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THE CLIFFORD-KLEIN SPACE FORMS OF INDEFINITE METRIC 

BY JOSEPH A. WOLF* 

(Received February 24, 1961) 

1. Introduction 

The spherical space form problem of Clifford-Klein is the classification 
problem for complete connected riemannian manifolds of constant positive 
curvature. E. Calabi and L. Markus have recently considered the classi- 
fication problem for complete connected Lorenz n-manifolds M," of con- 
stant positive curvature, and have [1; Theorems 2 and 3] reduced it to 
the spherical space form problem for riemannian (n - 1)-manifolds, when 
n ? 3. We will extend their ideas to more general signatures of metric, 
and reduce the classification problem for complete connected pseudo- 
riemannian n-manifolds M,, of constant positive curvature, and with s # 
n - 1 and 2s < n, to the spherical space form problem for riemannian 
(n - s)-manifolds. As the spherical space form problem is solved in 
dimension 3 [3], and is trivial in even dimensions, this gives a classifica- 
tion (up to global isometry) of the complete connected pseudo-riemannian 
manifolds M8' of constant positive curvature with s # n - 1, 2s < n, and 
either n - s = 3 or n - s even. 

I am indebted to L. Markus and E. Calabi for showing me the manu- 
script of their paper [1], which is the basis for this note. 

2. Pseudo-riemannian manifolds 

In order to establish terminology and notation, we recall some basic 
facts about pseudo-riemannian manifolds. A pseudo-riemannian metric 
Q on a differentiable manifold Mis a differentiable field of non-degenerate 
bilinear forms Qp on the tangent-spaces Mp of M; a pseudo-riemannian 
manifold is a differentiable manifold with a pseudo-riemannian metric. 
We will consider only those pseudo-riemannian manifolds (M, Q) where 
each Qp has the same signature', say -dxi - * - dx' + dx'l1 + * * * + dx2; 
(M, Q) is then denoted MS". In the riemannian case (s = 0), we will simply 
write Mn. A pseudo-riemannian manifold Msn carries a unique linear con- 
nection-the Levi-Civita connection on the tangent-bundle of M8n-with 
torsion zero, and such that parallel translation is an isometry of tangent- 
spaces. In local coordinates x-(x1, ... , xn), we set qij(x) = Qx((&I8xi), (0/1xj)) 

* The author is grateful for National Science Foundation Fellowship support while writ- 
ing this paper. 

This is automatic if M is connected. 
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and lower indices of the curvature tensor Ri k,(X) of the Levi-Civita con- 
nection, using the classical formula Rijkl(X) = :qjm(x)Ri kt(x); M7 has 
constant curvature K if 

RijkZ(X) = K[qik(x)qi,(x) - qik(x)qj,(x)] 

identically in x, for every (i, j, k, 1) and every local coordinate system. M." 
is complete if its Levi-Civita connection is complete, i.e., if every geodesic 
can be extended to arbitrary values of the affine parameter. An isometry 
is a diffeomorphism d: N,4-+Mf" where every tangent map is a linear isom- 
etry; a pseudo-riemannian covering is a covering f: Nn -+ M;' of con- 
nected pseudo-riemannian manifolds where every tangent map is a linear 
isometry. 

The indefinite orthogonal group Os(n + 1) is the group of all linear 
transformations of the real vector space R"+' which preserve the bilinear 
form bn(x, y) = -x-y-* * *-x~y. + x,+ly+y + * * * + x,+ly?1+y. The quadric 
bl(x, x) = 1 carries a pseudo-riemannian metric such that it is a pseudo- 
riemannian manifold Sn of constant curvature +1, and Os(n + 1) is its 
full group of isometries [4,? 4]. We define Ss to be Ss if s < n - 1, Sn-_ 
to be the universal pseudo-riemannian covering manifold of SnU1, and Sn 
to be the component of (0, **, 0, 1) in Sn. We have proved [4, Theorem 
5] that every complete connected pseudo-riemannian manifold Mn of 
constant curvature +1 admits a universal pseudo-riemannian covering 
f: Sn -* M, and is thus isometric to the quotient manifold SSID where 
the subgroup D of the group of isometries of S9n is just the group of deck 
transformations of f. Thus we define a pseudo-spherical space form of 
signature (s, n - s) to be a complete connected pseudo-riemannian mani- 
fold Mst of constant curvature + 1. A spherical space form is just a pseudo- 
spherical space form M" = Mn, and, in the terminology of [1], a relativ- 
istic spherical space form is a pseudo-spherical space form Ml. 

3. The reduction 

This reduction was inspired by that of Calabi and Markus [1] where 
they do the case s = 1; the proof of our Theorem 1 being virtually identi- 
cal to their proof for s = 1, while the methods of our Theorem 2 are dif- 
ferent from their quite geometric techniques. 

