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THE MANIFOLDS COVERED BY A RIEMANNIAN
HOMOGENEOUS MANIFOLD.*

By JosepE A. Worr.!

Introduction. The sphere is known to be the universal covering for
complete connected Riemannian manifolds of constant positive curvature.
More precisely, if M is an n-dimensional complete connected Riemannian
manifold of constant sectional curvature k% > 0 with & > 0, and if S» is the
sphere of radius £ in Euclidean space R, with the induced metric, then
there is a covering of M by S such that the covering projection is a local
isometry. Because of this phenonmenon, the complete connected Riemannian
manifolds of constant positive curvature are called the “spherical space-
forms.” In his thesis, G. Vincent [14] attempted to classify them. Following
this line of investigation, we take a compact connected Riemannian homo-
geneous manifold M and ask which Riemannian manifolds admit M as a
Riemannian covering manifold. In Chapter I, this problem is reduced to a
problem on discrete subgroups of compact Lie groups:

Gwen a compact Lie group G and a closed subgroup K, find all finite
subgroups T' of G such that T meets the union of the conjugates of K only
at the identity element of G.

For the most part we restrict our attention to the case where T lies in the
identity component of @, or, equivalently, where G is connected. In Chapter
IT we obtain some bounds on the ranks of abelian subgroups of T, and see
that the problem of classifying these groups I' is inaccessible unless rank. G
—rank. K = 1.

Chapter II ends with a sharper bound on the ranks of abelian subgroups
of T, in case rank. ¢ —rank. K =1, which implies that every abelian sub-
group of T' is cyclic if the semisimple part of G is simply connected and T
lies in the identity component of G. We remark that H. Zassenhaus [16]
and M. Suzuki [18] have given a complete classification of the finite groups
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662 JOSEPH A. WOLF.

with all abelian subgroups cyclic. Under certain conditions on ¢, K and the
order of T' (Corollary 10.1) it follows that T itself is cyclic.

In Chapter IIT we obtain an arithmetic criterion (Theorem 6), assuming
G and K connected, for an arbitrary given finite cyclic subgroup of G to act
freely on G/K. This criterion involves the Weyl group of G and the position
of K in G. It is applied to an arbitrary finite subgroup 3 of G by finding
cyclic subgroups of 3 such that every element of 3 is ad((G)-conjugate to an
element of one of these cyclic subgroups. Applying to the case where G is
a classical group we obtain some information on elements of order 2 in T,
assuming rank. G —rank. K =1. Finally, we sharpen the bound on the
ranks of abelian subgroups of I' in case G is a special orthogonal group.
In Chapter V we apply the arithmetic criterion again to the case where @ is a
classical group. Chapter VI is a consideration of the case where rank. (@
=rank. K, i.e., the Euler characteristic x(}M) 540, and shows that M covers
only a finite number, up to isometry, of Riemannian manifolds.

Our problem can be considered as a generalization of the classical Clifford-
Klein problem of finding all spherical space-forms, in that we have replaced
the sphere by an arbitrary (for Theorems 1 to 4 and Theorem 6), or at least
more general, compact connected Riemannian homogeneous manifold. Another
direction of generalization is that of considering finite groups which admit a
free topological action on a space similar in some way to a sphere. In this
regard, we mention some of the work of P. A. Smith [11], P. E. Conner [5],
J. Milnor [8] and A. Heller [6].

I especially wish to thank Professor S. 8. Chern, under whose guidance
this paper was written, for many helpful discussion and comments. I also
wish to thank Professors A. Borel, H. C. Wang and R. S. Palais for many
helpful discussions. Some of Professor Borel’s work [1,2] is crucial to this
paper, and Professor Palais pointed out a lemma of Mostow used in the proof
of Theorem 11.

Chapter 1. Reduction to a problem on Lie groups.

I.1. Covering spaces. In order to establish notation and terminology
we will recall some well-known facts and definitions concerning covering
spaces. All spaces will be Hausdorff and all maps will be continuous.

A covering is a map p: X — X’ of arcwise connected, locally simply con-
nected spaces where every element of X” has a neighborhood U such that p
maps each component of p~*(U) homeomorphically onto U. p(2’) is the
fibre over a’€ X’. All fibres have the same cardinality, the multiplicity of
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the covering. A finite covering is a covering of finite multiplicity. p induces
a monomorphism of fundamental groups, and the covering is normal if
p-mi(X) is a normal subgroup of = (X”). This is independent of choice
of basepoints. If H is a subgroup of =, (X’), there is a covering ¢: ¥ — X’
and a choice of basepoint in ¥ such that ¢- =, (¥) =H.

TaEOREM 1. If p: X = X’ 1s a finite covering, there is a finite normal
covering q: X" — X, where pq: X" — X’ is a finite normal covering.

Proof. The multiplicity of p being equal to the index of H —=p- = (X)
in m (X’), the normalizer N of H in =, (X’) has finite index in =, (X”).
Consequently ([7], p. 82) H has only a finite number of conjugates in =, (X”),
so ([7], p. 62) the intersection J of the conjugates of H has finite index in
m (X7). Let g: X”— X be a covering, where ¢, (X”") = p*(J), and the
normality conditions follows from the construction of J. QED.

An action of a group T on a space X is effective if the identity element
of T' is the only element inducing the identity transformation of X, is free if
the identity element of T is the only element which leaves fixed a point of X,
and is properly discontinuous if every point of X has a neighborhood which
does not meet any of its transforms under I If X is compact, the action
of T is properly discontinuous if and only if T' is finite and acts freely. The
set T'(z), the orbit of a point « of X, is the set of images of = under I. The
space X/T' of orbits is given the quotient topology for the natural projection
z—>T'(z); the natural projection X — X/T' is a covering if and only if T
acts properly discontinuously on X.

A deck transformation of a covering p: X — X’ is a homeomorphism
y: X=X, where p-y=p. The group T' of all deck transformations acts
properly discontinuously on X, and ([12], §14) p is a normal covering if
and only if T is simply transitive on each fibre, i.e., if and only if p: X — X’
is a principal bundle with group T, i.e., if and only if X’ — X/T.

A Riemannian covering is a covering p: M —> M’, where M and M’ are
Riemannian manifolds and p is a local isometry. If just one of M and M’
is a Riemannian manifold, the requirement that p be a local isometry gives a
Riemannian structure to the other and makes p a Riemannian covering. We
easily see that a deck transformation is an isometry of M, because p is a local
isometry.

A Riemannian homogeneous manifold is a Riemannian manifold whose
group of isometries is transitive.
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THEOREM 2. If q: M”— M s a Riemannian covering and M is Rie-
mannian homogeneous, then M” is Riemannian homogeneous.

Proof. A one-parameter group of isometries of M is a homotopy and
can be lifted to M” by the covering homotopy theorem. The lifted homotopy
consists of isometries of M” because ¢ is a local isometry. It follows that
the group of isometries of M” is locally transitive and therefore transitive.
QED.

I.2. Reduction to a problem on discrete subgroups of compact Lie
groups.

THEOREM 3. Let M be a compact connected Riemannian homogeneous
manifold, G the group of isometries of M, K an isotropy subgroup of G, and
T' a subgroup of G. Then T is a properly discontinuous group of isometries
of M if and only if T is finite and T N ad(G)K =1, where 1 is the identity
element of G and ad(G)K s the set of all ad(g)k = gkg™ with g€ G and
ke K.

Proof. M is compact and I' is a group of isometries of M, so T is a
properly discontinuous group of isometries of M if and only if T' is finite
and acts freely on M. @ is transitive on M, so the isotropy subgroups of G
are the subgroups ad(g)K with g€ G. T acts freely on M if and only if it
meets each isotropy subgroup only at 1. Hence T' acts freely if and only if
'Nnad(G)K =1. QED.

Using Theorems 1, 2 and 3, we see that the original problem

Giwen a compact connected Riemannian homogeneous manifold M, find
all Riemannian manifolds which admit a Riemannian covering by M.

is reduced to the problem

Given a compact Lie group G and a closed subgroup K, find all finite
subgroups T of G such that T Nad(G)K =1.

by taking G to be the group of isometries of a finite Riemannian covering
manifold of M and K to be an isotropy subgroup of G¢. We then note that
G and K are both compact, each has only a finite number of components,
and K meets every component of @.
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Chapter II. Necessary conditions for a finite group to act as a properly
discontinuous group of isometries of a compact connected
Riemannian homogeneous manifold.

