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1. Introduction. It is well known(2) that a connected Riemannian homo-

geneous manifold of constant curvature zero is isometric to a quotient Rn/D

where Rn is Euclidean space and D is a discrete subgroup of the underlying

vector group of 7?". We will extend that theorem to Lorentz manifolds (this is

our main result), to compact manifolds with indefinite metric of arbitrary

signature (in contrast to the affine case), and to indefinite-metric manifolds

of dimension <5. We will then give examples to show that the assumption

"compact, or Riemannian, or Lorentz" is essential in dimensions 5 or more.

2. Preliminaries. In order to establish terminology and notation, we will

recall some definitions. A pseudo-Riemannian manifold M" is an M-dimensional

differentiable manifold M with a differentiable family of symmetric bilinear

forms Qp on the tangentspaces Mp of M, where each Qp is equivalent to the

form — Sí ^¿yj'+zZí+i *¿yj- M? has a unique affine connection—the Levi-

Civita connection on its tangentbundle—with zero torsion and such that

parallel translation is a linear isometry (preserves the Qp) of tangentspaces.

M¡ is complete if the Levi-Civita connection is complete. M" is flat, or has

constant curvature zero, if the curvature tensor of the Levi-Civita connection

is zero. A diffeomorphism of pseudo-Riemannian manifolds is an isometry if

it induces linear isometries on the tangentspaces. The group of all isometries

of 717" (onto itself) is denoted 3(M"); 717" is homogeneous if 3(717") is transi-

tive on the points of M". 717" is complete if it is homogeneous. A pseudo-

Riemannian covering is a covering p: N%—>M" of connected pseudo-Rieman-

nian manifolds where p is a local isometry; then every deck transformation

(homeomorphism d of TV? such that p = p-d) is an isometry of 7V7, and, if

TV" is simply connected and D is the group of deck transformations of the

covering, Tkf" is homogeneous if and only if the centralizer of D in 3(7V7) is

transitive on 7VS" [7, Theorem 2.5]. The holonomy group of il7f at x is the

group of linear transformations of the tangentspace (717")s obtained by paral-

lel translation of tangentvectors about sectionally smooth closed curves based

at x. We will make the convention that a Riemannian manifold is just a

pseudo-Riemannian manifold Mn = M\ or M" = 717£, and a Lorentz manifold

is either an M" or an 717£_!.

Received by the editors October 27, 1961.

i1) The author thanks the National Science Foundation for fellowship support during the

preparation of this paper.

(2) This is an easy consequence of the work of L. Bieberbach [5]. A somewhat different

three-line proof is given in [6]. In addition, we will see that this follows directly from.our

Lemma 1.
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The space F of real re-tuples, identified with its tangentspace at every

point and endowed with the bilinear form Q(x, y) = — Yfi xiVj+ £?+i x,yy,

carries the structure of a pseudo-Riemannian manifold 7?". 7?" is flat because

its Levi-Civita connection is the usual affine connection on V, and inherits

from F the structure of a real vectorspace. Subsets X and F of 7?" are called

orthogonal (denoted XA. Y) if Q(X, Y) = 0, and XL denotes the largest subspace

W of 7?" such that XA.W. An element x£7?" is isotropic if Q(x, x) = 0, and a

subspace U of 7?" is totally isotropic if Q( U, U) = 0. When speaking of 7?", we

will often refer to Q, and will usually write Q(x) for Q(x, x). 3(7?") is the group

of all transformations (A, a): x—>;lx+a where a ER" and A is a linear trans-

formation of 7?" which preserves Q; thus 7?" is homogeneous. (A, a) is a

translation if ^4=7. The usefulness of 7?" is due to the fact [7, Theorem 5]

that M" is connected, flat and complete if and only if it admits a pseudo-

Riemannian covering by 7?".

A basis {vi} of F=7?" is called Q-orthonormal if Q(Vi, v})= — S¿y for î' = s

and Q(ví, v¡) = S„ for i>s, on being the Kronecker symbol. Now suppose that

s^n — s and that U is a totally isotropic subspace of 7?", say dim. U = l. One

can then find a Q-orthonormal basis {z/¿} of 7?" such that, defining fi = Vi

— Vn-i+iand ei = Vi-\-vn-i+i (1 ^-iúl), {et} is a basis of Uand ji'i+i, • • • ,vn-i}

W {d} is a basis of £/x. The basis

¡/i) • • • >/¡; n+i, • • •, v„-i; eu ■ ■ ■ , et}

of 7?" is called a skew basis with respect to U. One has the obvious definition of

skew bases for the case s = re — s.

