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DISCRETE GROUPS, SYMMETRIC SPACES, AND GLOBAL
HOLONOMY .*

By Josepm A. Worr.

1. Introduction. Let M be a connected simply connected Riemannian
manifold and let T be a properly discontinuous group of isometries such that
M/T is compact. If every sectional curvature of M is negative, in particular if
M is a noncompact irreducible symmetric space of rank 1, then a method of B.
Cartan shows that every abelian subgroup of I is either finite or the product of
a finite group with an infinite cyclic group. If M is the Buclidean space R,
then a calculation shows that every abelian subgroup of I' is the product of
a finite group with a free abelian group on = n generators. These phenomena
are unified by one of the conclusions of our Theorem 6.2: If M is Riemannian
symmetric and v is the mazimum of the dimensions of those totally geodesic
submanifolds of M which are isometric to Euclidean spaces, then every abelian
subgroup of T is the product of a finite group with a free abelian group on
= v generators, and T' has a subgroup which is free abelian on v generators.
We also prove that an abelian subgroup of T' must preserve a flat connected
totally geodesic submanifold of M ; if M/T' is a manifold, it follows that M /T
contains a maximal connected flat totally geodesic submanifold which is closed,
and every abelian subgroup of =, (M/T') can be represented by closed geodesic
arcs lying in a connected flat totally geodesic submanifold (Corollary 6.6).
In addition, we analyze the group of components of the homogeneous holonomy
group of a locally symmetric Riemannian manifold N (Theorem 7.1), prove
that NV has compact homogeneous holonomy group if N is compact 2 (Corollary
7.2), and give conditions for every manifold locally isometric to N to have
compact homogeneous holonomy group (Corollary 7.3).

Our bounds are obtained by estimating the “size” of abelian subgroups
of discrete uniform subgroups of Lie groups L — E X G where E is a semi-
direct product of a compact group and a vector group, such as the Euclidean
group, and G is a reductive Lie group with only finitely many components.

* Received October 26, 1961; revised August 4, 1962.

* The author thanks the National Science Foundation for fellowship support during
the preparation of this paper.

*If N is flat, this is just the classical Bieberbach Theorem [3]. This does not give
a new proof of the Bieberbach Theorem because that result is used in our arguments,
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528 JOSEPH A. WOLF.

The estimates are first made for reductive groups (Theorem 4.2), and then
extended by a generalization of Bieberbach’s Theorem (Theorem 5.1).

Let T be a discrete uniform subgroup of a reductive Lie group &, where
@ has only finitely many components, and let A be an abelian subgroup of T.
Our main idea is that the size of A can be estimated by finding a Cartan
subgroup H of G which is normalized by A, and observing that A N H has
finite index in A. In order to find H, we first prove that every element of T
is a semisimple element of G (Theorem 3.2), and then apply a result of
A. Borel and &. D. Mostow (Corollary 3.7). The main tool in our proof
of Theorem 3.2 is a geometric characterization of the semisimple elements of
G (Lemma 3.6).

2. Preliminaries.

2.1 Lie groups. Given a Lie group @, G, will denote the identity
component, & will denote the Lie algebra, and exp: & — G will denote the
exponential map. @ and © are called reductive if the adjoint representation
of @ (or, equivalently, of G,) is fully reducible, i.e., if & is the direct sum
of an abelian ideal ¥ and a semisimple ideal @& ; then 9 is the center of @,
A =exp() is the identity component of the center of @, and is called the
connected center of Gy, & is the derived algebra of & and is called the semsi-
simple part of &, G = exp (&) is called the semisimple part of G,, and there
is a natural homomorphism (a,g) —ag of 4 X G’ onto G,.

If @ is reductive, then the Cartan subalgebras of & are the subalgebras
of the form 9 @ &’, where @ denotes direct sum of ideals and §’ is a Cartan
subalgebra of &' ; thus the Cartan subalgebras of & are abelian. By Cartan
subgroup of a Lie group (, we mean a (necessarily connected) group of the
form exp($§) where § is a Cartan subalgebra of ©.

Under the adjoint representation of a Lie group @, an element g€ G
induces an automorphism ad(g) of ®; we will call g semisimple if ad(g) is
a fully reducible linear transformation of ®. If g is a semisimple element
of a reductive Lie group @, and if Z is the centralizer of ¢ in @, then not
only is Z reductive but the adjoint representation of G induces a fully reducible
representation of 3 on @.

If § and T are subsets of a group @, then the commutator [8, 7]
denotes the set of all elements [s, ¢] — stst* where s€ 8, t€ T.

If § and T are groups and ¢ is a homomorphism of § into the group of
automorphisms of T, then the semidirect product S-¢T is the set S X T
with the group structure (si, 1) (Ss,%2) = (8185, (d(8272) (£1)) ). If 8 is
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given as a group of automorphisms of T, then the semidirect product is
denoted S-T.