Given a compact Lie group G and a closed subgroup K, we will find
some necessary conditions on finite subgroups T' of G for IT'Nad(G)K =1.
These will involve the ranks of G, K, and some subgroups of T.

The rank of a finite abelian group B is the minimal number of factors
in a direct product decomposition of B into cyclic groups, and is denoted
rank. B. For example, if p is a prime, the elementary p-group with p*
elements, (Z,)"=7Z, X * - X Z,, the direct product of & copies of the cyclic
group of order p, has rank h. The rank of B is the maximum of the ranks
of its elementary p-subgroups, and B is cyclic if and only if rank. B=1. If
p is a prime, the p-rank of B, denoted p-rank.B, is the rank of a p-Sylow
subgroup of B. It is the maximal integer h such that B has a subgroup
isomorphic to (Z,)*.

The rank of a compact Lie group H, denoted rank.H, is, as usual,
the common dimension of the maximal toral subgroups of H.

II.1. A bound on the ranks of certain abelian subgroups.
THEOREM 4. Let K be a closed subgroup of a compact Lie group G.

1. Given a finite subgroup T of G such that TNad(G) =1 and an
abelian subgroup B of T which lies in a torus of G, we have rank. B = rank. @
—rank. K.

%. The above bound 1is the best possible in the sense that there is a
positive integer m(G,K) such that, given a finite abelian group A with
rank. A = rank. G —rank. K and m (G, K) prime to the order of A, a torus
of G has a subgroup A’ which is isomorphic to A and such that A’ Nad(G)K
=1.

Proof. Let T” be a maximal torus of K, T a maximal torus of G' which
contains 77, n—=rank. G and k=rank. K. We replace B by a conjugate
which lies in 7" and still have BN ad(G)K =1, hence BN I” =1. It follows
that the canonical map of T onto the (n—F%)-torus 7'/7” maps B mono-
morphically. Since a finite subgroup of an (n—k)-torus has rank at most
n—Fk, we conclude rank. B=n—%. This proves the first statement.

Let K, be the identity component of K, G, the identity component of G,
W= {wy,- - -,wg} an enumeration of the Weyl group of G, with respect
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to T, and {as,* * -, a:} a set of automorphisms of &, which preserve 7' such
that the automorphism group ad(@) of G, can be written as the union of
the a;-ad(G,). Two elements of T' are ad(G,)-conjugate if and only if they
are W-conjugate, and it follows that an element of T lies in ad(G)K, if and
only if it lies in one of the Ty=ua;(w;(T")). As there are only a finite
number of the k-tori 7', there exists an (n—£%k)-torus V in 7' which inter-
sects each T'j; in a finite group. Let m (@, K) be the product of the primes
occurring in the orders of these finite groups and in the order b of K/K,.
Let €V have order prime to m(G,K) and lie in ad(G)K. Then
B € Ad(G)K,, so p* € T;; for some (7,7). Since the order of S? is also prime
to m (@, K), this implies, by the definition of m (@, K), that g?=1. Since
the order of B is prime to b, this implies g =1.

We can find a subgroup A’ of ¥V which is isomorphic to A because V is
an (n—Fk)-torus and A is a finite abelian group of rank at most n—=k.
The considerations above show that A’ Nad(G)K =1 if the order of 4,
hence of 4’, is prime to m (G, K). QED.

In Chapter TII we will see examples where K, and even G, is connected
and m (G, K) must be even, hence m (G, K) > 1.

IL. 2. The work of A. Borel on torsion and subgroups which lie in a
torus. A. Borel has proved ([1], Chapter XII) that if G is a compact
connected Lie group with classifying space Bg, p is a prime, and the integral
cohomology ring H*(Bg,Z) has no p-torsion, then every elementary p-sub-
group (subgroup isomorphic to some (Z,)"*) of @ lies in a torus of G. A case
by case check proves the converse. Borel has also shown that H* (@&, Z) has
p-torsion if and only if H*(Bg,Z) has p-torsion, using known results and
checking the case p=25 for Eg, p=5 and p=" for E; and p=" for E,.
The summary of the situation is that the following are equivalent:

H*(@,Z) has no p-torsion.
H*(Bg,Z) has no p-torsion.
('ss being the semisimple part of G, H*(Gys, Z) has no p-torsion.

R

4. m(Gs) has order prime to p, and, if G’ is a simple factor of the
universal covering group of G, then H*(&,Z) has no p-torsion.

Finally, if H is a compact, connected, simple, simply connected Lie group,
then H*(H,Z) has p-torsion in precisely these cases:

1. p=2? and H=E, E;, E,, F,, G,, or Spin(n) with n=1%.
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. p=38 and H=E E,, E; or F,.
3. p=>5 and H=E,.
An immediate consequence of Theorem 4 and this work of A. Borel is:

TueorEM 4. Let G be o compact Lie group of rank n, K a closed sub-
group of rankk, and T a finite subgroup of the identity component G, of G
such that T Nad(G)K =1. Then if p is a prime for which H*(G,,Z) has
no p-torsion, every abelian subgroup of T has p-rank =n—k. If H*(G,,Z)
1s torsion-free, every abelian subgroup of T has rank =n—F.

It is now clear that the problems in applying Theorem 4 are closely
related to the existence of p-torsion in @. This is of two sorts—p-torsion
from the fundamental group of G' and p-torsion from the simply connected
versions of the simple factors of G. Finally, we can only hope to classify
our groups I' in case rank. ¢ —rank. K =1, due to the present rate of the
theory of finite groups. We will see, however, that p-torsion in G is of little
importance in case rank. G — rank. K, and that only the p-torsion from , (G)
is of importance in case rank. G —rank. K = 1.

In addition to the results mentioned above, A. Borel has shown [2]

Let G be a compact connected Lie group, = (G) torsion-free and =€ G-
The centralizer of = in G is connected.

As the identity component of the centralizer of z in G is the union of the
maximal tori of G which contain z, it easily follows, if =, (@) is torsion-free,
that every abelian subgroup of G with 2 generators lies in a torus of G-
We will depend heavily on this result of A. Borel in the next section.

II.3. A further bound on the ranks of abelian subgroups. The main
purpose of this section is to prove:

TaEOREM 5. Let G be a compact connected Lie group, K a closed sub-
group with rank. @ —rank. K =1, T a finite subgroup of G with T Nad(G)K
=1, p a prime, and h(p) the p-rank of = (G). Then every abelian subgroup

of T has p-rank = h(p) + 1. If h(p) =2, then every abelian subgroup of T
has p-rank = 2.

We will first need a few lemmas. The first two of these lemmas are
known, but not well-known, so it seems best to write them out.

Lemma 5.1. Let G be a compact connected Lie group, G the semi-
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simple part of G, and Z(@), the identity component of the center of @.
There is a covering ¢: Gos X Z(G)o— G given by ¢(g,t) =gt. ¢ is an
epimorphism of compact connected Lie groups and the kernel, ker. ¢, of ¢ s
the set of all (g,g*) with g€ GssNZ(G),.

Proof. @4 has finite center and G =Gy Z(G),. Note that ker.¢ is
finite and lies in the center of Gy X Z(@G)o,.

Lemma 5.2. Let G be a compact connected Lie group. As a topological
space, G is homeomorphic with Gs X Z(G)o. As Z(G), ts a torus, it follows
that the torsion subgroup of m, (G) is isomorphic to m (Gss), and in particular
p-rank. «; (G) = p-rank. =, (Gys) for every prime p.

Proof. We proceed by induction on the dimension s of the torus Z(@),,
and the lemma is trivial if s=0. If s=1, we consider the principal bundle
G— G/G=2(G)o/(Gss N Z(G),) with connected group Gy, and base which
is a 1-sphere. Since this is a trivial bundle ([12], p. 99), G is homeomorphic
to G X (1-sphere), which is homeomorphic to G X Z(G),. Now assume
s >1. Take a subgroup H of G which is generated by Gy and an (s—1)-
torus 7' in Z(G),. H is homeomorphic to Gy X T by induction. As before,
the principal fibre bundle G— G/H tells us that G is homeomorphic to
H X (1-sphere), so G is homeomorphic to Gss X Z (@),

Now note that m,(G) = (Gs) X mi(torus) and = (torus) is a free
abelian group. QFED.

