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THE MANIFOLDS COVERED BY A RIEMANNIAN 
HOMOGENEOUS MANIFOLD.* 

By JOSEPH A. WOLF.' 

Introduction. The sphere is known to be the universal covering for 
complete connected Riemannian manifolds of constant positive curvature. 
More precisely, if M is an n-dimensional complete connected Riemannian 
manifold of constant sectional curvature k2 > 0 with k > 0, and if Sn is the 
sphere of radius k-1 in Euclidean space RI'+', with the induced metric, then 
there is a covering of M by Sn such that the covering projection is a local 
isometry. Because of this phenonmenon, the complete connected Riemannian 
manifolds of constant positive curvature are called the "spherical space- 
forms." In his thesis, G. Vincent [14] attempted to classify them. Following 
this line of investigation, we take a compact connected Riemannian homo- 
geneous manifold M and ask which Riemannian manifolds admit M as a 
Riemannian covering manifold. In Chapter I, this problem is reduced to a 
problem on discrete subgroups of compact Lie groups: 

Given a compact Lie group G and a closed subgroup K, find all finite 
subgroups r of G such that r meets the union of the conjugates of K only 
at the identity element of G. 

For the most part we restrict our attention to the case where r lies in the 
identity component of G, or, equivalently, where G is connected. In Chapter 
II we obtain some bounds on the ranks of abelian subgroups of r, and see 
that the problem of classifying these groups r is inaccessible unless rank. G 
-rank. K?_ 1. 

Chapter II ends with a sharper bound on the ranks of abelian subgroups 
of r, in case rank. G - rank. K = 1, which implies that every abelian sub- 
group of r is cyclic if the semisimple part of G is simply connected and r 
lies in the identity component of G. We remark that H. Zassenhaus [16] 
and M. Suzuki [13] have given a complete classification of the finite groups 
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with all abelian subgroups cyclic. Under certain conditions on G, K and the 
order of r (Corollary 10. 1) it follows that r itself is cyclic. 

In Chapter III we obtain an arithmetic criterion (Theorem 6), assuming 
G and K connected, for an arbitrary given finite cyclic subgroup of G to act 
freely on G/K. This criterion involves the Weyl group of G and the position 
of K in G. It is applied to an arbitrary finite subgroup E of G by finding 
cyclic subgroups of Y such that every element of Y. is ad(G)-conjugate to an 
element of one of these cyclic subgroups. Applying to the case where G is 
a classical group we obtain some information on elements of order 2 in r, 
assuming rank. G - rank. K =1. Finally, we sharpen the bound on the 
ranks of abelian subgroups of r in case G is a special orthogonal group. 
In Chapter V we apply the arithmetic criterion again to the case where G is a 
classical group. Chapter VI is a consideration of the case where rank. G 

rank. K, i. e., the Euler characteristic x (M) -7 0, and shows that M covers 
only a finite number, up to isometry, of Riemannian manifolds. 

Our problem can be considered as a generalization of the classical Clifford- 
Klein problem of finding all spherical space-forms, in that we have replaced 
the sphere by an arbitrary (for Theorems 1 to 4 and Theorem 6), or at least 
more general, compact connected Riemannian homogeneous manifold. Another 
direction of generalization is that of considering finite groups which admit a 
free topological action on a space similar in some way to a sphere. In this 
regard, we mention some of the work of P. A. Smith [11], P. E. Cbnner [5], 
J. Milnor [8] and A. Heller [6]. 

I especially wish to thank Professor S. S. Chern, under whose guidance 
this paper was written, for many helpful discussion and comments. I also 
wish to thank Professors A. Borel, H. C. Wang and R. S. Palais for many 
helpful discussions. Some of Professor Borel's work [1, 2] is crucial to this 
paper, and Professor Palais pointed out a lemma of Mostow used in the proof 
of Theorem 11. 

Chapter I. Reduction to a problem on Lie groups. 

I. 1. Covering spaces. In order to establish notation and terminology 
we will recall some well-known facts and definitions concerning covering 
spaces. All spaces will be llausdorff and all maps will be continuous. 

A covering is a map p: X -> X' of arewise connected, locally simply con- 
nected spaces where every element of X' has a neighborhood U such that P 
maps each component of p- (U) homeomorphically onto U. p-1 (x') is the 
fibre over x' EX'. All fibres have the same cardinality, the multiplicity of 
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the covering. A finite covering is a covering of finite mrultiplicity. p induces 
a monomorphism of fundamental groups, and the covering is normal if 
p 7r1(X) is a normal subgroup of 7r1(X'). This is independent of choice 
of basepoints. If H is a subgroup of 7r1(X), there is a covering q: Y-- X' 
and a choice of basepoint in Y such that q -7r (Y) = H. 