R.2. Discrete groups. A subgroup T of a topological group G is discrete
if G has an open set U such that TN U is just the identity element 1€ G.
A subgroup H of G is uniform if the coset space G/H (H is the closure of
H in @) is compact.

Let T be a discrete uniform subgroup of ¢. C. L. Siegel [9] has shown
that (¢ is locally compact, and, if every covering of G by open sets has a
countable refinement,® then G' has a compact subset F such that I'- FF= @,
every g€ G has a neighborhood contained in a finite union of the yF,
Tp={y€T: yF meets F} is finite, and T'r generates I' if G is connected.
It follows that I finitely generated if G/G, is finitely generated, but this is
better seen directly [7]. F will be called a fundamental domain for the
action of T on G by right translations.

R.8. Symmetric spaces. It is well known that a connected simply
connected Riemannian symmetric space M is isometric to a product
Mo X My X -+ - X M; where M, is a Euclidean space and each M; (i > 0)
is an irreducible Riemannian (non-Euclidean and not isometric to a product
of lower dimensional Riemannian manifolds) symmetric space; M, is the
Buclidean part of M, M’ =M, X - - - X M, is the non-Euclidean part of M,
and the M; (¢>0) are the irreducible factors of M. We will say that M is
strictly non-Euclidean if M =M, i.e., if dim. M, =0, and will say that M is
strictly moncompact if every irreducible factor of M is noncompact. If M is
strictly noncompact, then every sectional curvature on M is = 0.

Full groups of isometries are related by I(M)=1I(M,) X I(M’), and
I(M) is generated by I(M,) X - - - X I(M;) together with all permutations
on mutually isometric sets of M;. Connected groups of isometries are related
by Io(M) =1Io(Mo) X Io(My) X« + - X Io(My), and I(M)/I,(M) is finite.
I(M,) is the Euclidean group F (dim. M,), I (M;) is a compact semisimple Lie
group if M; is compact, and I,(M;) is a noncompact centerless real or complex
simple Lie group if M, is noncompact (t>0).

Let 8 be a maximal connected flat (all sectional curvatures zero) totally
geodesic submanifold of M. I(M) acts transitively on the set of all such
submanifolds, and the rank of M (denoted rank.M) is defined to be their
common dimension. § is isometric to a product M, X S, X - - - X S; where
S is a maximal connected flat totally geodesic submanifold of M, whence it

? Siegel requires that G have a countable basis for open sets, but uses only this
weaker property.
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is easily seen that S is a closed submanifold of M. The symmetry to M; at a
point of §; induces a symmetry of S;; it follows that each S; (and thus §)
is a connected Riemannian symmetric manifold of constant curvature zero.
Thus S; is a flat torus if M; is compact and S; is a Euclidean space if M;
(1> 0) is noncompact; to see this, we use [10, Théoréme 4] or [11, § 14]
together with the fact that S; is the orbit of some Cartan subgroup of maximal
vector rank in I (M;). If Mg is the product of the compact irreducible factors
of M and My is the product of M, with the noncompact irreducible factors of
M, it follows that S is isometric to the product of a flat torus of dimension
rank. Mo with a Euclidean space of dimension rank.My. For this reason,
we define the vector rank of M (denoted v-rank. M) to be rank. My. Observe
that v-rank. M = dim. M, -+ v-rank. M’.

Let T be a subgroup of I(M). The action of T' on M is properly dis-
continuous if every element of M has a neighborhood which meets its trans-
forms by only a finite number of elements of T'; this is equivalent to I' being
a discrete subgroup of I(M). The action of I on M is free if 154y €T and
2 € M implies y(z) s42. M — M/T is a covering space if and only if T' acts
freely and properly discontinuously on M. If M is strictly noncompact, then
the isotropy subgroups of I(M) are the maximal compact subgroups, and,
if T' acts properly discontinuously on M, it follows that I' acts freely if and
only if every element 41 of T has infinite order. If I' acts properly discon-
tinuously on M, then M/T is a Hausdorff topological space (although it need
not be a manifold), and M/T' is compact if and only if T is a uniform sub-
group of I(M).

%.4. Holonomy groups. The homogeneous holonomy group H(M,z)
of a Riemannian manifold M at a point z € M is the group of linear trans-
formations of the tangentspace M, obtained by parallel translation of tangent-
vectors along sectionally smooth closed arcs based at 2. The Riemannian
metric gives M, a positive definite inner product; H (M,z) is a subgroup of
the corresponding orthogonal group and carries the induced topology. The
restricted homogeneous holonomy group is the identity component H, (M, z),
consists of those elements of H(M,z) obtained from nullhomotopic closed
ares, and is a closed subgroup of the orthogonal group of M, ; in particular,
H,(M,z) is compact, and now H (M, z) is compact if and only if it has only
finitely many components. Thus we have a natural homomorphism of the
fundamental group =, (M, z) onto the quotient H (M,z)/Ho(M,z). If M is
connected, then we speak of H (M) and H,(M) in the same sense as = (M).