Lemma 5.8. Let G be a compact connected Lie group, p a prime, and
h(p) the p-rank of =, (G). Let ¢: G X Z(G)o—> G be the covering given by
¢(9,t) = gt, p: G’ — Gy the universal covering of Ges, and §: G’ X Z(G)y—> @
the composition ¢+ (n X 1). Then every (Z,)"®*2 in G contains a (Z,)®
which is the 6-image of an abelian subgroup of & X Z(@)o. If h(p) =2,
every (Zy)® in G contains a (Z,)® which is the -image of an abelian sub-
group of G X Z(G),.

Proof. Let ¢B1,* - -, $Bu(p)+2 generate a (Z,)"®+2 in @, N —ker. ¢, and
Bi= (bj, ;) € Gss X Z(G)o. As [Bi,8]1€N, where [ , ] is the ordinary
commutator, we know from the form of the elements of N that [b;,b;] — 1 € Gy,
As B € N we also know that b is central in Gy,. Now take elements G €W
with u(c;) =b;. As b is central in Gy, ¢ is central in ¢’. Since the b;

commute with each other, the commutators [c;, ¢;] lies in ker.p and are thus
central in (.

Let w and v be elements of a group H such that w— [u,v] commutes



RIEMANNIAN HOMOGENEOUS MANIFOLD. 669

with w. v =wvu and we assume u"*v = w™*vu"* by induction on n. Hence
UM = YUY = " tou"t = wrlyourt = wrlwvuut = wo™ur in general.
In other words, [u®, v] = [w, v]" if  commutes with [u,v]. Since [c;,¢;] is
central in (7, it commutes with ¢;, and consequently [c;, ¢;]? = [¢#, ¢;] which
equals 1 because ¢ is central in (.

M = ker. p is isomorphic to «; () s0, by Lemma 5.2 and the definition
of h(p), M does not contain a (Z,)*®+. Now set y;= [cnp)ss ¢j] for
1=j=h(p)+1. We have just seen that y?=1. As up[c;, ¢;] = [ucs, pcs]
= [b;, b;] =1, y;€ M. It follows that the y; generate an elementary p-sub-
group Y in M of rank at most i (p). Since there are h(p) + 1 of the y;, we
have a relation y,y,% + - yn(p @1 =1, v; integers not all divisible by p.
Set ¢ =1c1"1¢," " * - Cppy @ and € =1,"16,%" - - by p)."™@4 and notice that
the fact that [c;, cjer] = [cs ¢5] - [¢4, cx], @ consequence of the fact that each
[ci, cq] is central in &, gives us [Cu(pysz,¢] =1. We now have elements
o= (c,t) and 7= (Ch(p)s2 tn(p)+2) In G X Z (@), such that o and r generate
an abelian group in G’ X Z (@), whose §-image is a (Z,)? inside our original
(Zp)Mer2 in @.

Now suppose h(p) =2. As before, we have a (Z,)® in G generated by
®B1, $B2, $Bs; we have B;j= (b;t;); and we have u(c;) =b;. We set
Y1=[c1, 2], Yy2=1[Cs¢s], Ys=[Cs,¢.] and the y; generate an elementary
p-subgroup of M which, by definition of h(p), has rank =2. This gives us
a relation of the form y,%y,y,% = 1, where the v; are integers not all divisible
by p. We can assume that v, is not divisible by p, so there are integers r
and s such that y, —y,y.>. If p divides s, [cics”,co] =1. TIf p doesn’t
divide s, there is an integer u with us=—7 (mod p), and [c,c*, cs05°] = 1.
In either case we get an abelian group from the ¢; whose §-image is a (Z,)?
inside our original (Z,)%® in G. QED.

Proof of Theorem 5. Let B be an abelian subgroup of T with p-rank. B
>h(p) +1. Then B contains a (Z,)"®*2. By Lemma 5.3 we have a (Z,)?
in B which is the ¢-image of an abelian subgroup 8 of @ X Z(G),. & is
generated by two elements. By a theorem of A. Borel, mentioned in §II.2,
S lies in a torus of G/ X Z(G)o, so 6(9) lies in a torus of ¢. Hence T
contains a (Z,)? which lies in a torus of G. As rank. G —rank. K —1 and
T'Nad(G)K =1, this contradicts Theorem 4. The proof that h(p) —2
implies p-rank. B=2 is identical. QED. -

Cororrary 5.1. Let G be a compact connected Lie group which has
torsion-free fundamental group, i.e., such that G, is simply connected. Let
K be a closed subgroup of G such that rank. @ —rank. K —1 and let T be a

pA
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finite subgroup of G such that T Nad(G)K =1. Then every abelian subgroup
of T is cyclic. The odd Sylow subgroups of T are cyclic and the 2-Sylow
subgroups are cyclic or generalized quaternionic, i.e., gwen by two generators
A and B with the relations

A** =1, A**=DB? BAB'=A" a integer, a>?2.

Proof. Let V be an abelian subgroup of I' and write V as a product of
p-subgroups. By Theorem 5, each of these p-subgroups has rank = 1, hence is
cyclic. Since V is a product of cyclic subgroups of pairwise relatively prime
orders, it follows that V is cyclic. The rest is known ([14], Chapter I) to
follow. QED.

Chapter III. An arithmetic criterion and first application
to the classical groups.

III. 1. Angular parameters and the arithmetic criterion. Let G be a
compact connected Lie group of rank n, K a closed connected subgroup of
rank k, T a maximal torus of G which contains a maximal torus 7” of K,
W= {w,,- - -,ws} an enumeration of the Weyl group of G relative to T,
and T;=w;(T"). We choose an integral basis of the Lie algebra T of T,
i.e., an ordered basis X = {X,,- - -, X,} of T such that exp(Z, asij =1 if
and only if each a, is an integer. The Lie algebra T, of T can be described
as the set of all elements 3, a.X of T such that 3, vij0, =0 for 1=/ <= n—F,
where each {vj,- « -, vyn} = Vi; is an ordered set of relatively prime integers.
The v;;, can be chosen to be rational because each T; is closed in T, and the
obvious normalization transforms each V;; into a set of relatively prime
integers.

DerintrioN. The q(n—Fk) ordered sets Vi; of relatively prime integers
are the angular parameters of K in G relative to X.

We remark that, for a given K and @, the choice of X does not specify
the angular parameters of K in G uniquely.

Let T be a finite subgroup of G. We choose cyclic subgroups {y;} =T}
of T' such that every element of I' is ad(G)-conjugate to an element of one
of the ;. Then I'Nad(@)K =1 if and only if Ty N ad(G)K =1 for each ¢.

The angular parameters of K in G give us an arithmetic criterion for
;Nad()K=1:

TuroREM 6. Let G be a compact connected Lie group of rank n, K a
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closed connected subgroup of rank k, Vij== {vi, Vijs,* * *,Viju} the angular
parameters of K in G relative to an integral basis X = {Xy,- - -, X,} of the
Lie algebra T of a mazimal torus of G, B= {B} a cyclic subgroup of order m
n @, and X = ,a,X,€ T such that exp(X) is ad (G)-conjugate to B. Then
each by = mag is an integer, and B N ad(G)K =1 if and only if each

Vi= {m, X virsbs, 2is Vizshs,” * *, g Vin- sbs}

18 a set of relatively prime integers.

Proof. Each by —ma, is an integer because X is an integral basis of T
and exp(mX) =exp (X, b:X;) is conjugate to gm —1.

We will use the notation leading to the definition of the angular para-
meters of K in G relative to X. An element of T lies in ad(G)K if and
only if it lies in one of the T, so B N ad(G)K =1 if and only if exp(rX) ¢T;
for any ¢ whenever r5£0 (modm). X being an integral basis of T, exp(rX)
€ T; if and only if there is a choice a; of integers such that 7X 4 X, a;:X,
= Ds(ras+ a;5) X lies in T, i.e, such that 3, Vijs (1hs + may) =0 for
1=j=n—Fk. Reducing modulo m this says that r 3 vyb;=0 for 1=
=n—~k. If r5£0 (modm), this implies that V; is not a set of relatively
prime integers.

