E is a semidirect product KR VP, K is a compact group of automorphisms 
of the vector group V, and G is a reductive Lie group with G/IG finite. If A 
is an abelian subgroup of r, then A normalizes some Cartan subgroup H of G, 
and A can be expressed as the product of : t-rank. (K X G) finite cyclic 
groups with a free abelian group on _ dim. V + v-rank. G generators. If r 
has no abelian subgroup X with the property that A nA has finite index in A 
and infinite index in X, then A n (v X H) is uniform in V X HI. Finally, 
r has a subgroup which is free abelian on dim. V + v-rank. G generators. 

Proof. By Theorems 3. 2 and 5. 1, every element of r is a semisimple 
element of the reductive Lie group G" = rP (v X G), and G/IG " is finite. 
The Cartan subgroups of G," being of the form V X (Cartan subgroup of G), 
we have v-rank. G" = dim. V + v-rank. G. Every finite subgroup of E being 
conjugate to a subgroup of K, we have t-rank. U" t-rank. (K X G). The 
Corollary now follows from Theorem 4. 2. q. e. d. 

6. Application to symmetric spaces. 

6. 1. Let M be a connected simply connected Riemannian symmetric 
space, and let L = I (M1), the full group of isometries of M. If M-= Mo X M' 
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is the decomposition of 11M into the product of its Euclidean and non-Euclidean 
parts, then L = E X G where G = 1 (M1') is a semisimple (and thus reductive) 
Lie group with G/Go finite and E = I (M0) is the Euclidean group E (n), 
n = dim. M0, semidirect product 0 (n) 1V where 0 (n) is the orthogonal group 
of a vectorspace V which can be identified with M, As every flat maximal 
connected totally geodesic submanifold of M' is an orbit of a Cartan subgroup 
of maximal vector rank in G, we have v-rank. M' = v-rank. G. Thus v-rank. M 

dim. 10 + v-rank.I (M'). 

6.2. THEOREM. Let M be a connected simply connected Riemannian 
symmetric space, let M0 and M' be the Euclidean and non-Euclidean parts of 
M., let r be a properly discontinuous group of isometries of M with I/F 
compact, and let A be an abelian subgroup of r. Then M has a closed con- 
nected A-invariant flat totally geodesic submanifold SA whose image in Ml/r 
is compact, and A can be expressed as the product of C31 t-rallk. (O (dim. M,) 
X I(M')) finite cyclic groups with a free abelian group on ?< v-rank. 11 
generators. If r has no abelian subgroup X with the property that A n f has 
finite index in A but infinite index in X, then S%/AI is compact. Finally, r has 
a subgroup v which is free abelian on v-rank. M generators, and St can be 
taken to be a maximal connected flat totally geodesic submanifold of M. 

Proof. r acts by isometries, M/r is compact, and I (M) acts transitively 
on M with compact isotropy subgroups; it follows that r is a discrete uniform 
subgroup of I(M). 

6. 3. Retaining the notation of ? 6. 1, we will define S, to be an orbit 
of one of the groups V X H where H is a Cartan subgroup of I (M') 
normalized by A; such groups exist by Corollary 5. 2. When the choice of 
H is made, we will choose x E M,, to be the origin of V and choose y E M' such 
that ) = (, l n A) + ( & n $) where K is the isotropy subgroup of I (M') 
at y and v is the orthogonal complement of A in Z (M') under the Killing 
form of (M'). Then SA = (V XH) (x,y) =M, X H(y) is clearly closed, 
connected, flat and totally geodesic in M. Let 7r: I(M)-> I(M') be the 
projection and let 8 E A. 7r(A) normalizes H, and is thus contained in K H; 
now ir(8) =kh. This gives 7(S)H(y) ==khH(y) ~=kHk-1 (y) -=H(y), 
proving SA to be A-invariant. 

We choose H to be a Cartan subgroup of I (M') which is normalized 
by some maximal abelian subgroup 1i of r which contains A, and set 

=' 1 n (V X H); -' has finite index in 1 by Theorem 5. 1 and finiteness 
of G/GO. Jc is finitely generated, and thus, by Lemma 4. 3, is uniform in its 



DISCRETE GROUPS. 539 

centralizer A in I(M)); it follows that 1' is uniform in V X H. Thus the 
image of SA in M/r is compact. As the bounds on the size of A follow from 
Corollary 5. 2, this proves the first statement of the Theorem. 