Suppose that M is a connected simply connected Riemannian symmetric
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space, and M =M, X My X - - - X M is the decomposition into FEuclidean
and irreducible non-Euclidean parts. Then H(M,) =1 and H (M,;,z) is the

group of linear transformations of (M), induced by the isotropy subgroup
of I,(M;) at z.

If M and N are Riemannian manifolds, 2 € M and y € N, then
H(M XN, (2,y)) =H(M,z) X H(N,y).

3. Semisimplicity of discrete uniform subgroups.

3.1. If a Cartan subgroup of a semisimple Lie group @ is normalized
by an element g € (, then it is known [5, Proposition 7.7] that g is a semi-
simple element of . In order to make the estimates described in §1, then,
we need:

3.2. TumoreMm.* If T is a discrete uniform subgroup of a reductive
Lie group G such that G/G, has no element of infinite order, then every
element of T is a semisimple element of @G.

The essential part of the reduction to the semisimple case is given by:

3.3. LmmmA. Let T be a discrete uniform subgroup of a conmected
reductive Lie group @, let A be the connected center of G, let G’ be the semi-
simple part of G, and let TV={g'€ G’: ¢’ =ay for some a€ A, ycT}.
Then I” is a discrete uniform subgroup of @ and T'N A is a discrete uniform
subgroup of A.

Proof. 1t is sufficient to consider the case where G’ has no compact
factor, for replacing G’ by /K, where K is the maximal compact normal
subgroup of G, affects neither hypotheses nor conclusions of the Lemma.
Similarly, we may assume G —=4 X .

Let {y:} —>1 be a sequence in I"; this gives us a sequence {y;} in T
with y; =aiyi, ai€ A. A being central in @, {[yi,y]} = {[yi,y]} —1 for
every y € I'; thus y; commutes with y for large ¢ because I' is discrete. T' being
finitely generated, it follows that y; is central in T for large i. Now let
m: G@—> G’ be the projection; I”—==(T'). Being uniform in @, T has the
Selberg density property () in G ([8, Lemma 1] or [4, Lemma 1.4]) ; thus
I” has the property (S) in G” [4, §1.2]; it follows that the centralizer of I
in @ is just the center of @ [4, Corollary 4.4], whence vi’ is central in G

¢ As the proof will show, the essential case is that of a semisimple linear group,
for which the result is known; see Borel and Harish-Chandra, “Arithmetic subgroups
of algebraic groups,” Annals of Mathematics, vol. 75 (1962), pp. 485-535, esp. § 11. 2.
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for large ©. As G’ has discrete center, this contradicts {y:’} — 1. Thus I is
a discrete subgroup of G

Let F be a compact fundamental domain for the action of T on G by
right translations. I is a uniform subgroup of G’ because «(F) is compact
and ¢ =T -=(F).

Our proof that I' N 4 be uniform in 4 is a modification of an argument
of A. Weil® Let a€ A and retain the notation above. Then ¢=yf for
some f € F and some y € T such that #(y) € «#(F)2 N« (). «(F)-* is compact
and #(T') was just seen discrete; this gives {yi,* - -,y:} C T such that the
w(yi) exhaust = (F)*N#x(T); it follows that y=2Jy; for some ¢ and some
deTrnNA4. Inother words,ac(T'NA4). iLtJlWF for every a € A. As Ltj v is

=1
compact, it follows that 4/(T' N A4) is compact. g.e.d.
The semisimple case is reduced to the linear semisimple case by means of :

3.4. LEmMmA. Lel T be a discrete uniform subgroup of a conmected
semisimple Lie group G, let Z be the center of G, and let =: G— G/Z be the
projection. Then «(T) is a discrete uniform subgroup of G/Z and T has
finite index in T'- Z.

Proof. It suffices to show I'-Z discrete in G, and for this we may
assume that G has no compact factor. Let {y:2;}— 1 be a sequence in I'-Z
with y; €T and z;€ Z. Given y€T, {[yi,y]} = {[yi%:,y]} = 1; thus y; is
central in T' for large ¢ because T is discrete and finitely generated. As in
the previous lemma, it follows that y; € Z for large i, whence yz; € Z for 4
large. Z being discrete, this contradicts {y:2:} — 1. g.e.d.

3.5. Proof of Theorem 3.2. TN @, is a discrete uniform subgroup of
G, G, satisfies the hypotheses of the Theorem, every element of T has a finite
power in T'N G, and y™ cannot be semisimple unless y is semisimple. Thus
we may assume G connected. Semisimplicity of y depending only on the
automorphism ad(y) of @, Lemmas 3.3 and 8.4 now allow us to assume
that G is a centerless semisimple Lie group. Finally, every automorphism
of a compact simple Lie algebra being semisimple (because it preserves the
Killing form, which is negative definite), we may factor G by its maximal
compact normal subgroup and assume that G has no compact factor. In
summary, we need only consider the case where @ is a product of noncompact
centerless connected simple Lie groups.