THEOREM 1. If p: X -- X' is a finite covering, there is a finite normal 
covering q: X" -* X, where pq: X" -* X' is a finite normal covering. 

Proof. The multiplicity of p being equal to the index of H = p 7r1(X) 
in 7r1(X'), the normalizer N of H in 7r1(X') has finite index in 7r1(X'). 
Consequently ([7], p. 82) H has only a finite number of conjugates in 7r1 (X'), 
so ([7], p. 62) the intersection J of the conjugates of H has finite index in 
7r1(X'). Let q: X"--X be a covering, where qi7r1(X")- p-1(J), and the 
normality conditions follows from the construction of J. QED. 

An action of a group r on a space X is effective if the identity element 
of r is the only element inducing the identity transformation of X, is free if 
the identity element of P is the only element which leaves fixed a point of X, 
and is properly discontinuous if every point of X has a neighborhood which 
does not meet any of its transforms under r. If X is compact, the action 
of r is properly discontinuous if and only if P is finite and acts freely. The 
set r(x), the orbit of a point x of X, is the set of images of x under r. The 
space X/lr of orbits is given the quotient topology for the natural projection 
x -> P (x); the natural projection X -* X/r is a covering if and only if r 
acts properly discontinuously on X. 

A deck transformation of a covering p: X-* X' is a homeomorphism 
y: X -> X, where p y= p. The group P of all deck transformations acts 
properly discontinuously on X, and ([12], ? 14) p is a normal covering if 
and only if r is simply transitive on each fibre, i. e., if and only if p: X-> X' 
is a principal bundle with group r, i. e., if and only if X' = X/r. 

A Riemannian covering is a covering p: M - 1M', where 31 and M' are 
Riemannian manifolds and p is a local isometry. If just one of M and M' 
is a Riemannian manifold, the requirement that p be a local isometry gives a 
Riemannian structure to the other and makes p a Riemannian covering. We 
easily see that a deck transformation is an isometry of M1, because p is a local 
isometry. 

A Riemannian homogenebus manifold is a Riemannian manifold whose 
group of isometries is transitive. 
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THEOREM 2. If q: M" -* M is a Riemannian covering and M is Rie- 
mannian homogeneous, then M1" is Riemannian homogeneous. 

Proof. A one-parameter group of isometries of M is a homotopy and 
can be lifted to M" by the covering homotopy theorem. The lifted homotopy 
consists of isometries of M" because q is a local isometry. It follows that 
the group of isometries of M" is locally transitive and therefore transitive. 
QED. 

I. 2. Reduction to a problem on discrete subgroups of compact Lie 
groups. 

THEOREM 3. Let M be a compact connected Riemannian homogeneous 
manifold, G the group of isometries of M, K an isotropy subgroup of G, and 
r a subgroup of G. Then r is a properly discontinuous group of isometries 
of M if and only if r is finite and r n ad(G)EK- 1, where 1 is the identity 
element of G and ad(G)K is the set of all ad(g)lkc==glcg-1 with gE G and 
k C K. 

Proof. M is compact and r is a group of isometries of llI, so r is a 
properly discontinuous group of isometries of 71 if and only if r is finite 
and acts freely on M11. G is transitive on M, so the isotropy subgroups of G 
are the subgroups ad (g):K with g E G. r acts freely on M if and only if it 
meets each isotropy subgroup only at 1. Hence r acts freely if and only if 
r nad(G)K i1. QED. 

Using Theorems 1, 2 and 3, we see that the original problem 

Given a compact connected Riemannian homogeneous manifold M, find 
all Riemannian manifolds which admit a Riemannian covering by M. 

is reduced to the problem 

Given a compact Lie group G and a closed subgroup K, find all finite 
subgroups r of G such that P n ad (G)K = 1. 

by taking G to be the group of isometries of a finite Riemannian covering 
manifold of AI and K to be an isotropy subgroup of G. We then note that 
G and K are both compact, each has only a finite number of components, 
and K meets every component of G. 
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Chapter II. Necessary conditions for a finite group to act as a properly 
discontinuous group of isometries of a compact connected 

Riemannian homogeneous manifold. 

Given a compact Lie group G and a closed subgroup K, we will find 
some necessary conditions on finite subgroups P of G for rn ad(G)K = 1. 
These will involve the ranks of G, K, and some subgroups of r. 

The rank of a finite abelian group B is the minimal number of factors 
in a direct product decomposition of B into cyclic groups, and is denoted 
rank. B. For example, if p is a prime, the elementary p-group with ph 

elements, (Z.) h = Zp X * X Z4, the direct product of h copies of the cyclic 
group of order p, has rank h. The rank of B is the maximum of the ranks 
of its elementary p-subgroups, and B is cyclic if and only if rank. B ? 1. If 
p is a prime, the p-rank of B, denoted p-rank. B, is the rank of a p-Sylow 
subgroup of B. It is the maximal integer h such that B has a subgroup 
isomorphic to (Zp ) h. 