6. 4. Observe that not only is the image of SA in M/r compact, but 
SA/I is compact. Thus SA/A is compact if A has finite index in (. The 
structure of abelian subgroups of r is such that A has finite index in -DI if r 
has no abelian subgroup X with the property that A n > has finite index in A 
but infinite index in E. This proves the second statement of the Theorem. 

Corollary 5. 2 shows that r has a subgroup which is free abelian on 
v-rank. M generators. If A is such a subgroup, then H is a Cartan subgroup 
of maximal vector rank in I (M'). Examining the compact and noncompact 
factors of M' separately, we see that, for proper choice of y 3', SA is a 
maximal connected flat totally geodesic submanifold of M. q. e. d. 

6. 5. The complete connected locally symmetric Riemannian manifolds 
are precisely those manifolds whose universal Riemannian covering manifold 
is symmetric. Thus Theorem 6. 2 gives us: 

6. 6. COROLLARY. Let N be a compact connected locally symmetric 
Riemannian manifold, let D be an abelian subgroup of the fundamental group 
,rT (N), and let M, be the product of the compact irreducible factors of the 
universal Riemannian covering manifold M of N. Then N has a closed 
connected flat totally geodesic submanifold SD and an element x C SD such 
that D is represented by closed geodesic arcs in SD based at x, and D can 
be expressed as the produtct of ? t-rank.I(M,) finite cyclic groups with a 
free abelian group on ? v-rank. 31 generators; thus D is free abelian on 
? v-rank.M genterators if M is strictly noncompact. 7r1(N) has a subgroup 
P which is free abelian on v-rank. M generators, and Sp can be taken to be a 
maximal connected flat totally geodesic submanifold of N; thus N has a 
maximal connected flat totally geodesic submnanifold which is closed in N. 

7. Holonomy groups of locally symmetric spaces. Corollary 7. 2 is 
the only part of ? 7 which uses the results of preceding sections; in fact, 
it uses only Theorem 5. 1, which does not depend on preceding results. 

7. 1. THEOREM. Let r be the group of deck transformations of the 
universal Riemannian covering 7r: M-- N of a complete locally symmetric 
Riemannian manifold N, let M= Mo x M' be the decomposition into Eu- 
clidean and non-Euclidean parts, and let V be the group of pure translations 
of Mo. Then there is a canonical isomorphism between 

rp (V X 1 (M'))/(V X O(MH')) 
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and the group H(N)/HO(N) of components of the homogeneous holonomy 
group of N. 

Proof. Recall the homomorphism ,8 of r onto H(N,-r(x))/H0 (N, 7r (x)) 
defined by /8(y) = ty, HO(N, 7r(x)), where ty is the operation defined by 
ir (iry) and ry is any sectionally smooth arc in M from x to y (x). We can 
represent ty on the tangentspace M,a as the differential y*: Ma -My 
followed by parallel translation of tangentvectors backwards along ry. 

Let x E M = Mo X M' have repesentation x = (x0, x'), let K' be the 
isotropy subgroup of I (M') at x', and let P' = exp ($') where $' is the 
orthogonal complement of ' in Z (M') under the Killing form of ' (M'). 
The every element of I (M') has expression p'k' with kc' E K' and p' E P'. 
Observe that the identity component Ko' is the isotropy subgroup of 1o (M') 
at x', and its action on the tangentspace M., is that of H (M, x) = Ho (N, 7r(x)); 
also, P' is the set of transvections along geodesics in M' which pass through x', 
and p*': Mm,' -- Mp'(w,)' is parallel translation along the geodesic arc from 
x' to p'(x') on which p' is a transvection. 

Let -yEr; -y yoy' with yo EI(Mo) and yEEI(M'). y'p'k' as above 
and yo pok0 with ko(xo) = xo and po E V; thus y = (pop') (kok'). Let 
y (yo, y') be the image of x; then po is transvection along a geodesic arc 
ro in Mo from xo to yop p' is transvection along a geodesic arc I-' in M' from 
x' to y', we define ry to be the geodesic arc in M from x to y with projections 
i' and ro and it is then clear that ty is represented by the differential of kok' 
on M,. Thus the canonical homomorphism /8 of r onto H(N)/Ho (N) 
induces the isomorphism of the Theorem. q. e. d. 