Now suppose that V; is not a set of relatively prime integers. Then
there is an integer r5£0 (modm) such that r3,vsb,=0 (mod m) for
1=j=n—%k. We will show that exp(rX) € T}, so 7€ ad(G)K. Let U,
be the (n—1)-torus whose Lie algebra Uj; is the hyperplane 3, VijsTs =0 in
T, where the @, are coordinates relative to the basis X. T;— (), Uy;. V; being
a set of relatively prime integers, we have integers c;js with 3 ¢jsvijs —1. The
congruences 7 X visbs =0 (mod m) gives us integers t; with mé;; 4 r 3, vy,
=0, so we have integers a;; = c;jst;; such that 3, Vijs (1hs -+ mays) =0, for
1=j=n—%k This just says that exp(rX) e Uy for 1=<j=<n—F, so
exp(rX) €T, QED.

Theorem 6 can be used to check I' N ad (G) K — 1 provided that the inter-
section of K with the identity component G, of G is connected and T C G,.
Let {f:} be automorphisms of G such that the automorphism group ad(G)
of G is the union of the ad(Go)-f.. Let K;—fi(K)N G, Given T C G,
I'Nad(G)K =1 if and only if I'N ad(G,)K,;—1 for every £. We can check
the T'Nad(Gy)Ky=1 with Theorem 6 and thus check T N ad(G)K = 1.

The application of Theorem 6 is simplified when the Weyl group W of
G acts on the integral basis X by signed permutations: the angular para-
meters can then be chosen so that each Vi; is obtained from V1; by the same
signed permutations. We will use this trick when G is a classical group.
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III.2. Even and odd subgroups of the classical groups. By the
classical groups we mean the unitary groups U(n), the special unitary groups
SU(n), the symplectic groups (often called the unitary symplectic groups)
Sp(n), the special orthogonal groups SO (n), and the spin groups (universal
covering groups of the special orthogonal groups) Spin(n). They are all
compact connected Lie groups. U(n) has rank n, semisimple part SU(n)
and fundamental group infinite cyclic. SU(n -+ 1) has rank n, is simple for
n =1, and is simply connected. Sp(n) has rank n, is simple for n =1, and
is simply connected. Sp(n) can be viewed as all elements of U(2n) which
preserve an antisymmetric nondegenerate 2-form on complex Kuclidean space
C*r.  Given an orthonormal basis {e;,* * -, €5} of C?", we’ll use the form

2n 2n n ’
A( ? jej, 21 yjej) = ? (ZYjsn— YsTjen) -

SO (%n or 2n -+ 1) has rank n. SO(%) is semisimple for &k = 3, simple for
454k =3, has fundamental group Z, if k=3, and has universal covering
group Spin(k).

Given a classical group @, we have a canonical choice of a maximal torus
T of G:

1. G=U(n). T is the set of all matrices diag{a," - -,an}, where each
a; is a unimodular complex number.

. G=S8SU(n). T is the set of all diag{a.,- - -,a,} of determinant 1,
where each a; is a unimodular complex number.

3. G=S8p(n). T is the set of all matrices (g %), where D is the

complex conjugate of D and D is in the canonical maximal torus of
U(n).

4. G=80(2n or 2n+1). T is the set of all matrices

. cos 2wt sin Rt
disg(R(8), -, R(t), (1)), where R(1) —(_ S5m0t
and the (1) appears only if G=S0(2n 4 1).

5. G=Spin(2n or 2n+1). T is the complete inverse image of our
chosen maximal torus in SO (2n or 2n 4 1).

If @ is not a Spin or special unitary group, we have a canonical choice of
integral basis X¢={Xy,- - -, X,} of the Lie algebra T of 7T':

1. G=U(n). exp(tX,)=diag{l, - -,1,exp(2nit), 1, - -,1}, where
the exp(Rxit) is in the j-th place and ?=—1.
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D0

R. G=Sp(n). exp(tX;) =( 0 D)’ where D is the complex conjugate

of D and D =diag{1,- - -,1,exp(xit),1,- - -,1} has the exp(Rmit)
in the j-th place.

3. G=801n or 2n+1). Let I, be the 2 X 2 identity matrix;
exp (tX;) =diag{l,,- - -, 15 R(¢),I, + -, I, (1)}, where R(?) is the
j-th block.

The Weyl group W of G acts on Xg by signed permutations:

1. G=U(n). W acts on X¢ by all permutations.
. G=8p(n) or SO(2n-+1). W acts on Xg¢ by all signed permutations.

3. G=S80(2n). W acts on Xg by all signed permutations where the
the number of sign changes is even.

Let K be a closed connected subgroup of rank % in a classical group
G=U(n), Sp(n) or SO(2n or 2n-+1). Replacing K by a conjugate, we
have a maximal torus 7” of K which lies in our canonical maximal torus 7'
of G. The Lie algebra T’ of 7” is the intersection of n—¥% hyperplanes
X Vjss =0, where the z, are coordinates in T relative to the canonical integral
basis X¢ ; we can assume that each V= {vj1, vjs, - + -, 5} is a set of relatively
prime integers. If W= {w,,- - -, w,} is an enumeration of the Weyl group
of @ relative to T', W envisaged as a group of signed permutations on n-tuples
from its action on Xg, the angular parameters of K in G relative to Xg are
the Viy=w(V;).

DeriNiTION. The n—Fk ordered sets V; of relatively prime integers are
the canonical parameters of K in G =U(n), Sp(n) or SO (2n or 2n 4 1).

Let K be a closed connected subgroup of rank &k —1 in SU(n). Viewing
SU(n) as a subgroup of U(n), K has canonical parameters V- - -, Vi
in U(n). We may assume that V, . = {1,1,- - -, 1}.

DerFINITION. The n—Fk ordered sets Vi,- « -,V of relatively prime
integers are the canonical parameters of K in SU(n).

Let K be a closed connected subgroup of rank % in Spin(2n or 2n + 1)
and let f: Spin— SO be the natural projection. We will use the canonical
parameters V- - -, V,y of f(K) in SO(Rn or 2n+ 1) for the canonical
parameters of K in Spin(2n or 2n+1):

DeriNiTION. The n—Fk ordered sets V; of relatively prime integers are
the canonical parameters of K in Spin(2n or 2n 4 1).
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Given a closed connected subgroup K of a classical group G and an
integral basis X of the Lie algebra of a maximal torus of G, we can always
construct the angular parameters of K in G relative to X from the canonical
parameters of K in @G.

The fact that the Weyl group acts on the canonical parameters by signed
permutations allows us to define:

DrriNiTION. Let K be a closed connected subgroup of a classical group
G=U(n), SU(n), Sp(n), SO(2n or 2n+41) or Spin(2n or 2n 4+ 1) such
that rank. G —rank. K =1. Let V = {vy,* - -,v,} be the canonical parameter
of K in G and set v=v,0," - -v,. Then K 1is an even subgroup of G if v
18 an even integer; K is an odd subgroup of G if v is an odd integer.

The most familiar examples of even subgroups are
Un—1)CU(n), SU(n—1)C SU(n), Sp(n—1) C Sp(n),
SO (2n—1) C SO (2n) and Spin(2n—1) C Spin(2n).

In these examples the canonical parameter can be taken to be {1,0,- - -,0}.

IIL. 3. The orthogonal groups. If G is a classical group U(n),
SU(n-+1), Sp(n) or Spin(2n or 2n 4 1) of rank n, K is a closed connected
subgroup of rank n —1 and T is a finite subgroup of G such that TNad(G)K
=1, then Corollary 5.1 tells us that every abelian subgroup of T is cyclic.
If, however, G =8O (2n or 2n - 1), then we only know that every abelian
subgroup of I is of the form Z, X Z,, where  is a power of 2. As it is known
[11] that a (Z.)* cannot act freely on the sphere §?»* — SO(2n)/SO(n — 1),
there is, at least for some choices of K, room for improvement:

TaEOREM 7. Let G be a special orthogonal group SO(q) = SO (2n or
2n 1) of rank n and let K be a closed connected subgroup of rank n—1 > 0.
If K is odd, G has a subgroup B isomorphic to (Z,)* with B Nad(G)K = 1.
If K is even and T is a finite subgroup of G such that T Nad(G)K =1, then
every abelian subgroup of T is cyclic.

Proof. Let V= {vy,- - -,v,} be the canonical parameter of K in @
and let b€ G have order 2. The eigenvalues of b are all 1 or —1. As
det.b =1, the multiplicity of the eigenvalue — 1 is some even number 2s.
It is clear that b is ad (()-conjugate to exp (3X, + $X, 4 - -+ 1X,), where
Xe¢={Xy,- - -, X,} is our canonical integral basis, so the arithmetic criterion
(Theorem 6) says that b€ ad(G)K if and only if some sum of s of the v,
without repetitions, is even. When the v; are all odd this means that
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b€ad(G)K if and only if s is even; when one of the v; is even and s <n,
this implies that b € ad(G) K.