® See his paper “Discrete subgroups of Lie groups I1,” Annals of Mathematics, vol.
75. Observer that the argument proves: If A is a discrete uniform subgroup of a con-
nected group § and T is a closed normal subgroup of §, then A N 7 is uniform in T if
and only if the image of A in S/T is discrete.
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Let K be a maximal compact subgroup of G and let M be the Riemannian
symmetric space G/K; G is the identity component of the full group of
isometries of M, whence T is represented faithfully on M by isometries; the
action of I' on M is properly discontinuous because T' is discrete in G. The
adjoint representation of G represents I' faithfully as a definitely generated
real matrix group, so T has a subgroup of finite index with no element =41
of finite order [8, Lemma 8]. We cut I' down to this subgroup, and may
thus assume that no element 541 of T has a fixed point on M, so M — M/T
is a covering of Riemannian manifolds which is a local isometry (a Rieman-
nian covering). M /T is compact because (/T is compact. M being a complete
connected simply connected Riemannian manifold with every sectional curva-
ture =0, it follows [6] that every y € I' preserves some geodesic on M.
Theorem 3.2 follows from:

3.6. LemmA. Let M be a strictly non-Euclidean Riemannian symmetric
space, let G =1I(M), the full group of isometries of M, and let g€ G. Then
g 18 a semisimple element of G if and only if some power g™, m 4 0, preserves
@ geodesic on M. If g preserves a geodesic o through x€ M and has no fized
point on o, then g = kp = pk where k€ G, k(z) ==z, and p is a transvection
along o.

Proof. Tet g be semisimple. Then g normalizes a Cartan subalgebra
$ of & [5, Theorem 7.6]. Choose m =1 such that gm € H —exp($) ; this
is possible because G is semisimple and G/G, is finite. There is an element
#€ M and a Cartan decomposition & —Q P where & is the Lie algebra
of the isotropy subgroup K of G at z, such that $—= ($ N K) + (H N R).
This holds for compact G, by conjugacy of maximal tori and because an
involutive automorphism must conserve a maximal torus; it is known for
noncompact linear simple G, ([12], p. 107); it now follows in our case.
Now gm—=Fkp with k€ HNK and p=—exp(X) for some X€ $ N P; thus
g™ preserves the geodesic o= {exp(tX)z} on M.

Let g™ preserve a geodesic o on M ; we wish to show g semisimple, and
it suffices to show g™ semisimple. Thus we may assume g to preserve o.
As g* preserves o, we now replace g by ¢ if ¢ has a fixed point on 0. < being
a totally geodesic submanifold of M, g induces an isometry of o onto itself,
and the possible replacement of g by g2 shows that ¢: ¢;—> 04,4 for some real
number a, where ¢ is arc length. Let x€ o, say & =o,, and take the Cartan
decomposition @ =Q + P at z; this gives X € P with or=exp (tX)a.
k—=exp(—aX)g€ K, and k commutes with X because it preserves every oy,
whence k commutes with p —exp(aX). Now g—kp—pk, k is semisimple
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because it lies in a compact group K, p is a transvection along o, and p is
semisimple because it is represented on & by a positive definite matrix. Being
the product of two commuting semisimple elements, ¢ is semisimple. g¢.e. d.

3.7. CoroLLARY. If T is a discrete uniform subgroup of a reductive Lie
group G such that G/G, has no element of infinite order, and if A is an abelian
subgroup of T, then A normalizes a Carton subgroup of G.

Proof. Theorem 3.2 says that ad(A) is an abelian group of semisimple
automorphisms of &; thus ad(A) is diagonable on & over the complex
numbers, and it follows that ad(A) has a finitely generated subgroup D such
that every D-invariant subspace of & is ad (A)-invariant. Finitely generated
and abelian, D is of type (MP)* (see [5, p. 404]); thus D leaves invariant
a Cartan subalgebra § of @ [5, Theorem 7.6]. & is ad(A)-invariant by choice
of D, whence A normalizes the Cartan subgroup exp($) of G. g.e.d.

3.8. Remark. If ¥ is a subgroup of I' which has normal subgroups ¥;
such that $¥=¥;D ¥, , D D ¥ D ¥,=1 with ¥;/¥, cyclic, then
ad(¥) is a group of semisimple automorphisms of type (MP)* of &, so ¥
normalizes a Cartan subgroup of G by [5, Theorem 7.6].

4. Bounds for reductive groups.

4.1. Let G be a reductive Lie group. G has only a finite number of
conjugacy classes of Cartan subgroups; let {H,,- - -,H,} be a maximal
collection of mutually nonconjugate Cartan subgroups of G. H; being a
connected abelian Lie group of dimension r=rank.(@, it is isomorphic to
the product of a vector group R with a torus T"%. The vector rank of G,
denoted v-rank. @, is defined to be the maximum of the uw, If G/G, is finite,
then each H; has finite index in its normalizer in G'; in this case there is a
smallest integer, which we define to be the torsion rank of G and denote
t-rank, G such that every finite abelian subgroup of G (which will auto
matically normalize a Cartan subgroup by [5, Theorem 7.6]) can be expressed
as the product of = ¢-rank. G cyclic groups.