Let p: 7?"—>M" be a pseudo-Riemannian covering, let D be the group of

deck transformations, and let 77 be the holonomy group of M" at p(0).p gives

an identification of 7?" with the tangentspace to M% at p(0), so 77 may be

viewed as acting on 7?". This gives us the standard homomorphism <p: D—*H

by d=(4>d, td)E3(R"); <t> ls onto, and the kernel Ker.ci is the set of transla-

tions in D.

If A is a linear transformation, then Ker.A denotes the kernel and Im.A

the image. If a and b are elements of a group, then [a, b] denotes the com-

mutator aba~xb~x.

3. Computational preparations. Let D he a subgroup of 3(7?"), let Z be

the centralizer of D in 3(7?"), and suppose that Z acts transitively on 7?".

We adopt the convention that d, d', d¿ always represent arbitrary elements of

D, d=(R, t) = (I+N, t), d' = (R', t') = (I+N', t'), di=(Ri, ti) = (I+Ni, h)
where 7 is the identity transformation of 7?".

In the proof of Theorem 14.1 of [7], it was seen that transitivity of Z

implies:

Lemma 1. If dED, then N2 = 0, t±lm.N, and Im.N is totally isotropic.

In the Riemannian case (s = 0 or 5 = re), there is no nonzero totally isotropic
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subspace of Pf, whence the theorem on flat connected Riemannian homo-

geneous manifolds mentioned in the Introduction.

Lemma 2. If dED and x, yER", then Q(Nx, y)+Qix, 7Vy) = 0, Ker.TV
= Im.7V1, Im.7V= Ker.TV1, and N(t)=0.

Proof. Lemma 1 gives us Q = Q(Rx, Ry) — Q(x, y) = Q(Nx, y)4-Q(x, TVy)

+ Q(Nx, Ny) = Q(Nx, y)+Q(x, TVy), proving the first statement. Thus

Q(Nx, y) = 0 if 7Vy = 0, so Ker.7VJ_Im.7V, and the second and third statements

follow from the fact that dim.Ker.TV4-dim.Im.7V = dim.Ker.TV4-dim.Ker.TV1

= dim.Im.TV4-dim.Im.TVL = M. Finally, ¿G Ker.TV because i-LIm.TV by Lemma
1. q.e.d.

An immediate consequence of Lemmas 1 and 2 is:

Lemma 3. If dED, then dm= (I+mN, ml) for every integer m.

A useful tool for examining commutativity in D is:

Lemma 4. If d, d', diED, then NN'+N'N=0 = 7Vi7V27V3.

Proof. Let d" = dd'; then TV" = TV-f-TV'4-7VTV', and Lemma 1 gives

(*) o = TV"2 = 7VTV' 4- TV'TV 4- TVTV'TV 4- TV'TVTV' 4- NN'NN'.

Left multiplication of (*) by TV and nonsingularity of R' = I+N' gives

0 = TVTV'TV; right multiplication of (*) by TV' and nonsingularity of R = I+N

gives 0 = TV'TVTV'. Thus (*) reduces to the first equality of the Lemma. It

follows that 0 = 7V3(TVi4-7V24-7ViTV2)-r-(TVi+7V2-r-7Vi7V2)7V3 = 7V37Vi4-TVi7V3

= TV3TV24-7V27V3, and the second equality follows, q.e.d.

Observe that Lemmas 2 and 4 give us N'Nt'= -TVTV'/' = 0. Thus d"=dd'

andLemma2imply (TV-|-TV'-|-TVTV')(/-|-/'4-TVí') =0 = TVí'4-TV'í. Itfollows that
dd'd~l = (I+N, t)(I+N', t')(I-N, -t) = (I + N' + 2NN', t'+2Nt') and

[d, d'] = (I + 2NN', 2Nt'). This last implies that every translation in D is

central, and that the third term in the lower central series of D consists of

translations. In summary, we have just proved:

Lemma 5. If d, d'ED, then N'Nt'= 0 = NN't, Nt'+N't = 0, dd'd~l
= (I+N'+2NN', t'+2Nt'), [d, d'] = (l+2NN', 2Nt'). The set T=Ker.<b of
all translations in D is central in D, and D is nilpotent of order 3.

Here, of course, by nilpotent of order k we mean only that the (fc-f-l)st

term of the lower central series is trivial, and do not exclude triviality of the

jfeth term. Observe also that T is the full center of D if the translation parts of

elements of D span R".

4. Commutativity. We retain the notation of §3, let<p: 3(P")—>0"(m) be

the canonical homomorphism, let H=(p(D), and define Ud to be the subspace

of 7?s" spanned by {lm.(<b(d) -I) : dED}.
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Proposition 1. 7?" has a maximal totally isotropic subspace Vd which con-

tains Ud and on which 77 acts trivially.