Suppose K is odd. Then each of the v; is odd, so we must exhibit a
(Z;)? in G in which every element 54 1 has the eigenvalue —1 of multiplicity
congruent to 2 modulo 4. Let I; be the ¢ )X ¢ identity matrix; then such a
(Z.)? is given by generators

b1 = diag{— 1, - 1, 1, Iq..g}, bz = diag{l,— 1, — 1, Iq_g}

Suppose that K is even, so one of the v; is even. By Theorem 5 we need
only show that T' contains no (Z;)?, so we must show that a (Z,)? in & has
an element %1 with eigenvalue —1 of multiplicity not equal to 2n.
A (Z;)™ in SO(q) is conjugate to a group of diagonal matrices. It follows
that G contains a (Z,)* where every element 541 has eigenvalue —1 with
multiplicity 2n only if ¢=38. That case was ruled out by the assumption
rank. K >0. QED.

II1. 4. Elements of order 2 which act freely.

THEOREM 8. Let G be a classical group U(n), SU(n), Sp(n), SO (2n)
or Spin(2n) and let K be an even subgroup (hence closed and connected,
and rank. G —rank. K =1). Let T be a finite subgroup of G such that
I'Nad(G)K=1. Then T has at most one element of order 2, and an -element
of order 2 in T s central in G. Let H be a closed connected subgroup of
SU(n) such that rank.SU(n) —rank. H =1 and let 3, be a finite subgroup
of SU(n) such that SN ad(SU(n))H=1. Then both n and H are even
if 3 has an element of order 2.

Proof. Suppose G5=Spin(2n) and let y € T have order 2. As in the
proof of Theorem 7, the arithmetic criterion shows that y has the eigenvalue
— 1 with multiplicity 2n if ¢ =80 (2n) or Sp(n), and with multiplicity n
if @=U(n) or SU(n). Hence y is conjugate to —I, the negative of the
identity matrix in ¢. As —1I is central in G, y —=—1 and is central in G.

Now suppose that G — Spin(2n) and f: G — SO (2n) is the natural map.
Let —1 denote the element of order 2 in ker.f. If —1 is in T or K, then.
T or K consists of whole f-fibres and we have f(I') N ad (SO (2n))f(K) = L,
If —1 is in neither I nor K, then either f(I') N ad (SO (2n))f(K) =I,, or
T has an element y % 1 such that L, 54 f(y) € f(I') N ad (SO (2n))f(K). We.
will show that this last alternative does not occur. For if it does, K has
a conjugate K’ such that —y € K’. 5 has order 2, for y ¢ ker.f but
y?=(—y)?€TNK. We can pass to a conjugate of v and assume
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y=¢€1' € " * ** ey, where the e¢; are an orthonormal basis of Euclidean
space R?", taken as generators of the Clifford algebra C(R?"), and dots denote
Clifford multiplication. If s==n, v is central and thus, by Theorem 5, the
only element of I' of order 2. If s<n, let B==~es " €5, € Spin(2n) and
ad(B8)y=—y. This implies that both y and — y are in ad(G)K, which con-
tradicts ' N ad (@)K =1. Now we can assume that f(T')N ad (SO (2n))f(K)
=1I,,. f(K) is an even subgroup of SO (2n) because K is even in Spin(2n),
so an element of f(T") of order 2 is —1I,,. It follows that an element of T of
order 2 lies in f*({=I:}), hence is central in Spin(2n). Uniqueness
follows from Theorem 5.

Let G =SU(n) and let o € 5 have order 2. If H is odd, the arithmetic
criterion implies that the eigenvalue —1 of o has odd multiplicity, contra-
dicting det.c=1. Thus H is even. If n is odd, we again contradict

det.c =1, for, H being even, the arithmetic criterion says that ¢ ——I,.
QED.

Chapter IV. Finite subgroups of classical groups which have all
abelian subgroups cyclic.

Theorems 5 and 7 tell us that if ( is a classical group and K is a closed
connected subgroup, assumed to be an even subgroup if @ is special orthogonal,
such that rank. ¢ —rank. K =1, and T is a finite subgroup of G such that
I'Nad(G)K =1, then every abelian subgroup of T is cyclic. For this reason,
we’ll examine the finite groups with all abelian subgroups cyclic.

IV.1. Classification of finite groups with all abelian subgroups cyclic.
The finite groups with all abelian subgroups cyclic fall into two classes ([14],
Chapter I)—those with all Sylow subgroups cyclic, and those with odd Sylow
subgroups cyclic and 2-Sylow subgroups generalized quaternionic. H. Zassen-
haus ([16], p. 198, p. 202) and M. Suzuki ([18], p. 689) have given a
complete classification of these groups in terms of generators and relations.
We will not use this classification, but rather will rely on a simpler description
given in H. Zassenhaus’ book ([17], p. 175) for the finite groups with all
Sylow subgroups cyclic, and on the fact that a finite group with all abelian
subgroups cyclic has all Sylow subgroups cyclic if its 2-Sylow subgroups are
not generalized quaternionic. For reference, the generalized quaternionic
groups are the groups Q¢ of order 27, o =3, given by

A*" =1, B?=A%* BAB'—A4"1 g integer, a= 3.
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A finite group of order N with all Sylow subgroups cyclic is given by A™ = B»
=1, BAB*=A4r,0<m, mn=N, ((r—1)n,m) =1, =1 (modm).

Our plan of attack is to calculate representations of these groups in the
classical groups, and find conditions under which the image of a representation
acts freely on an appropriate coset space.

IV.2. Classical representations of the generalized quaternionic groups.
Following G. Vincent ([14], Chapter III), elementary techniques of repre-
sentation theory tell us that the irreducible unitary representations of the
generalized quaternionic group Q2¢ are:

1. The 4 U(1)-representations given by 4 > =1 and B— =+ 1.
R. The R¢-2—1 U(R)-representations §,, 1=r<2%2% given by

S A ur 0 0 1 L /9a-1
rrd=>{ u and B— (—1) 0 , Where u = exp (Rwi/291).

Note that 8, is faithful if and only if r is odd. Let S denote the U(1)- repre-
sentation 4 -1 and B— —1.

It follows that a special unitary representation of QR¢ is an appropriate
sum of U(1)-representations plus a sum of some of

1. The 2% SU(R)-representations S,, where » is odd.

R. The 293 SU(8)-representations S, -+ 8, where r is even.

3. The SU(4)-representations S,, + S,,, where 7, and r, are even.

Similarly, a symplectic representation of Q¢ is an appropriate sum of U(1)-
representations plus a sum of some of

1. The 2%* Sp(1)-representations S,, where r is odd.

R. The 2¢% Sp(1)-representations S, -+ S,*, where r is even and §,*
is the complex conjugate representation of §,.

A unitary, special unitary or symplectic representations of Q2¢ is faithful if
and only if it has a summand S, with » odd.

S, is unitarily equivalent to its conjugate representation S,*, and is

equivalent to a real representation if and only if 7 is even. As before, we

- cos (Rwt) sin(Rwt)

set R(t) = (— sin (2nt) cos(2nt)
sentations of Q2¢ are:

€ SO(?) ; the irreducible orthogonal repre-

1. The 4 O(1)-representations given by A— + 1 and B— =+ 1.
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R. The 29-* —1 O(?)-representations S,, » even, unitarily equivalent to
the corresponding U(R)-representations, given by S,: A — R(r/201)

0 1
and B—->(1 0)

3. The 2%-* O (4)-representations T', r odd, equivalent to S, + S,*, given

. R(r/2%1) 0 ) (0 Ig)
by TT.A—>( 0 R(—r/20) and B— I, 0)

A special orthogonal representation of ()2¢ is an appropriate sum of O (1)-
representation plus a sum of some of

1. The SO(3)-representations S, 4 S (r even, of course).
2. The SO (4)-representations Sy, + 8y, with 7, and r, even.
3. The SO (4)-representations T, (7 odd, of course).

An orthogonal or special orthogonal representation of Q¢ is faithful if and
only if it has a summand T',.