The rank of a compact Lie group H, denoted rank.H, is, as usual, 
the common dimension of the maximal toral subgroups of H. 

II. 1. A bound on the ranks of certain abelian subgroups. 

THEOREM 4. Let K be a closed subgroup of a compact Lie group G. 

1. Given a finite subgroup r of G such that r nad(G) = 1 and an 
abelian subgroup B of r which lies in a torus of G, we have rank. B < rank. G 
-rank. K. 

2. The above bound is the best possible in the sense that there is a 
positive integer m (G, K) such that, given a finite abelian group A with 
rank. A ? rank. G - rank. K and m (G, K) prime to the order of A, a torus 
of G has a subgroup A' which is isomorphic to A and such that A' n ad(G)K 
=1. 

Proof. Let T' be a maximal torus of K, T a maximal torus of G which 
contains T', n- -rank. G and k = rank. K. We replace B by a conjugate 
which lies in T and still have B n ad (G)K = 1, hence B n T' = 1. It follows 
that the canonical map of T onto the (n - k) -torus T/T' maps B mono- 
morphically. Since a finite subgroup of an (n - k) -torus has rank at most 
n- k, we conclude rank. B < n -k. This proves the first statement. 

Let Ko be the identity component of K, G0 the identity component of G, 
W= {w1, . - , wq} an enumeration of the Weyl group of G0 with respect 
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to T, and {a1, , at} a set of automorphisms of Go which preserve T such 
that the automorphism group ad (G) of Go can be written as the union of 
the a* ad( G0). Two elements of T are ad( G0) -conjugate if and only if they 
are W-conjugate, and it follows that an element of T lies in ad(G)KO if and 
only if it lies in one of the Tj == a,(wj(T')). As there are only a finite 
number of the kc-tori Tij, there exists an (n - 7k) -torus V in T which inter- 
sects each Tij in a finite group. Let m (G, K) be the product of the primes 
occurring in the orders of these finite groups and in the order b of K/KO. 
Let 83E V have order prime to m(G,K) and lie in ad(G)K. Then 
/b E Ad ( G)Ko, so /3b E Tij for some (i, j). Since the order of /b is also prime 
to m (G, K), this implies, by the definition of m (G, K), that /3b - 1. Since 
the order of /8 is prime to b, this implies A = 1. 

We can find a subgroup A' of V which is isomorphic to A because V is 
an (n - 7k) -torus and A is a finite abelian group of rank at most n - k. 
The considerations above show that A' l ad(G)K= 1 if the order of A, 
hence of A', is prime to m (G, K). QED. 

In Chapter III we will see examples where K, and even G, is connected 
and m (G, K) must be even, hence m (G, K) > 1. 

II. 2. The work of A. Borel on torsion and subgroups which, lie in a 
torus. A. Borel has proved ([1], Chapter XII) that if G is a compact 
connected Lie group with classifying space BG, p is a prime, and the integral 
cohomology ring H* (Be, Z) has no p-torsion, then every elementary p-sub- 
group (subgroup isomorphic to some (Z,) h) of G lies in a torus of G. A case 
by case check proves the converse. Borel has also shown that H* (G, Z) has 
p-torsion if and only if H* (BG, Z) has p-torsion, using known results and 
checking the case p= 5 for E6, p==5 and p= 7 for E7 and p=7 for E%. 
The summary of the situation is that the following are equivalent: 

1. H* (G, Z) has no p-torsion. 

2. H* (Ba, Z) has no p-torsion. 

3. G,, being the semisimple part of G, H* (G,,, Z) has no p-torsion. 
4. ri (G.) has order prime to p, and, if G' is a simple factor of the 

universal covering group of G,,, then H* (G, Z) has no p-torsion. 

Finally, if H is a compact, connected, simple, simply connected Lie group, 
then H* (H, Z) has p-torsion in precisely these cases: 

1. p 2 and H=E8, E7, E6, F4, G2, or Spin(n) with n > 7. 
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2. p 3 and H= E8, E7, E6, or F4. 

3. p 5 and H=E8 

An immediate consequence of Theorem 4 and this work of A. Borel is: 

THEOREM 4'. Let G be a compact Lie group of rank n, K a closed sub- 
group of rank k, and r a finite subgroup of the identity component GO of G 
such that rFnad(G)K=1. Then if p is a prime for which H*(G0,Z) has 
no p-torsion, every abelian subgroup of r has p-rank ? n -lc. If H* (G0, Z) 
is torsion-free, every abelian subgroup of r has rank_? n - k. 