4.2. THEOREM. Let T be a discrete uniform subgroup of a reductive
Lie group G such that G/G, is finite, and let A be an abelian subgroup of T.
Then A can be expressed as the product of = i-rank. @ finite cyclic groups
with a free abelian group on =wv-rank.@ generators; in particular, A is
fimitely generated. Furthermore, the second bound is best possible in the sense
that T has a subgroup which is free abelian on v-rank. G generators. Finally,
if 3 is a subgroup of T which is the product of a finite abelian group and a
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free abelian group on m generators, if H is a Cartan subgroup of G normalized
by 3, and if T does not have an abelian subgroup ¥ such that 3N ¥ be of
finite index in 3 but of infinite index in ¥, then 3 N H is uniform in H.

Proof. By Corollary 3.7, A normalizes a Cartan subgroup 4 of G. AN A
is finitely generated because it is a discrete subgroup of the connected abelian
Lie group 4, and A N A4 has finite index in A because 4 has finite index in its
normalizer in G; thus A is finitely generated. The first statement now follows
from the structure theorem for finitely generated abelian groups and the
definitions of #-rank. G and v-rank. @. We need some lemmas for the other
statements.

4.3. LeMMmA.® Let T be a discrete uniform subgroup of a Hausdorff
topological group @, let D be a finitely generated subgroup of T, and let Gp
and Tp be the respective centralizers of D in G and T. Then Tp 1s a discrete
uniform subgroup of Gp.

Proof. Let =: G— G/T be the projection. As I'p=TN Gp and G/T
is a compact Hausdorff space, T'p is uniform in Gp if and only if »(Gp) is
closed in G/T. If #(Gp) is not closed in G/T, then == (Gp) is not closed
in G, so there is a sequence {y;} in T of elements distinct mod G and a
sequence {g;} in Gp with {yig:} = @ for some € @. Given d€ D, {[yi,d]}
= {[yi9i,d]}— [, d], whence [yi,d] =[z,d] for large i because T is
discrete, implying that y;'y; commute with d for large ¢« and j. As D is
finitely generated, y;'y;€ Gp for large ¢ and j, contradicting our choice of
the sequence {y:}. g.e.d.

4.4. We will prove the last statement of the theorem, retaining the nota-
tion of Lemma 4.8. Theorem 3.2 and an induction on the number of
generators of 3 show that (s is a reductive Lie group, so its Lie algebra is a
direct sum U @ € @ N with A abelian, € a sum of compact simple Lie algebras,
and N a sum of noncompact simple Lie algebras. By Lemma 3.3 and
assumption on 3, we see that % =0; thus (Gx)o=V X K where V is a
vector group in exp(¥) and K is a compact group containing exp(E).
3 N H having finite index in 3, and H C (Gs),, gives m = v-rank. H < dim. V.
On the other hand, ¥V N Ty is free abelian on dim.V generators by Lemmas
4.3 and 3.3; thus dim. V=m by assumption on 3. It follows that
m =v-rank. H, proving the last statement of the Theorem.

4.5. LemMA. Let H be a Cartan subgroup of a reductive Lie group G,

¢ This is essentially the same as A. Selberg’s result [8, Lemma 2].
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and suppose that H has an element h such that, given g € Go, the number of
distinct absolute values among the etgenvalues of ad(h) (acting on &) s at
least as large as the number of distinct absolute values among the eigenvalues
of ad(g). Then v-rank. H = v-rank. G.

For § has the maximal number of linearly independent real-valued roots
among all Cartan subalgebras of &.

4.6." We will finish the proof of Theorem 4.2 by proving the second
statement. Let g € G, the number of whose absolute values of eigenvalues in
the adjoint representation is maximal among the elements of G, Taking
powers only separates further the absolute values of the eigenvalues, so we
have a neighborhood U of 1 in G, and an integer m such that:

1. If p is the Haar measure on G/T and »: G'— G/T is the projection,
then m > u(G/T) /p(=(U)).

2. If 1=a=m and u; € U, then the number of distinct absolute values
of eigenvalues of ad (#19%,') is not less than the number for ad(g).

We choose [8, Lemma 1] the integer a and the u; € U such that u,g%u,™
=y €T, replace y by a power which lies in a Cartan subgroup H of @, and
observe that v-rank. H = v-rank. @ by Lemma 4.5. We may take y to be a
regular element of (, whence H/(H NT) is compact by Lemma 4.3 with
D={y}. Thus HNT has a subgroup which is free abelian on v rank. @
generators. The Theorem is proved. g.e.d.