Each of the T’ can be lifted to a faithful Spin(4)-representation of Q2.
Let T' be one of the T, and let {e;} be the orthonormal basis of R* with
respect to which our matrices are written; the {e;} generate the Clifford
algebra C(R*). We choose 1”(4) € Spin(4) over T'(4) and T (B) € Spin(4)
over T'(B). We then have

T"(A) = %= (cosw+ e, e;sinz) - (cosz—e, - egsinz),
T (A) =+ (cosz—e, - ey sinz) - (cosz -+ e, * e5sinz)
T,(B) =i%‘(1+33 ¢ 61)' (1"“84 * 62),

where dots denote Clifford multiplication, and @ =ar/2%1, A short calcu-
lation shows that 7”(A4)** " =e, ¢, €, ¢,=T"(B)% Another calculation
shows that T"(B)-T"(4) =1"(4)* - T"(B). It follows that 7”(4) and
T"(B) generate a QR in Spin(4), so 1" extends to a Spin(4)-representation
of Q?¢. 1" is faithful because it covers a faithful representation.

Let V=28, + 8, 7= "2u;, a non-faithful SO (4)-representation of Q2.
If V’(4) € Spin(4) lies over V(A4) and V’(B) € Spin(4) lies over V(B),
a short calculation shows that V’'(B)*=—1, V/(B)-V'(4)- V'(B)™*
=TV’(4)7?, and V' (4)**=—1 if and only if u; +u, is odd. In other
words, V’ extends to a Spin(4)-representation ¥7’of Q2¢ if and only if one
of the u; is odd and the other is even. In that case, V’ is faithful and —1
is the element of order 2 in V/((QR9).

Let U=G8,+48, r==2u, a non-faithful SO (3)-representation of Q2e.

and
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Choosing U’(A4) and U’(B) in Spin(3) over U(A) and U (B), we see that
U(B):=—1, U/(B)-U(A4)- U (B)*=U"(4)*, and U’ (4)**=—1 if
and only if % is odd. Thus U’ extends to a Spin(3)-representation U’ of
Q?¢ if and only if  is odd ; in that case, U’ is faithful and —1 is the element
of order ® in U’ (Q?2°).

IV.3. Unitary representations of finite groups which have all Sylow
subgroups cyclic. Let T be a finite group of order N with every Sylow sub-
group cyclic. T is given by two generators A and B with relations A" = B"=1,
BAB*=A7,0 <m,mn=N, ((r—1)n,m) =1,r=1 (modm). Note that
m is odd; if m were even, r would be odd because 4 and A" have the same
order, so 2| ((r—1)n,m), where we denote a divides b by a|b. Note also
that not r but only the mod m residue class of 7 is important. Let ¢ be the
Euler ¢-function and let (f be the multiplicative group of integers prime
to m, taken modulo m. As m is odd, there can be no confusion with the
exceptional Lie group G,. Given C €T, let {C} denote the cyclic subgroup
of ' generated by C. Let d be the order of r in Gp. As m==1 (modm),
d|n and we can write n=n'd. If m;|m, set di=order of r in G,
n=dn;. @&. Vincent has proved ([14], p. 156):

T has ezactly ¢ (m;)n'd/d;? irreducible unitary representations of degree d;.
On restricting one of these representations to {A}, it has kernel - {Ams}.
As m; runs over all divisors of m, including 1 and m, these representations of
degree d; give all vrreductble unitary representations of T.

This, together with other results of G. Vincent ([14], Chapter IIT)
make it fairly easy to verify that the irreducible unitary representations of
degree d; of T are given by:

fin(4) = diag{exp (2ai/m;), exp(2mir/my),- + -, exp(mir®i™/m;) }

0100---00
0010---00
fin(B) =exp(Rmik/n)« | <+« e , for 1=k =¢(m;)n'd/d?
0000---01
1000--:00

Chapter V. A second application of the arithmetic criterion
to the classical groups.

V.1. Generalized quaternionic subgroups of classical groups which
act freely. Suppose G is a classical group of rank n and K is a closed
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connected subgroup of rank n—1, assumed to be an even subgroup if @ is a
special orthogonal group. A generalized quaternionic subgroup I' of ¢ can be
considered to be the image of a faithful (-representation of the appropriate
QR¢. Since we know these representations explicitly, we can apply the arith-
metic criterion to check whether I'Nad(G)K =1. The importance of this
procedure is that if no generalized quaternionic subgroup of G can act freely
on /K, then every finite subgroup of G that acts freely on G//K has all
Sylow subgroups cyclic. Such groups have particularly simple structure among
the finite groups with all abelian subgroups cyclic.

THEOREM 9.1. Let G be a classical group U(n), SU(n), Sp(n), or
SO (2n or 2n + 1), K a closed connected subgroup with rank. ¢ —rank. K =1,
V= {vy, - -,v,} the canonical parameter of K in G, and q the number of
v; which are odd. Then G has a generalized quaterntonic subgroup T such
that T Nad(G)K =1 if and only if

n 18 even and q s odd, if G==Sp(n); q s odd or ¢=mn, if G=Sp(n).
If G has a generalized quaterniomic subgroup T such that T'Nad(G)K =1
and if B is any generalized quaternionic group, then G has a subgroup B’
wsomorphic to B such that B’ Nad(G)K =1. If K is an even subgroup in
case G =8O (2n or n + 1), if

n 18 odd or q 1s even, if G~=8Sp(n); q is even and g < n, if G=Sp(n),
and if 3 is a finite subgroup of G such that 3N ad(G)K =1, then every
Sylow subgroup of 3 is cyclic.

Proof. Let T' be a generalized quaternionic subgroup of G=1U(n),
Sp(n) or SO(2n or n 4 1), considered as the image of a faithful G-repre-
sentation F' of QR% Checking the various possible summands of F, we see
that every element of I' is ad(()-conjugate to a power of F(4) or F(B);
it follows that TNad(G)K =1 if and only if {F(4)}nad(G)K=1
= {F(B)} Nad(G)K. We will apply the arithmetic criterion (Theorem 6)
to these two cyclic subgroups of I. When we do this, the integer m in the
formulation of the arithmetic criterion will be a power of 2, as T is a 2-group,
so we may ignore the integers b; which are even. As the kernel of a non-
faithful G-representation of (2¢ contains the element B2 — A2** of order 2,
this means we need only consider the faithful summands of F. Replacing T
by an ad(@)-conjugate if necessary, we can assume F =38, 4+ - -4 8, if
G=U(n) or Sp(n) and F=T, 4+ - -+ T, if G=8S0(n or 2n-+1),
where the r; are odd. An application of the arithmetic criterion now tells
us that the condtion for I'Nad(G)K =1 is that, for every element g of the
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group S(n) of all permutations on {1,2, - - -,n}, ;7 (Vg(2j-1) — Vg(25) and

25(Vg(z1) —Vg(zp) are odd if G=U(n), X;ri(£ vy(») and X;(=% vy(p) are
odd for any arrangement of = signs if G =Sp(n), and

2375 ( = Vg1 — (£ Vg(2p)) and 3y( == Vgejn) — (= Vp(2p)) )

are odd for any arrangement of -+ signs, requiring only that the number of
minus signs be even if G =80(2n), if G =80 (%n or 8n 4+ 1). As the 7
are odd, the first number has the same residue mod 2 as the second, so we may
ignore the first one in each case. Similarly, we may ignore signs. We now

see that the condition for I' N ad (G') K =1 is that, for every g € S(n), 2 Vg (j)
is odd if G%48Sp(n); Evgm is odd if G=Sp(n). This is mdependent of

a and of the r;, and depends only on n, s and g. It happens if and only if
n=2s and ¢ is odd if G5~8Sp(n); qis odd or g=n if G=Sp(n).

The theorem is now proved except for G =SU(n). Suppose G =SU (n)
C U(n) and let K’ be a closed connected subgroup of rank n—1 in U(n)
such that K — K" N SU(n). If I is a subgroup of SU(n), TN ad(SU(n))K
=T Nad(U(n))K’, so we are done because a generalized quaternionic sub-
group of U(n) can be assumed, for purposes of checking I' N ad(U(n))K’ =1,
to be the image of a sum of §,, with r; odd, and hence can be assumed to lie
in SU(n). QED.

The situation with the Spin groups is more complicated because of the
relative abundance of faithful Spin-representations of the generalized quater-
nionic groups.

