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Vincent's Conjecture on Clifford Translations of the Sphère

by Joseph A. Wolf1, Princeton (N. J.)

I. Introduction and statements of theorems

G. Vincent has suggested the possibility that every finite group of Clifford
translations of a sphère is either cyclic or binary polyhedral [2, § 10.5]. In a

récent Comptes rendus note [3] I stated that this is the case ; the purpose of

this note is to supply a proof.
Sn is the unit sphère in EucLiDean space Rn+1) and carries the induced

RiEMANNian structure ; hence the group of isometries of Sn is the orthogonal
group O(n -f- 1). Recall that an isometry / of Sn is a Clifford translation
if the distance between a point x Sn and its image f(x) is independent of

x, This just means that either / ± / (/ identity) or n + 1 2 m and

there is a unimodular complex number A such that / has m eigenvalues

equal to A and m eigenvalues equal to the complex conjugate A of A.

We recall the binary polyhedral groups. The polyhedral groups are the

dihedral groups 9m, the tetrahedral group J7^ the octahedral group O

and the icosahedral group J7the respective groups of symmetries of the

regular m-gon, the regular tetrahedron, the regular octahedron and the regular
icosahedron. Each polyhedral group can, in a natural fashion, be considered
as a subgroup of the spécial orthogonal group S 0 (3). Let n : Spin (3) -> S 0 (3)

be the uni versai covering. The binary polyhedral groups2) are the binary di¬

hedral groups 0* tt~1(3w), the binary tetrahedral group J7~* 7r~1(J7),
the binary octahedral group O* n~x(O), and the binary icosahedral group

We can now state

Theorem 1 (conjectured by Vincent) // T is a finite group of Clifford
translations of a sphère, then T is either a cyclic group or a binary polyhedral

group.
In fact, one can add

Theorem 2. Let T be a finite group of Clifford translations of a sphère
Sn c R*»1. If T is cyclic of order 1 or 2, then T {/} or {± /}. // T is

cyclic of order q > 2, then n + 1 is even (say n + 1 2s) and F is the

l) This work was done while the author held a National Science Foundation fellowship.
f) This définition was brought to my attention by J. Tirs.
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image of a représentation q of the abstract cyclic group Zq where A is a

generator of Zq and q is S 0 (2s)-equivalent to the représentation

/R(t/s)
\ / cos(2n6) sm(2nd)

If T is binary polyhedral and noncyclic, then 4 divides n + 1 (say n + 1

and F is the image of a représentation q of an abstract binary polyhedral

group O3* y2 T where q is SO(4:s)-equivalent to a sum of s copies of the

S O (^-représentation

9>* c Spin(S) SU(2) c 50(4)

Finally, the images of thèse représentations are finite groups of Clifford trans¬
lations of Sn.

Using Theorem 2 we will prove

Theorem 3. Let T be a finite group of Clifford translations of a sphère
Sn c ffw+1. Then the centralizer of T in 0(^+1) is transitive on Sn.

Theorem 4. Let T be a finite subgroup of 0(w + 1). Then thèse are équi¬
valent:

(1) r is a group of Clifford translations of Sn.

(2) r is the image, by one of the représentations described in Theorem 2, of

a cyclic or binary polyhedral group.
(3) The centralizer of T in 0(w + 1) is transitive on Sw.

(4) The quotient SnjT is a RiEMANNian homogeneous manifold.

II. Proof ol Vincent* s conjecture

We must give an abstract characterization of finite groups of Cufford
translations of a sphère.

Définition. Let <p\T -> U(q) be a faithful unitary représentation of an

abstrait finite group T such that, for every y c r, either q>(y) ± / or q

is even (say q 2s) and there is a unimodular complex number X such that

<p(y) is U(q)-conjugate to

'X-
X
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Then q> is a Clifford représentation of T. Let A be an abstrait finite group
which has a Clifford représentation. Then A is a Clifford group.

Note that a Clifford représentation <p of r gives a représentation

tX U(q) c S 0(2g) of T as Clifford translations of S29'1, and a finite

group A of Clifford translations of Sn admits a Clifford représentation
A c 0{n+ 1) c U(n + 1).