5. Bounds for groups with Euclidean factor. Our tool for the treat-
ment of groups with Euclidean factor is the following generalization of
theorems of L. Bieberbach [3] and L. Auslander [1]:

5.1. TuroREM. Let K be a compact group of automorphisms of a
connected simply connected nilpotent Lie group N, let E be the semidirect
product K- N, let L—=E X G where @ is a reductive Lie group with G/G,
finite, and let T be a discrete uniform subgroup of L. Then T'N (N X @)
18 @ normal subgroup of finite index in T which is a discrete uniform subgroup
of N X @.

Proof.® As in §3.5, we may assume G to be connected and without

" Compare with paragraph 3, p. 151, of [8], where A. Selberg considers the case
G =8L(n; R).

® This Theorem can be proved as a consequence of [2, Theorem 1], to which it is
similar. We find it more convenient, however, to give an argument which is a variation
on the proof of that result.
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compact normal subgroup; then G =4 -G where A, the connected center
of @, is a vector group and G, the semisimple part of @, is without compact
factor. Let p: A X G’ — G be the projection ; then (1 X p)-*(T) is a discrete
uniform subgroup of E X A X G’ with the same projection on K as has T.
Replacing N by N X A, we see that it suffices to prove the Theorem when G
is semisimple and without compact factor.

Let J be the closure of I'*N in L, and let «: L—> @ and 8: L—> K be
be the projections. J, is solvable by the generalized Zassenhaus Lemma [2,
Proposition 2], and J is clearly normalized by T'; as «(T') has the Selberg
density property (S) in G (for T has it in L), «(T')normalizes «(J) and G
is semisimple without compact factor, it follows [4, Theorem 4.1] that a(J)
has discrete closure in . Thus «(T) is discrete, being contained in «(J)
The proof of the last part of Lemma 3.3 now shows I' N E uniform in E.

' N E being a discrete uniform subgroup of E, the generalized Bieberbach
Theorem [1, Theorem 1] shows that (TN E) N N=TN N is a discrete uni-
form subgroup of N. T' NN is normal in T, and is thus normalized by B(T").
On the other hand, interpreting K as a group of automorphisms of N, uni-
formity of I' N NV in NV implies that an element of X is determined by its action
on T' NN [1, Theorem 2]. It follows that B(I') is finite. g.e.d.

5.2. CorOLLARY. Let T be a discrete uniform subgroup of L—=FE X @
where E is a semidirect product K -V, K is a compact group of automorphisms
of the vector group V, and G is a reductive Lie group with G/@, finite. If A
1s an abelian subgroup of T, then A normalizes some Cartan subgroup H of G,
and A can be expressed as the product of = t-rank.(K X @) finite cyclic
groups with a free abelian group on = dim.V + v-rank. G generators. If T
has no abelian subgroup 3 with the property that A NS has finite index in A
and infinite index in 3, then AN(V X H) is uniform in V X H. Finally,
T has a subgroup which is free abelian on dim.V -+ v-rank. G generators.

Proof. By Theorems 3.2 and 5.1, every element of T' is a semisimple
element of the reductive Lie group G =T"(V X @), and G”/@,” is finite.
The Cartan subgroups of G being of the form V X (Cartan subgroup of @),
we have v-rank. G — dim. V 4 v-rank. ¢. Every finite subgroup of E being
conjugate to a subgroup of K, we have ¢-rank. G = ¢{-rank. (K X @). The
Corollary now follows from Theorem 4. 2. g.e.d.

6. Application to symmetric spaces.

6.1. Let M be a connected simply connected Riemannian symmetric
space, and let L = I (M), the full group of isometries of M. If M = M, X M’
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is the decomposition of M into the product of its Euclidean and non-Euclidean
parts, then L = E X G where G =1 (M’) is a semisimple (and thus reductive)
Lie group with G/@, finite and B =1I(M,) is the Euclidean group E(n),
n = dim. M,, semidirect product O (n) - V where O (n) is the orthogonal group
of a vectorspace V which can be identified with M,. As every flat maximal
connected totally geodesic submanifold of M’ is an orbit of a Cartan subgroup
of maximal vector rank in G, we have v-rank. M’ = v-rank. ¢. Thus v-rank. i
== dim. M, 4 v-rank. I (M’).

6.2. TmmoreEM. Let M be a connected simply connected Riemannian
symmetric space, let My and M’ be the Euclidean and non-Euclidean parts of
M, let T be a properly discontinuous group of isometries of M with M/T
compact, and let A be an abelian subgroup of T'. Then M has a closed con-
nected A-invariant flat totally geodesic submanifold Sa whose vmage wn M/T
s compact, and A can be expressed as the product of = t-rank. (O(dim.M,)
X I(M")) finite cyclic groups with a free abelian group on = v-rank.M
generators. If T has no abelian subgroup 3 with the property that AN 3 has
finite index in A but infinite index in 3, then Sa/A is compact. Finally, T has
a subgroup ¥ which is free abelian on v-rank. M generators, and Sy can be
taken to be a maximal connected flat totally geodesic submanifold of M.