Lemma 9.1. Let K be a closed connected subgroup of rank n—1 >0
in G =Spin(2n or 2n+ 1) and let —1 be the element of order 2 in the
kernel of the natural projection f: Spin— SO. Then K is an even subgroup
of G if and only if it contains —1.

Proof. K contains —1 if and only if —1 lies on a 1-parameter sub-
group of K, as K is connected. Let ¥ be a 1-parameter subgroup of K. As
—1 is central in G we may assume that (f ¥) (t) —exp(3,ta,X;), where
the exponential is taken in SO(2n or 2n+1) and {X,, - -,X,} is our
canonical integral basis for SO (2n or 2n 4 1). We may assume ¥ normalized
so that (f-Y) (¢) =1 if and only if ¢ is an integer; the a, are then integers
and —1 lies on ¥ if and only if —1—=7Y(1). ¥ (1) =—1 if and only if
the number of odd g; is odd.

Let V= {v;,- -+ -,v,} be the canonical parameter of K in @, i.e., the
canonical parameter of f(K) in SO. If K is odd, 3, v,a,=—0 implies that
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an even number of a, are odd and — 1541 (1). If K is even, we can assume
vy even and v, odd ; we construct a conjugate X of a 1-parameter subgroup of
K which contains — 1 by (f-X) (t) =exp(t(vX;—v:.X;)). QED.

We mention an interesting consequence of Lemma 9.1:

CoroLLARY 9.1. Let K be a closed connected subgroup of rank n—1 >0
m G=802n or 2n+1). Then G/K 1is simply connected if and only if K
18 an even subgroup of G; m (G/K) =17, if K 1is odd.

Proof. The universal covering of (/K is Spin(2n or 2n + 1) /K’, where
K’ is the identity component of f-*(X). QED.

TuroREM 9.2. Let K be a closed connected subgroup of rank n—1 >0
n G=S8pin(2n or n +1), V={vy," - *,v,} the canonical parameter of K
wn @, and q the number of v; which are odd.

Suppose K is even. Then G has a generalized quaternionic subgroup T
such that T N ad(G)K =1 if and only if n is even (say n=2s) and q is odd,
and any such T is ad (G)-conjugate to the image of a faithful G-representation
F’ of a QR where " =1T", - - -+ T, for some choice of odd integers r;.
If n=2s, q is odd, a = 3, {ry," - -, 75} are odd integers and

= (P o+ T7,) (Q2),

then T Nad(G)K =1. If nis odd or q is even, and 3 is a finite subgroup of
G such that 3 Nad(G)K =1, then every Sylow subgroup of 3 is cyclic.

Suppose K 1s odd. Gwen a =3, G has ¢ subgroup T isomorphic to Q20
such that TNad(G)K =1, —1 is the element of order 2 in T, f(T) is a
dihedral 2-subgroup of SO (2n or 2n 4+ 1) = G such that f(T)N ad () f(K)
=1 and f(T) 1s ad(G")-conjugate to the image of a non-faithful G'-repre-
sentation I' of QR which is a sum of representations of the forms Sy -+ S4s,
r odd, and Sy + S, t odd.

Proof. f: G =Spin— SO = ( being the natural projection, — 1 is the
element of order 2 in ker.f and K’ —=f(K). Suppose K is even, so —1€ K ;
given a subgroup T of G, T N ad(G)K =1 if and only if f(T) N ad(G") K’ =1
and —1¢T. A generalized quaternionic subgroup T of G not con-
taining —1 is ad(G)-conjugate to the image of a faithful G-representation
F=T,4---41T,+, ¢ not faithful, of Q2. f F is a faithful &-
representation #' =7, +- - -+ T, + 1, ¢ not faithful, of Q2+ In the proof
of Theorem 9.1 we saw that f(I') N ad(G’)K’=1 if and only if n—2s and
q 1s odd, and this is independent of the choices of ¢ and of the odd integers 7;.
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If n=2s, then ¢, and hence ¢, is trivial because F represents by matrices of
determinant 1.

Now suppose K is odd. Given =3 we will construct a subgroup I
of G, isomorphic to the dihedral group DR¢! of 2¢! elements, such that
IYNad(G)K’ =1 and T'={"*(I") is isomorphic to Q2¢. Then —1 will be
the element of order 2 in I'. Given y€T Nad(G)K, f(y) =1; as —1¢ K
it follows that y=1, so TNad(G)K =1.

Let T’ be a dihedral 2-subgroup of . As D2+ is the quotient of QR¢
by the subgroup generated by B*=A*"", we may view I” as the image of a
representation # =S8, 4+ - -+ Ser, + Sat, + -+ Set, + 5, 5 odd and s
a sum of O(1)-representations, of QR¢ Let 2w’ and w be the multiplicities
of the eigenvalue —1 of s(4) and s(B) ; the eigenvalue —1 of F(B) has
multiplicity u + v + w=2z. K’ is odd because K is odd ; as in the proof of
Theorem 9.1 the arithmetic criterion shows that {F(4)} Nad(@)K’ =1 if
and only if » is odd when a > 8, if and only if u 4w’ is odd when a—3.
It also shows that {F(B)} Nad(G’)K’=1 if and only if z is odd.

The representations F which lift to Spin are of the form

F = (82,4 84s,) +- - -+ (Szrp‘l' 15143,,)
+ (Se+8) ++ - -+ (S, + 5)

with 7;, ¢; odd and where §: A—>1, B—>-—1€0(1). In this case, every
element of I is conjugate to a power of F(4A) or F(B) and we have
U=p+qg=a, w'=0; it follows that IV Nad(@)K’=1 if and only if
p+qisodd. rank.K >0 implies n > 1, so we can find non-negative integers
p and ¢ with p 4 ¢ odd and 4p + 8¢ = 2n, hence a (’-representation F of the
form (*) with p+ ¢ odd. QED.

(*)

V.2. Subgroups of the unitary group which have all Sylow subgroups
cyclic and act freely. Suppose that K is a closed connected subgroup of
U(n) of rank n—1 and T is a finite subgroup of U(n) with all Sylow sub-
groups cyclic. T is conjugate to the image of a faithful representation of an
abstract finite group 3 with all Sylow subgroups cyclic, and we can replace T'
by that conjugate. We will apply our arithmetic criterion (Theorem 6) to
see whether I'N ad(U(n))K —1. This is of considerable interest if n is odd
or the number of odd elements of the canonical parameter of K in U(n) is even.
for then every finite subgroup B of U(n) such that B N ad(U(n))K —1 has
every Sylow subgroup cyclic.

Let NV be the order of 3. We represent 3 by generators and relations:
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Am=PBr=1, BAB*=A4", 0 <m, mn=N, ((r—1)n,m) =1 and rm=1
(modm). If3 is cyclic, m =1 and this becomes BY = 1.
If T is cyclic of order ¢ and has a generator y with eigenvalues

exp (wiry/t), - -, exp (2air,/t),

and V= {v;,- - -,v,} is the canonical parameter of K in U(n), a direct
application of the arithmetic criterion shows that T Nad(U(n))K =1 if and
only if 74,5 is prime to ¢ for every element g of the permutation group
S(n). We will, then, ignore this case and henceforth assume that 3 is not
eyclic.
In the notation of §IV.3, we can assume that I' is the image of the
a b
faithful representation F =3 2’ fix;, of 2 in U(q)..
j=1 p=1
Given an integer u and a divisor m; of m, we define u) — (u,d,),
0=w;<d; and u;=u(modd;), d;®-ul) =d;, and

) =1 _|_ U3 + r2u; + N + (@ W-1)uy

Given a second integer v, we define h(u,v) to be the order of B¥Av in 3.
A calculation shows that fj,, (B“A®) has eigenvalues

exp (2mi[ (b (u, v) /nmy) (kjgum; + uDminie 4 nfvudDrtrt) 1 /h (u, v))

for 0=¢<d® and 0=¢ <u®. If u is prime to d;, a calculation shows
that this means that fy,,(B*A®) has eigenvalues exp (2xi[kjpu — eni]/n) for
0=e <dj, hence is ad(U(d;))-conjugate to fy,,(B*). If d | #, another
calculation shows that the eigenvalues of fj,, (B“A®) can be written, on setting
u=wd so u/n=w/n’, as

exp (Rmi[ kjpwm 4 (mn//m;)vrt] /ma’) for 0 =t < dj.