THEOREM 1. Let M: be a pseudo-spherical space form with s # n - 1 
and 2s ? n. Then Mn has finite fundamental group. 

PROOF. Sn = 9Sn because s < n - 1, so we have a universal pseudo- 
riemannian covering f: Sn -* M84. The group D of deck transformations 
of the covering is isomorphic to the fundamental group of Mn, so we must 
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prove that D is finite. 
S: is given by -EIxI + EI+IX2 =1 where the x; are coordinates in 

R71+ relative to a basis {v1, ***, v,,1}. Let V be the subspace spanned by 
{vats, *., v, ?1}. If g is any non-singular linear transformation of R n+1' 

then 2s < n < n + 1 gives us 

dim (Vn gV) ?2 dim V- (n + 1) > 0 . 

If Sn5 denotes the "equatorial sphere" xi = x. =s = 0, Es+lxj = 1 in 
S8", and if g e D, it follows that g(Sn-s) meets Sn-s 

The rest of the argument follows [1]. If D were infinite, compactness 
of Sn-s would give a point p e 5n-S, a sequence {gij of distinct elements of 
D, and a sequence {pi} in Sn-s such that each gi(pi) e Sn-s and {gi(pi)} -*p 
We may pass to a subsequence and assume {pi} __ p' e Sn-S. This gives an 
element g e D with g(p') = p; so {g-1gi(pJ} -* g-1(p) = p'. As all the gi 
are distinct, we may assume that none of the g-1gi is 1 e D. Thus every 
neighborhood of p' in Ssn meets one of its transforms by an element #1 
of D. This is impossible because D, being a group of deck transformations, 
acts freely and properly discontinuously on Ss. q.e.d. 

Notice that the product 0(s) x 0(n - s + 1) is a maximal compact sub- 
group of Os(n + 1), where 0(s) is the ordinary orthogonal group on the 
first s coordinates in Rn+1 and 0(n - s + 1) is the ordinary orthogonal 
group on the last n - s + 1 coordinates in R 

LEMMA (E. Cartan). Every compact subgroup of Os(n + 1) is conjugate 
to a subgroup of 0(s) x 0(n - s + 1). 

PROOF. This follows from a technique of E. Cartan [2, ? 16]. Also, 
A. Borel has remarked that the lemma is just simultaneous diagonaliza- 
tion of two quadratic forms. q.e.d. 

THEOREM 2. Let Sn-sIG be a spherical space form, view G as the image 
of a faithful orthogonal representation f: H-* 0(n - s + 1) of an abstract 
finite group H, let g: H-* 0(s) be any orthogonal representation of H. 
and set D = (g + f)(H) c0 (s) x 0(n-s + 1) c Os(n + 1). Then D is 
free and properly discontinuous on Sn, SSnJD is a pseudo-spherical space 
form, and S,,/D has finite fundamental group if s # n -1. Conversely, 
let Mn be a pseudo-spherical space form with s # n - 1 and with finite 
fundamental group (automatic if 2s ? n). Then Mn is isometric to one 
of the manifolds SS'7D described above. 

PROOF. D is finite, thus properly discontinuous on Sn. If h e H and 
(g + f )(h) has an eigenvalue + 1, then either h = 1 or the corresponding 
eigenvector lies in the span of the first s coordinates on Rn l. Thus D 
acts freely on SSn. This shows that S,,/D is a pseudo-spherical space form. 
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If s * n - 1, then S." is simply connected, and the fundamental group of 
S.:/D is finite. 

For the second part of the theorem, let f: S." -- M." be the universal 
pseudo-riemannian covering, and let D be the group of deck transforma- 
tions. As s * n - 1, D is a subgroup of 08(n + 1). D was assumed finite, 
thus compact, although this is automatic if 2s < n. Using the lemma, 
we may replace D by a conjugate, thereby changing M," by an isometry, 
and assume D c 0(s) x 0(n - s + 1). Now write every a e D in the form 
(al, a2) with a, e 0(s) and a2 G 0(n - s + 1). The {a2} generate a subgroup 
G of 0(n - s + 1) which acts freely on the equatorial sphere So-* in S."; 
thus S''-/G is a spherical space form. Set H = D, f(a)= a and g(a) = 
a,, and the theorem is proved. q.e.d. 

Theorems 1 and 2 reduce the classification problem for complete con- 
nected pseudo-riemannian manifolds M." (s # n - 1 and 2s < n) of con- 
stant positive curvature to the classification problem for complete con- 
nected riemannian manifolds M,,-' of constant positive curvature. 

INSTITUTE FOR ADVANCED STUDY 
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