Proof. T acts by isometries, M /T is compact, and I (M) acts transitively
on M with compact isotropy subgroups; it follows that T is a discrete uniform
subgroup of I(M).

6.3. Retaining the notation of §6.1, we will define Sa to be an orbit
of one of the groups V X H where H is a Cartan subgroup of I(M’)
normalized by A; such groups exist by Corollary 5.2. When the choice of
H is made, we will choose @ € M, to be the origin of ¥ and choose y € M’ such
that § = (HNK) + (HNP) where K is the isotropy subgroup of I(M’)
at y and ¥ is the orthogonal complement of & in J(M’) under the Killing
form of §(M’). Then Sa= (VX H) (z,y) =M, X H(y) is clearly closed,
connected, flat and totally geodesic in M. Let =:I(M)—>I(M") be the
projection and let § € A. x(A) normalizes H, and is thus contained in K - H ;
now «(8)=Fkh. This gives =(8)H (y) =khH (y) =kHE*(y) =H (y),
proving Sa to be A-invariant.

We choose H to be a Cartan subgroup of I(M’) which is normalized
by some maximal abelian subgroup & of T which contains A, and set
& =&N (VX H); % has finite index in ® by Theorem 5.1 and finiteness
of G/G,. @ is finitely generated, and thus, by Lemma 4.3, is uniform in its
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centralizer A in I(M) ; it follows that ®” is uniform in ¥ X H. Thus the
image of Sa in M/T is compact. As the bounds on the size of A follow from
Corollary 5.2, this proves the first statement of the Theorem.

6.4. Observe that not only is the image of Sa in M/T compact, but
Sa/® is compact. Thus Sa/A is compact if A has finite index in ®. The
structure of abelian subgroups of I' is such that A has finite index in ® if T
has no abelian subgroup 3 with the property that A N 3 has finite index in A
but infinite index in 3. This proves the second statement of the Theorem.

Corollary 5.2 shows that T has a subgroup which is free abelian on
v-rank. M generators. If A is such a subgroup, then H is a Cartan subgroup
of maximal vector rank in I(}’). Examining the compact and noncompact
factors of M’ separately, we see that, for proper choice of y€ M’, Sa is a
maximal connected flat totally geodesic submanifold of M. g.e.d.

6.5. The complete connected locally symmetric Riemannian manifolds
are precisely those manifolds whose universal Riemannian covering manifold
is symmetric. Thus Theorem 6.2 gives us:

6.6. CorOLLARY. Let N be a compact connected locally symmetric
Riemannian manifold, let D be an abelian subgroup of the fundamental group
w1 (N), and let M, be the product of the compact irreducible factors of the
unwersal Riemannion covering manifold M of N. Then N has a closed
conmnected flat totally geodesic submanifold Sp and an element z € Sp such
that D 1is represented by closed geodesic arcs in Sp based at x, and D can
be expressed as the product of = t-rank.I(M,) finite cyclic groups with a
free abelian group on =v-rank.M generators; thus D is free abelian on
= v-rank. M generators if M is strictly noncompact. = (N) has a subgroup
P which s free abelian on v-rank. M generators, and Sp can be taken to be a
mazimal connected flat totally geodesic submanifold of N; thus N has a
mazimal connected flat totally geodesic submanifold which is closed in N.

7. Holonomy groups of locally symmetric spaces. Corollary 7.2 is
the only part of §7 which uses the results of preceding sections; in fact,
it uses only Theorem 5.1, which does not depend on preceding results.

7.1. THBOREM. Let T' be the group of deck transformations of the
unwersal Riemannian covering «: M—>N of a complete locally symmetric
Riemannian manifold N, let M= My, X M’ be the decomposition into Bu-
clidean and non-Buclidean parts, and let V be the group of pure translations
of Mo. Then there is a canonical isomorphism between

L (VX L))/ (V X To(M'))
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and the group H(N)/H,(N) of components of the homogeneous holonomy
group of N.

Proof. Recall the homomorphism g8 of T onto H (N, n(z))/Ho(N,=(z))
defined by B(y) =ty Ho(N,n(x)), where t, is the operation defined by
w(ry) and 7, is any sectionally smooth arc in M from z to y(z). We can
represent ¢, on the tangentspace M, as the differential y.: My—> My(q)
followed by parallel translation of tangentvectors backwards along =,.

Let z€ M =M, X M’ have repesentation == (zo,2’), let K’ be the
isotropy subgroup of I(M’) at 2/, and let P’ =exp(®’) where ' is the
orthogonal complement of & in J(M’) under the Killing form of J(M’).
The every element of I(M’) has expression p'% with ¥ € K’ and p’€ P’
Observe that the identity component K, is the isotropy subgroup of I,(M’)
at 2/, and its action on the tangentspace M, is that of H (M, z) = H,(N,=(z));
also, P’ is the set of transvections along geodesics in M” which pass through 2/,
and p,': My — Mp ()" is parallel translation along the geodesic arc from
#’ to p’(2") on which p’ is a transvection.