Lemma 1. Let T be a noncyclic Clifford group. Then

(1) Every abelian subgroup of T is cyclic.

(2) Given primes p and q, every subgroup of T of order pq is cyclic.
(3) F has a unique élément of order 2. It générâtes the center of T.

(4) // oc and oc* are conjugate éléments of T, then oc oc* or oc*1 oc*.

Proof. Statements (1), (2) and the uniqueness of éléments of order 2 in r
are well known to follow from the fact that F has a free action on a sphère ;

see [2], [4] or [5], for example. As T has even order [2, § 10.5], (3) follows
when we show that a central élément ^1 of T has order 2.

Let q? be a Clifford représentation of T. Looking at characters, we see

that the irreducible components of q> are equal and are Clifford représen¬
tations, so we may assume ç? irreducible. If y ^ 1 is central in T, Schtjr's
lemma shows that <p (y) is scalar,

v(y)

Hence A A so | A | 1 implies (y ^ 1) <p(y) /, so that y2 1

and (3) is proved. In (4), we may assume oc not central in T, so

and V(<**)

hâve the same eigenvalues. Thus either X X* and oc oc1, or k X* and

*-*:=«*. Q.E.D.

Lemma 2. Let I\ be a normal subgroup of a Clifford group T, assume

Tx cyclic or binary dihedral 9* (m #2), and suppose T generated by I\
and some élément r T. Then T is cyclic or binary dihedral.

Proof. First suppose I\ cyclic of order m : ocm 1. roc tt1 oc or oc"1 by
Lemma 1. If rocir1 oc, T is abelian and thus cyclic by Lemma 1. Now
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assume roct"1 oc"1 =£ oc. r is not central in F so r2 ^ 1, but r2 is

central in F and r is not cyclic, so t has order 4. Thus F is binary di-
hedral 9* if m is odd, 9* if m 2s.

Now suppose I\ binary dihedral 9* with m ^ 2 : ocm 1 /?4, Pocp~x

a"1 for m odd; <%2w 1, ]82 am, /ta/?-1 oc'1 for m even. As m =£ 2,

the cyclic group {a} is a characteristic subgroup of I\, hence a normal

subgroup of r. Thus roc r~x is either oc or oc1. /?2 is central in F because

it has order 2, so the subgroup F' generated by p2, oc, and either t or rp
is abelian and thus cyclic. F is generated by F' and /?. r$r~x has order 4,

hence is of the form ffocu or pzocw; thus p~xrp isoftheform ocur or ocurpz

and p~x(rp)p isoftheform ocu(rp) or ocu(rp)p2. Thus Fi is normal in

F and we are done by the first paragraph of the proof. Q.E.D.
The next lemma dépends on a procédure of H. Zassenhaus [5, proof of

Satz 7] which dépends on his resuit [5, Satz 6] : Let G be a finite solvable

group of order not divisible by 28+1, and which contains an élément of order

2s~1(s> 1). Then G has a normal subgroup Gx, with cyclic 2-Stlow sub¬

group, such that GjGx is the cyclic group Z2 of order 2, the alternating group
S?A on 4 letters, or the symmetric group c% on 4t letters. The lemma also uses a

resuit of G. Vincent [2, Théorème X] which implies that a Clifford group
with ail Sylow subgroups cyclic is either cyclic or binary dihedral 9* (m odd).

Lemma 3. A solvable Clifford group is cyclic, binary dihedral, binary tetra-
hedral or binary octahedral.

Proof. Let F be a solvable Clifford group. We recall [2,5] that the odd

Sylow subgroups of F are cyclic and the 2-Sylow subgroups are either

cyclic or generalized quaternionic (binary dihedral 9^ where m > 1 is a

power of 2) because every abelian subgroup of F is cyclic. If the 2-Sylow
subgroups of F are cyclic, we are done by the above-mentioned resuit of

Vincent. Otherwise, F has order 28n with n odd and s>2, and an

élément of order 28~l. Using the above-mentioned resuit of Zassenhatts, we

take a normal subgroup Tt of F with ail Sylow subgroups cyclic and

T/Tt Z2î ^ or c%. Note that Fx is either cyclic or 9* (m odd) by the

resuit of Vincent.