Now set Njpe= Jocj dobe + (p—1)d; + e+ 1, and, given an integer u,
set Nipot (u) = Socj dobo + (p—1)d; + eu® -t 4+ 1. With this notation, an
application of the arithmetic criterion now yields:

TaEOREM 10. Let K be a closed connected subgroup of rank q—1 in
the unitary group U(q), V= {v,," - -,v,} the canonical parameter of K
in U(q), S(q) the group of all permutations on {1,2,- - -,q} and T a
finite subgroup of U(q) which is the wmage of a faithful representation

a b
F~——]§1 Iglfjk,,, of the abstract finite non-cyclic group 3 with all Sylow sub-

groups cyclic. Then T'Nad(U(q))K =1 if and only if for every g€8(q)
we have:
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d b! d’_l . .
1. 33 2 V9w, (kip+enf’) is prime to n.

j=1 p=1 e=0

a by d;-1 , . . ,
Re 22 X Ve (mEjp 4 (m/mj)n're) is prime to mn/'.

J=1 p=1 e=

3. Given integersuand vwith1=u <n, 1=v<mand 1l <(u,d) < d,
a by dj(")'l w-1

PIDIED FZO Vg (Wyper ) * (B (2, v) /mmj)

j=1 p=1 =0

(kjpum; + uDmmie + njvu@Dr@rt) =£0 (mod h (u,v) ).

To adapt these formulae to the other classical groups, we proceed as
follows:

SU(gq). K must have rank ¢—=2 and T must lie in SU(q). Formulae
(1,%,3; Theorem 10) remain unchanged.

Sp(q). T CSp(q)CU(2q), S(q) must be replaced by the group S’(q)
of all signed permutations on V, and, for each formula of Theorem 10, the
numbers following the v’s fall into two sets, one of which is the negative of
the other, and only one must be summed.

SO(2¢q+1). TCSO(Rqg+1)CU(Rqg+1) and we proceed as for
Sp(g).

SO(2q). T C8SO(29) CU(2q), S(g) must be replaced by the group
S”(q) of all signed permutations on ¥ which involve an even number of
changes of sign, and we proceed as for Sp(q).

Spin(2q or 2¢ 4+ 1). We proceed as for SO (2q or 2¢ + 1).

Recall that if G =U(q), SU(q), Sp(q), SO(2q or 2¢ + 1), or Spin(2q
or 2¢+1), and if K=U(¢—1), SU(¢—1), Sp(¢g—1), SO(2¢—1 or
Rq—2), or Spin(R¢ —1 or 2¢— ), respectively, imbedded in the usual way,
the canonical parameter of K in ¢ is {1,0,- - -,0}. With this in mind, we

can use Theorem 10 to generalize some rather nice theorems of H. Zassenhaus
[16] and G. Vincent [14]:

CororrLARY 10.1. Let G be a classical group U(q), SU(q), Sp(q),
SO(2q or 2q+1) or Spin(2q or 2¢+1) and let K be a closed connected
subgroup such that rank. G —rank. K =1 and the canonical parameter of K
in Gis {1,0,0,---,0}. Let T be a finite subgroup of G with T' N ad(G)K =1,
such that the order of T is either the product of two primes or is prime to Rq.
Then T s cyclic.

3
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Proof. Suppose first that the order of I' is prime to 2¢g. As every abelian
subgroup of T is cyclic and T' has odd order, every Sylow subgroup of T' is
cyclic. Formula 2 of Theorem 10 now says that mk;, 4 (m/m;)n’re is prime
to mn’, hence to m, so m;=m and consequently each dj=d. This implies
that d divides both ¢ and the order of T, which are relatively prime, so d =1.
But d =1 ifplies r=1 and thus that I' is cyclic.

Suppose I' has order mn with m and n prime, and that T' is not cyclic.
As T is not abelian, m 5% n. It follows that every Sylow subgroup of T' is
cyclic, so we look at Theorem 10, which, by switching m and n if necessary,
is directly applicable. d|n and n is prime, so d=1 or d=n. As d=1
implies that I' is cyclic, d =n. Formula 2 of Theorem 10 then shows m; = m,
so nf=mn"=1. Formula 1 of Theorem 10 then says that kj, -+ ¢ is prime
to n for 0 = e < m, which is impossible. QED. '

In addition to providing known information on spheres, Corollary 10.1
tells us something about the Grassmann manifolds SO (2¢)/SO(2¢—2),
S0(29+41)/80(%q¢—1) and SO(2gq+1)/SO(2¢q—2). The formulae of
Theorem 10 can yield all sorts of information by placing special conditions
on the canonical parameter.

Chapter VI. Manifolds with non-zero Euler characteristic.

After stating that we would for the most part concentrate on the case
rank. ¢ —rank. K =1, we devoted our attention primarily to the case
rank. G —rank. K =1. In this chapter, we will prove a theorem about the
case where rank. @ =rank. K. TFirst recall the well-known fact ([10], p. 15)
that a coset space G/K of a compact connected Lie group G by a closed sub-
group K has Euler characteristic x(G/K) =0, and that x(G/K) > 0 if and
only if rank. ¢ =rank. K. We will prove:

TarorEM 11. Let M be a compact connected Riemannian homogeneous
manifold with Huler characteristic x(M) 40. Then there are only a finite

number, up to isometry, of Riemannian manifolds which admit M as a
Riemannian covering manifold.

Remark. 1f M’ admits a Riemannian covering of multiplicity n by M,
we have y(M)=n-x(M’). As x(M’) must be an integer, it is clear,
intuitively speaking, that one can go down only a finite number of steps
from M. The theorem says, then, that there are only a finite number of
steps from M. The theorem says, then, that there are only a finite number
of “directions” in which one can go down. These various “directions” will



RIEMANNIAN HOMOGENEOUS MANIFOLD. 687

be seen to correspond roughly to the subgroups of the finite group G/G,,
where @, is the identity component of the group G of isometries of M.

Proof. We will first show that we may assume M simply connected, so
that we will only have to consider normal coverings, i.e., coverings which are
effectuated by the group of deck transformations. Let K, be the intersection
of an isotropy subgroup K of the group G of isometries of M with the identity
component G, of G, so M = Gy/K,. K, contains a maximal torus of G,
but contains no nontrivial normal subgroup of G,; it follows that @, is
centerless, hence semisimple, and thus has finite fundamental group. The
homotopy sequence of the fibring Gy—> Go/K,— M then shows that M has
finite fundamental group, so the universal Riemannian covering manifold M”
is compact. We will be done if we show that only a finite number, up to
isometry, of Riemannian manifolds admit a Riemannian covering by M”, so
we may assume M simply connected.

We now need only show that there are only a finite number of properly
discontinuous subgroups of G which give mutually non-isometric quotient
manifolds of M. As conjugate subgroups of G give isometric quotients, we
need only show that there are only a finite number of mutually non-conjugate
properly discontinuous subgroups of G. As rank. G —rank. K, ad(G)K
contains (, so a properly discontinuous subgroup of G meets G, only at 1
and is thus isomorphic to a subgroup of the finite group G/G,. The proof of
Theorem 11 is thus reduced to:

Lemma 11.1 (Mostow). Let G be a compact Lie group and T a finite
group. Then G contains only a finite number of conjugacy classes of iso-
morphs of T.

Proof. Suppose the contrary and let {T',} be a sequence of mutually
non-conjugate isomorphs of I' which lie in G. We can assume that T,
= {y1n, ¥Y20," * ", Ykn} ordered so that y;,— yjn is an isomorphism T,—T,,
for every m and n. As T is finite and G compact, we can assume that each
sequence {yjn}n converges, {ym}—>v;. It is clear that 3= {y,,- - -,yx} is a
subgroup of @, although we don’t yet. know that the y; are all distinct. A
theorem of D. Montgomery and L. Zippin ([9], p. 216) says that S has a
neighborhood U such that every subgroup of @ in U is ad (G )-conjugate to a
subgroup of 3. As the T, eventually lie in U, this contradicts their mutual
non-conjugacy. QED.

The proof of Theorem 11 also furnishes a proof of :

TueorEM 11”. Let M be a compact connected Riemannian homogeneous
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manifold. If M has finite fundamental group, there are only a finite number,
up to isometry, of Riemannian manifolds with a given fundamental group
which admit M as a Riemannian covering manifold. In any given case, there
are only a finite number, up to isometry, of Riemannian manifolds which
admit a normal Riemannian covering by M with a given group of deck trans-
formations.

THE UNIVERSITY OF CHICAGO.
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