7.2. COROLLARY. Let N be a compact locally symmetric Riemannian 
manifold. Then the homogeneous holonomy group H(N) is compact, i.e., 
H(N)/Ho(N) is finite. 

This follows easily from Theorems 5. 1 and 7. 1. 

7. 3. COROLLARY. Let M be a connected simply connected Riemannian 
symmetric space with Euclidean part MO and non-Euclidean part M'. If 
dim.MO > 2, or if dim. MO = 2 and M' is noncompact, then there are con- 
tinuum many affinely inequivalent diffeomorphic Rllemannian manifolds covered 
by M which have noncompact homogeneous holonomy groups. If dim. Mo < 2, 
or if dim. MO = 2 and M' is compact, then every Riemannian manifold covered 
by M has compact homogeneous holonomy group. If dim. MO = q -1 <2 
and r is the order of I(M')/IO(M'), then the number of comn'ponents of the 
homogeneous holonomy group of a Riemannian manifold covered by M is a 
divisor of qr. 
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Proof.9 The last statement follows from Theorem 7. 1 and the fact the 
group of translations of Mo has finite index q in I(Mo). This also proves the 
second statement except when dim. Mo = 2. Let dim. MO = 2, let M' be com- 
pact, and let r be the group of deck transformations of a Riemannian covering 
M-> N. I (M') is compact, whence the projection ro of r on I(Mo) is discrete. 
We wish to show that the group H of rotation parts of elements of ro is finite. 
Let U be the linear subspace of the vectorspace Mo which is spanned by the 
translation parts of elements of ro. If dim. U - 2, then finiteness of H follows 
from the Bieberbach theorem [3] (or from Theorem 5. 1). If dim. U 1, then 
MO has an orthonormal basis {u, v} where u spans U. As H normalizes U, 

every element of H has matrix ( ? ?) in this basis; thus H is finite. If 

dim. U =0, then rO= H lies in a compact group, and thus finite because ro 
is discrete. Now H is finite in any case, and the last part of the second state- 
ment follows from Theorem 7. 1. 

7.4. For each real number t, we define 9tg ( = (27rt) cS (2rt)/' 

the rotation with eigenvalues exp(? 27r/- it). Now suppose dim. MO> 2, 
view Mo as a vectorspace, and let {v1, . . ., v,} be an orthonormal basis of Mo; 

let At be the linear transformation (9t 0 of Mo. If dim. Mo > 2, then 0 Ir_/ 

let yt be the isometry (no, nm) -- (Atmo + v3, m') of M = Mo X M; if 
dim. Mo =2 and M' is noncompact, then we have a tranvection r in a non- 
compact irreducible factor of M', and we define yt to be the isometry 
(ino, i) .-- (Atmo, T'm') of M. In either case, yt generates an infinite cyclic 
subgroup rt of l(M) which acts freely and properly discontinuously on M. 
Thus Nt = M/rt is a iRiemannian manifold covered by M. In both cases 
yt /ctat where 8t is a transvection of M along some geodesic a through our 
basepoint x, and where At is an isometry of M with at (x) = x. The element 
of H(Nt)/Ho(Nt) determined by yt being represented on the tangentspace 
MN, by the differential of yt follows by parallel translation along a- from 
fAt (x) =- yt (x) to x, this element is represented on MN, by the differential 
of At. By construction, this differential is given by At on (MN), and is the 
identity on (M'),,; thus we may view the linear transformation At as a 
generator of H(Nt)/1H0(Nt). In particular, Nt has compact homogeneous 
holonomy group if and only if At has finite order, i.e., if and only if t is 

9 As the proof will show, the essential case in when M is irreducible. This was 
originally handled by a lemma developed in discussions with H. C. Wang; in the present 
context, however, it is easier to appeal to Theorem 7. 1. 
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rational. Affine equivalence induces isomorphism of holonomuy groups as 
groups of linear transformations; thus the first statement follows from the 
fact that the Nt are mutually real-analytically homeomorphic and we can 
choose continuum many algebraically independent irrational numbers t. 

q. e. d. 
THE UNIVERSITY OF CALIFORNIA AT BERKELEY, 
THE INSTITUTE FOR ADVANCED STUDY. 
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