Case 1: TjTx Z2. By Lemma 2, F is cyclic or binary dihedral.

Case 2: TjT1 S^êt. As the 2-Sylow subgroups of F are generalized
quaternionic and those of F/Fi are Z2 X Z2, I\ must hâve some even
order 2t. T/Tx is given in generators and relations by /i2 =^2 c53 1,

ffî Jvfi9 cojMftT"1 ^ and vù)-'1 1$. We choose représentatives p, v,

m in F for £, $, ô in T/Tt.



Vincent's Conjecture on Clipfobd Translations of the Sphère 37

First suppose that I\ is cyclic : oc2t 1. Lemma 1 shows that one of

vju, v and /j commutes with a, sowe can assume juoc oc/â. Then pt and
oc generate a cyclic group of order 4t, which is normal in the group F'

generated by ft,<x and v. Lemma 2 shows that F' is either cyclic order
St or binary dihedral 9*e °f order St. Note that F' is normal in F. If
t =£ 1, Lemma 2 shows that r is binary dihedral. If t 1, Tr Q* has

automorphism group eS^, so an automorphism of F' of order 3 k has order
3, and thus co3 is central in F. Replacing w by aco if necessary, we see

that r is the binary tetrahedral group J7~* : /u* 1, ju,2 v2 oc,

co3 1, fÂV/j,"1 v1, cofjtco"1 v and covco"1 v^.
Now suppose that Tt 9* (m odd): «m j84 1, pocp-1 a"1. The

cyclic group generated by # is characteristic in I\, hence normal in T.
As before we can assume poc oc/j,, so [i and a generate a cyclic group,
evidently normal in the group r' generated by /j, v and oc. By Lemma 2,

F; is either cyclic or binary dihedral. As the order of F" is not 8 and T1

is normal in the group T" generated by r' and /?, F" is binary dihedral
by Lemma 2. F" is normal in F because it is generated by Tl9 fi and v;
a final application of Lemma 2 shows that F is binary dihedral.

Case 3: T/T1 cS^. We hâve a natural homomorphism y: T ->c5i of

F onto c% with kernel Tl9 and we set F7 -y;~1(£^). F' is a normal sub-

group of index 2 in I\ By Case 2, F; is either binary dihedral 9* (q ^ 2)

or binary tetrahedral J7"*. If F' Q*(q # 2), Lemma 2 shows F 9£.
If F' J7"*, then Fx is cyclic order 2, is the center of F' and is the center
of F. It is now easy to see that F is the binary octahedral group (?*.

Q.E.D.
It now remains only to show that a non-solvable Cliffobd group is the

binary icosahedral group J7*. Our proof dépends on the isomorphism of J7*

with the group S £(2,5) of unimodular 2x2 matrices over the field Z6 of
5 éléments, as well as a resuit of M. Suzuki which implies [1, Theorem E]
that a non-solvable group with every abelian subgroup cyclic has a normal

subgroup isomorphic to some SL(2,p) with p > 3 prime.

Lemma 4, // p is a prime and SL(2,p) is a Clifford group, then p 3

or p 5.

Proof. Let w be a generator of the multiplicative group of non-zero élé¬

ments of the field Zp of p éléments, and set

/co 0 \ /l 1\
v f and oc in SL(2,p)

\0 or-1/ \0 1/

a(o^ so co2 ± 1 (mod. p) by Lemma 1. Hence ct>4 1 (mod. p)
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so, as m has order p 1 in the multiplicative group, p 1 divides 4.

Thus p is 2, 3, or 5. p ^ 2 because S £(2,2) has several éléments of order 2.

Q.E.D.

Lemma 5. £e£ T be a Clifford group, and suppose that T has a normal

subgroup I\ isomorphic to S£(2,5). Then T I\.
Proof. Given yeT, let ad (y) dénote the automorphism a-^yay"1 of

I\. Let ycT and assume that ad (y) is an inner automorphism of I\.
There is a y1 I\ with #d(yy') 1, so y y' is central in the noncyclic
Clifford group generated by y y' and I\. Thus yyf I\, for either

y y' l or y y' is the unique élément of F of order 2, and that is contained
in I\. Thus y' c I\ implies y e I\. It follows that r/rx is isomorphic to

a group of outer automorphisms of S£(2,5). The group of outer automorphisms
of S 1(2,5) has order 2, so Fx has index 1 or 2 in T.