Let y€T; y=vyo with y,€ I(M,) and y € I(M’). ' = p'¥ as above
and yo=pok, With k(%) =, and p,€ V; thus y= (pop’) (kk’). Let
Yy = (¥0,y") be the image of z; then p, is transvection along a geodesic arc
7o in M, from @, to y,, p’ is transvection along a geodesic arc «/ in M’ from
@’ to y/, we define 7, to be the geodesic arc in M from = to y with projections
v and 7, and it is then clear that ¢, is represented by the differential of ok’
on M, Thus the canonical homomorphism B of T onto H(N)/H,(N)
induces the isomorphism of the Theorem. g.e.d.

7.2. COROLLARY. Let N be a compact locally symmetric Riemannion
manifold. Then the homogeneous holonomy group H(N) is compact, i.e.,
H(N)/H,(N) 1s finite.

This follows easily from Theorems 5.1 and 7. 1.

7.8. CoroLLARY. Let M be a connected simply connected Riemannian
symmetric space with Buclidean part M, and non-Euclidean part M’. If
dim. Mo > 2, or if dim. M,=2 and M’ is noncompact, then there are con-
tinuwum many affinely inequivalent diffeomorphic Riemannian manifolds covered
by M which have noncompact homogeneous holonomy groups. If dim. M, < 2,
or if dim. Mo =2 and M’ is compact, then every Riemannian manifold covered
by M has compact homogeneous holonomy group. If dim.M,—q—1<2
and r 13 the order of I(M’)/I,(M’), then the number of components of the
homogeneous holonomy group of a Riemannian manifold covered by M is a
divisor of qr.



DISCRETE GROUPS. 541

Proof.® The last statement follows from Theorem 7.1 and the fact the
group of translations of M, has finite index ¢ in I(M,). This also proves the
second statement except when dim.M,=2. Let dim.M,=2, let M’ be com-
pact, and let " be the group of deck transformations of a Riemannian covering
M—N. I(M) is compact, whence the projection T'y of T on I (M,) is discrete.
We wish to show that the group H of rotation parts of elements of I, is finite.
Let U be the linear subspace of the vectorspace M, which is spanned by the
translation parts of elements of T'y. If dim. U =2, then finiteness of H follows
from the Bieberbach theorem [8] (or from Theorem 5.1). If dim.U =1, then
M, has an orthonormal basis {u,v} where u spans U. As H normalizes U,
+1 0

0 =1
dim. U =0, then T'y=H lies in a compact group, and thus finite because T,
is discrete. Now H is finite in any case, and the last part of the second state-
ment follows from Theorem 7.1. "

every element of H has matrix ( in this basis; thus H is finite. If

7.4. For each real number £, we define gt=( cos (2rt) s1n(21rt)),

——Sih(?wt) COS(?rt)

the rotation with eigenvalues exp (== 2z —1¢). Now suppose dim. M, =2,
view M, as a vectorspace, and let {vy,- * -, v,} be an orthonormal basis of M,;
let A; be the linear transformation (‘%’ IOZ) of M,. If dim.M, > 2, then
let y; be the isometry (mq,m’) —> (Aymo -+ vs,m’) of M =M, X M’; if
dim. M, =2 and M’ is noncompact, then we have a tranvection + in a non-
compact irreducible factor of M’, and we define y; to be the isometry
(Mo, m’) = (Aymo,m’) of M. In either case, y; generates an infinite cyclic
subgroup T'; of I(M) which acts freely and properly discontinuously on M.
Thus N;=— M/T; is a Riemannian manifold covered by M. In both cases
y: = Bro; where B; is a transvection of M along some geodesic o through our
basepoint z, and where o; is an isometry of M with «;(z) —@. The element
of H(N:)/Hy(N;) determined by y; being represented on the tangentspace
M, by the differential of y; follows by parallel translation along ¢ from
Bi(z) =y (¢) to z, this element is represented on M, by the differential
of a;. By construction, this differential is given by 4; on (M,), and is the
identity on (M’),; thus we may view the linear transformation A4; as a
generator of H(N;)/H,(N:). In particular, N; has compact homogeneous
holonomy group if and only if A; has finite order, i.e., if and only if ¢ is

® As the proof will show, the essential case in when M is irreducible. This was
originally handled by a lemma developed in discussions with H. C. Wang; in the present
context, however, it is easier to appeal to Theorem 7. 1.
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rational. Affine equivalence induces isomorphism of holonomy groups as
groups of linear transformations; thus the first statement follows from the
fact that the N, are mutually real-analytically homeomorphic and we can
choose continuum many algebraically independent irrational numbers £.
g.e. d.

THE UNIVERSITY OF CALIFORNIA AT BERKELEY,
THE INSTITUTE FOR ADVANCED STUDY.
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