

Errata to Volume 104 Source: Transactions of the American Mathematical Society, Vol. 106, No. 3 (Mar., 1963), p. 540 Published by: American Mathematical Society Stable URL: <u>http://www.jstor.org/stable/1993759</u> Accessed: 25/08/2013 14:43

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Transactions of the American Mathematical Society.

http://www.jstor.org

HORST LEPTIN

References

1. E. Hewitt, *A survey of abstract harmonic analysis*, Some aspects of analysis and probability; surveys in applied mathematics, Wiley, New York, 1958.

2. W. Rudin, Measure algebras on abelian groups, Bull. Amer. Math. Soc. 65 (1959), 227-247.

3. E. Hewitt and S. Kakutani, A class of multiplicative linear functionals on the measure algebra of a locally compact abelian group, Illinois J. Math. 4 (1960), 553–574.

4. G. Aumann, Reelle Funktionen. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd. 68, Springer, Berlin, 1954.

Universität Hamburg, Hamburg, Germany Tulane University New Orleans, Louisiana

ERRATA TO VOLUME 104

Joseph A. Wolf. Homogeneous manifolds of zero curvature, pp. 462-469.

Page 462, line 13 of §2. Delete the sentence " M_s^n is complete if it is homogeneous." For if U is a nonzero totally isotropic linear subspace of R_s^n , then one can check that $R_s^n - U^{\perp}$ is homogeneous but not complete.

Add the hypothesis that M_s^n is complete in Theorem 1 (page 466) and in Theorem 2 (page 467).