Now assume r^^, and let a T such that ad(a) is the outer auto-
/0 1\

morphism of S £(2,5) I\ which is conjugation by 1. a cannot
V °/

hâve order 2 but a2 /eS£(2,5), being central in T. In S£(2,5) we

hâve
l 1\ /l 0\ /0 1

h ^ and y

As ad(a)<x f}* and yocy-1 f}-1, fi is conjugate in T to f}-z {}2. As

r is Clifford, it follows that fi I or p has order 3. This is a contradic¬
tion. Q.E.D.

Lemma 6. Let T be a non-solvable Clifford group, Then T is a binary
icosahedral group J7*.

Proof. Lemmas 4 and 5 and the resuit mentioned of Suzuki [1, Theorem E]
show r^S£(2,5). But S£(2,5)^J7*. Q.E.D.

Theorem 1 is an immédiate conséquence of Lemmas 3 and 6.

III. Représentations of Clifford groups

Given an abstract Clifford group T, we will find the faithful orthogonal
représentations <p : F -> 0{n + 1) such that q>(T) is a group of Clifford
translations of S11. This will provide proofs of Theorems 2 and 3.

Lemma 7. Let y generate a cyclic group T of finite order q and let

y:T->O(w+l) be a faithful orthogonal représentation such that y (F) is a

group of Clifford translations of S71. // q < 2, ^(r) {/} or {± /}« If
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q > 2, then n + 1 2s and y is O(n + l)-equivalent to a sum of s copies
of one of the représentations given by

f (y) R(t q) £ prime to g.\(2tl)(2tl)J
Conversely, {/}, {±/} awi 0(2s)-conjugates of images of sums of s copies
of a at are groups of Clifford translations.

Proof. The statement for q < 2 is clear ; assume q > 2. As y) (y) is a

Clifford translation of order q, it has (n + 1 2s) s eigenvalues
exp(27tit/q) and s eigenvalues exp( 2nitlq), where t is prime to q.

/B(tlq)

Thus y)(y) is O(n + l)-eonjugate to I ),so^is O(n+l)~

équivalent to at © © ot. The rest is clear. Q.E.D.

Lemma 8. An irreducible Clifford représentation <p of a non-cyclic group
r has degree 2.

Proof. F is binary polyhedral. Suppose first that r 0^. m> 1 as

Q* is cyclic. 9* has m + 3 conjugacy classes of éléments, hence m + 3

inequivalent irreducible unitary représentations, say of degrees djt The

commutator subgroup has index 4 so we may assume dt d2 dz d4 1,

and the other df> 1. Sdf 4m as 0* has order 4m, so each di is 1

or 2. Kp has even degree as T is non-cyclic, so the degree of <p is 2.

Now suppose r J7~* binary tetrahedral group. As above, we see that
the degrees of the irreducible représentations are 1, 2 and 3. As <p has even

degree, it has degree 2.

Suppose that r O*. Q* has a subgroup J7~* of index 2 such that q?

is irreducible if and only if its restriction to JT* is irreducible. Hence <p has

degree 2.

Finally, suppose that T J*. J7* has 9 conjugacy classes, order 120,

and présentation: oc10 1, oc5 y3, y^y"1 flr^y. As ç? has even degree

q 2r, (p(<x) has r eigenvalues exp (2ni vflO) and r eigenvalues

exp( 2ni v/10), for some integer v prime to 10. Thus the character %v

of <p is determined on 6 conjugacy classes by r and v : j^(l) 2r, xv(*)
2r cob(wv/5), xv(a2) 2r cos(2ttî;/5), ^(a3) 2r cos(3^î;/5), **(**)
2rcos(4^v/5) and ^(^x5) 2r.