Proof. The Proposition is true for «=1, for we are then dealing with a

Riemannian signature. Now assume re>l and suppose the Proposition true

in dimensions <w. We assume D^I. Then D has a central element 9a I by

Lemma 5, and transitivity of Z shows that the translation part of this element

is nonzero. Let W be the subspace of 7?" spanned by all translation parts of

central elements of D; then Wy^O and Lemma 5 shows that 77 acts trivially

on W. We may assume WL9é0, for, if not, then 77=7 and the Proposition is

trivial.

Suppose that Wi~}W± = 0. Then 7?" is an orthogonal direct sum IF© IF1,

this decomposition is preserved by <t>(D) and <t>(Z), and Q induces nondegener-

ate bilinear forms on W and W1. Thus the Proposition follows by induction

on re.

Now suppose that X = W(~\ W1 is nonzero. We choose a skew basis

ß =   [h: i/lî fll+l,   •   •   •  , Vn-Ï, Cl, «)

of 7?" with respect to X, l = dim.X. As 77 preserves and acts trivially on W,

and thus on X, every element of 77 is of the form

«1 «2 «3

0      hi     hi

0      0      7

in block form relative to ß. The process of restricting to XL and passing to

XL/X shows, by induction on re, that the linear span of {vi+i, ■ ■ ■ , vn-i} has

a maximal totally isotropic subspace F on which each ¿/ acts trivially and

which contains the image of each hi—I. We define Vd=Y@X. YEXl

shows that Vd is totally isotropic, and then it is clear from dimensions that

Vd is a maximal totally isotropic subspace of 7?" which is77-invariant. Let/3'

be a skew basis of 7?" with respect to Vd- Every hEH has form

¿1     ¿2      k

0     ¿4    h

0     0     ¿  .

relative to ß' = {fi, ■ ■ ■ , f'm; v'm+i, ■ ■ ■ , v¿-m; e{, ■ ■ • , e'm}. ¿2 = 0 because

(Lemma 1) Im.(¿ — 7) is totally isotropic and the linear span S of

{»'m+i, • • • , vñ-m} is a positive or negative definite subspace; it follows that

¿5 = 0 because ¿GO'(re). Similarly, A4 = 7. We wish to prove ¿i = 7; then

hEO"(n) will imply ¿6 = 7, we will have
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h =

7   0    ¿3

0   7   0

0   0   7

relative to ß', and the Proposition will be proved. To prove ¿i = 7, it suffices

to prove Im.(¿ — 7) C Vd- As Im.(¿ — 7) is totally isotropic and Vd is maximal

totally isotropic, it suffices to show Im.(¿ — I)A-Vd. It is clear that Im. (h — I)

JLF, so we need only show Im.(¿ —7)_LX. Looking at h in the basis ß, this is

clear because h{ = I. q.e.d.

Proposition 2. Let ß be a skew basis of 7?? with respect to Ud. Then every

hEH is of the form

I    0    ah)

¿=070

0    0    7.

relative to ß, where ah is skew-symmetric ; 77 has an element ho such that ant is

nonsingular; the translation part of every element of D lies in Ufa, and D is

represented faithfully as a group of translations of (7¿. 7re particular, D and 77

are torsion-free abelian groups.

Proof. The form of the elements hEH relative to ß is clear from Proposi-

tion 1. We will write a¿ for «a¡. If hi = h2h%, then ai = ai-\-a%; the existence of

¿o is now clear. Let d0=(ho, t0)ED. Then /0SKer.(¿0 —7)= (7¿ by Lemmas

1 and 2 and nonsingularity of a0. Now let dx=(hi, h) be any element of D, and

observe that one can find integers u and v such that ua0-\-vai is nonsingular.

Let di = d\d0'= (h2, t2); then a2 = ua0+vai is nonsingular and ti — vh+utoE Ujy.

Thus hE UD. The Proposition follows, q.e.d.

5. The main results. Our main result is the Lorentz case of the following

Theorem 1. As mentioned in the Introduction, the Riemannian case is known

from the work of L. Bieberbach [5]. The compact case is interesting in rela-

tion of the work of L. Auslander on compact locally affine spaces ([l; 2; 3

and 4], for example), and shows that the metric plays a strong role.

Theorem 1. Let M" be a connected flat homogeneous pseudo-Riemannian

manifold, and suppose that

1. Af" is compact; or

2. Af" is Riemannian, i.e., 5 = 0 or 5 = re; or

3. Af" is Lorentzian, i.e., 5=1 or s = n — \; or

4. the dimension n = dim.A7"^4.

7¿ew Iff is isometric to a quotient R"/D where D is a discrete group of transla-

tions of 7?". This result is best possible in the sense that, if re>4 and if 5 5^0, 1,

re —1 or re, then there is a connected noncompact flat homogeneous N" with non-

trivial holonomy group.
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Proof. Let D be the group of deck transformations of the universal

pseudo-Riemannian covering w:R"—>M", let Z be the centralizer of D in

3(7??), and let 77 be the holonomy group of M" at 7r(0). Z is transitive on R"

by homogeneity of M" ; this allows us to use the results of §4.

We adopt the terminology of §4. If M" is compact, then the translation

parts of the elements of D span R", whence í/¿ = 7?" by Proposition 2; thus

Ud = 0. If M" is Riemannian or Lorentzian, then every totally isotropic sub-

space of 7?" has dimension <2; thus m —dim.Ud<2. If m^O, then Proposi-

tion 2 gives usa skew nonsingularmXw matrix <%„; it follows that m = 0; thus

í/d = 0. If m ̂ 4 and 7l7" is neither Riemannian nor Lorentzian, then s = 2 and

m = 4. Then, if Ud^O, Proposition 2 would give us d=(h, t)ED with 0^1

E i/i) = Im.(A —7). This gives vER" with t= (h — P)v, whence d( — v) =h(—v)

-\r(h — I)v= —v, contradicting the fact that d has no fixed point.

Now Ud = 0 in all four cases, whence 77= 7 and D consists of translations.

D is discrete because ñI" = R"/D is a manifold.

The manifolds TV" will be constructed in §6, completing the proof of

Theorem 1, in such a way as to show the bounds of Theorem 2 to be best

possible.

Theorem 2. Let Mf be a connected flat homogeneous pseudo-Riemannian

manifold, let D be the group of deck transformations of the universal pseudo-

Riemannian covering tv: 7?"—>Af", let 77 be the holonomy group of AT", and let

<j> : D—+H be the standard homomorphism. Then D is free abelian on some num-

ber m 5ïm of generators, D is represented faithfully as a discrete group of transla-

tions of a linear subspace of R", D has a subgroup D' such that D = D'XKer.(p,

and m^n — 2 in case H9eI. M¡ has the homotopy type of an m-torus; its Euler-

Poincarê characteristic is zero, and its integral cohomology is an exterior algebra

on m generator s i3).

Proof. The first part follows easily from Proposition 2, in the same man-

ner as the proof of the first part of Theorem 1. To prove the second part, we

observe that both Tt7" and an m-torus are Eilenberg-MacLane spaces K(D, 1).

6. An example. In order to complete the proof of Theorem 1 and show the

bound of Theorem 2 to be best possible, we take integers n and s with

2 __s __m — 2 and m>4, and will construct connected flat homogeneous pseudo-

Riemannian manifolds TV? = R"/D with nontrivial holonomy group and with

D free abelian on m = n — 2 generators.

Let {vi} be an "orthonormal" basis of R", and let U be a two-dimensional

totally isotropic subspace of R" such that we have a skew basis

ß= \fi, ft] Vi, ■ ■ ■ , vn-2; -i, e2] of 7?" with/<=»,+.„__+<, .<=»<—»„-í+íi and

{e_, e2 j is a basis of U. Let

(3) Compare with [2; 3; 4], and the proof of [l, Lemma l].
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h =

7 0 7

0 7 0

0   0   7

relative to ß, where

J =u:>
and observe that ¿ is in the orthogonal group of 7?". We now define elements

di, d2, ■ ■ ■ , dn-2 of 3(K) by di(x) = h(x)+v3, d2(x)=x+Vi, • • • , ¿n_4(x)

= x-\-vn-i, dn-i(x)=x-\-ei, and ¿n_2(x) =x+e2. Let D be the subgroup of

3(7?") generated by the di, and let Z be the centralizer of D in 3(7^)- It is

clear that D is free abelian on re —2 generators, that N^ = R"/D is a manifold,

and that A7? has nontrivial holonomy group generated by ¿. Thus we need

only prove that N" is homogeneous, i.e., that Z is transitive on the points

oiRl.
To prove transitivity of Z, let v be an arbitrary element of 7?"; we must

find (z, i)ê3(K) which commutes with each ¿,. Write v = aifi+aif2Lw

where wE Ux. To construct z, we define a linear transformation z' of U1 by

v»-^V3 — a2ei-r-aie2, Vi—*Vi for 3<i^n — 2, and e—*e¡. This preserves the bi-

linear form induced on UL by Q, and thus extends to an element of the

orthogonal group O(re) of 7?", say z, by Witt's Theorem. As z(ví)=Ví lor

3<¿áre — 2 and z(e,)=ej, it follows that (z, v) commutes with dk for k>\.

To see that (z, v) commutes with di, we must show that zh = hz and (z —7)t>3

= (h — I)v. The second condition is satisfied by construction of z'. Now

2 =

z2

24

0

in block form relative to ß. By construction of z', zt = I and 2« = 7. Then

2GO*(re) gives 2i = 7. Thus

7   22  J + 23'

0   7       26

0    0       7

¿z

in block form relative to ß, proving transitivity of Z on 7?".
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