Let 6 be an eigenvalue of 9?(y). As <p(y)3 ç?(<%)5 /, 6 is a cube

root of 1. y(y) z£ I so 6 exp(2rci/6) or 6 exp( 2ni/6). Thus

ï 3) r and
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r. Finally %9 *& zero on ^e conjugacy class consisting of éléments of
order 4, so %v is determined on ail 9 conjugacy classeshence is completely
determinedby r and v. We notice that ^ is precisely r times the cha-
racter of one of the représentations J7* c Sp/7?(3) SU(2) c 1/(2), so the

irreducibility of <p implies r= 1. Q.E.D.
We remark that we hâve just seen: If y: J7* -> U(q) is an irreducible

Clifford représentation, then q 2 and <p is équivalent to one of the repré¬
sentations J* c Spin (3) SU(2) c U{2). In fact we hâve

Lemma 9. Let <p\ Y ->U(q) be an irreducible Clifford représentation of

a noncyclic group. Then q 2, r is binary polyhedral, and <p is équivalent
to one of the représentations T c Spin (3) SU(2) c (7(2).

Proof. We need only check the équivalence class of ç> for T 3^ (m > 1),

J7"* and 0*. As with J7*, we calculate the character %v and see that it
is the same as the character of one of the représentations r c Spin (3)

SU(2) c U(2). Q.E.D.

Proof ol Theorem 3. Given a finite group r of Clifford translations of

Sn c /?n+1, we will show the centralizer G of F in O(n -{- l) to be tran¬
sitive on 8n. This is obvious if T is cyclic of order 1 or 2, so we first suppose
r cyclic of order q (q > 2). Let 2s n + l, as n + 1 is even; let

T' c U(s) be the cyclic group generated by exp(2ni l/q)L F" is central
in U(s) so its centralizer in U(s) is transitive on the unit sphère in complex
euclidean space C8. By Lemma 7 we can assume that r7 goes onto T,
and its centralizer U(s) into G, under the inclusion U(s) c O(n + 1)

induced by an isometry of C8 onto fîw+1 which sends the unit sphère of

C* onto Sn. Hence G is transitive on Sn.

Now suppose F noncyclic. T is isomorphic to a binary polyhedral group £P*.

Let K be the algebra of quaternions and let Kr be the multiplicative group of

unit quaternions. Under the inclusion and identification £?* c Spin (S) Kf,
we'U view £F* as a subgroup of Kf. Let K*(4:S n + 1) be a left quater-
nionic euclidean space, so that K (hence Kr, hence iT7*) acts on K8 by left

scalar multiplication and the symplectic group Sp(s) acts on the right. The

action of Sp(s) commutes with that of .!7?*, and Sp(s) is transitive on the

unit sphère of K8. By Lemma 9 we can assume that £P* goes onto T, and

Sp(s) goes into G, under the inclusions Kr c O(n+ 1) and Sp(s) c O(n + 1)

induced by an isometry of K8 onto Rn+1 which sends the unit sphère of K8

onto Sw. Hence G is transitive on $w. Q.E.D.

Prooî of Theorem 2. By Lemmas 7 and 9, ail that remains to be shown is

that the images of the représentations of Theorem 2 are actually groups of
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Clifford translations. Let r c 0(n + 1) be the image of one of those re¬
présentations. In the proof of Theorem 3, we saw that the centralizer G of
T in O(n + 1) is transitive on Sn. Now let y c T, let x, y eSn, and let

<5 be the distance fonction on Sn determined by its RiEMANNian metric.
There is an élément g e G with g(x) y. Hence

ô(x, yx) ô(gx, gyx) ô(y, ygx) ô(y, yy)

so y is a Cltetord translation of Sn. Q.E.D.

IV. Homogeneous space-forms

We will prove Theorem 4. Theorem 2 establishes the équivalence of (1) and

(2), Theorem 3 shows that (1) implies (3), and the proof of Theorem 3 shows
that (3) implies (1). It is obvious that (3) implies (4): the centralizer of T

induces a transitive group of isometries of Sn/I\ Finally, (4) implies (3) is

known [3, Théorème 1]. Q.E.D.
We remark that Theorems 3 and 4 provide a proof of a resuit [3, Théorème 6]

previously announced without proof in the Comptes rendus, and that Theorems
1 and 4 provide an alternative proof of the classification [3, Théorème 5] of

the RiEMANNian homogeneous spherical space-forms.
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