It is now clear that the problems in applying Theorem 4 are closely 
related to the existence of p-torsion in G. This is of two sorts-p-torsion 
from the fundamental group of G and p-torsion from the simply connected 
versions of the simple factors of G. Finally, we can only hope to classify 
our groups r in case rank. G -rank. K < 1 due to the )resent rate of the 
theory of finite groups. We will see, however, that p-torsion in G is of little 
importance in case rank. G = rank. K, and that only the p-torsion from 'X, ( G) 
is of importance in case rank. G -rank. K-1. 

In addition to the results mentioned above, A. Borel has shown [2] 

Let G be a compact connected Lie group, 7ri(G) torsion-free and x E G. 
The centralizer of x in G is connected. 

As the identity component of the centralizer of x in G is the union of the 
maximal tori of G which contain x, it easily follows, if 7r (G) is torsion-free, 
that every abelian subgroup of G with 2 generators lies in a toru-s of G. 
We will depend heavily on this result of A. Borel in the next section. 

II. 3. A further bound on the ranks of abelian subgroups. The main 
purpose of this section is to prove: 

THEOREM 5. Let G be a compact connected Lie group, K a closed sub- 
group with rank. G - rank. K =1, P a finite subgroup of G with r n ad(G)K 
- 1, p a prime, and h (p) the p-rank of 7ri (G). Then every abelian subgroup 
of r has p-rank ? h (p) + 1. If h (p) =2, then every abelian subgroup of r 
has p-rank < 2. 

We will first need a few lemmas. The first two of these lemmas are 
known, but not well-known, so it seems best to write them out. 

LEMMA 5. 1. Let G be 'a compact connected Lie group, G,, the semi- 
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simple part of G, and Z(G)o the identity component of the center of G. 
There is a covertng 4: Gs,XZ(G),--G given by 4)(g,t) =gt. 4 is an 
epimorphism of compact connected Lie groups and the kernel, ker. 4, of 4 is 
the set of all (g,g-1) with gE GssnZ(G)o. 

Proof. Gs, has finite center and G = Gs . Z (G),. Note that ker. 4 is 
finite and lies in the center of GaS X Z (G),o 

LEMMA 5. 2. Let G be a compact connected Lie group. As a topological 
space, G is homeomorphic with Gs X Z (G)O. As Z(G), is a torus, it follows 
that the torsion subgroup of iri (G) is isomorphic to 7r, (G,,), and in particular 
p-rank. 7r1 (G) p-rank. r1 (G,,) for every prime p. 

Proof. We proceed by induction on the dimension s of the torus Z(G)o, 
and the lemma is trivial if s = 0. If s = 1, we consider the principal bundle 
G - G/Gss =Z (G) o/ (G., n Z (G) o) with connected group GSS and base which 
is a 1-sphere. Since this is a trivial bundle ([12], p. 99), G is homeomorphic 
to Gss X (1-sphere), which is homeomorphic to G,s X Z (G), Now assume 
s > 1. Take a subgroup H of G which is generated by Gs, and an (s-1)- 
torus T in Z (G),. H is homeomorphic to Gs, X T by induction. As before, 
the principal fibre bundle G--> G/H tells us that G is homeomorphic to 
H X (1-sphere), so G is homeomorphic to GaS X Z(G),. 

Now note that 7ri(G) ===7r(G8ss) X7rl (torus) and iri(torus) is a free 
abelian group. QED. 

LEMMA 5. 3. Let G be a compact connected Lie group, p a prime, and 
h (p) the p-rank of 7r. (G). Let 4: GaS X Z (G) o - G be the covering given by 
0(g, t) = gt, p: G"--> GSS the universal covering of Gss, and 0: G' X Z(G)0 -> G 
the composition 4). (IX1). Then every (Z.)h(p)+2 in G contains a (Z 2 

which is the 0-image of an abelian subgroup of G' X Z(G),. If h(p) 2, 
every (Zp)3 in G contains a (Z4p)2 which is the 0-image of an abelian sub- 
group of G' X Z(G),. 

Proof. Let )3i,8 , 7 ,8(p)+2 generate a (Z.) h(p)+2 in G, N = ker. 4), and 
f8j = (bj,tj) E GSSXZ(G)O. As [,%jj3B] EN, where [ , ] is the ordinary 
commutator, we know from the form of the elements of N that [bi, bj] = 1 E Gss. 
As /jP C N we also know that bjP is central in Gs,. Now take elements cj C G' 
with I (cj) = bj. As bjP is central in Gs,, cjP is central in G'. Since the bj 
commute with each other, the commutators [ci, cj] lies in ker. pt and are thus 
central in G. 

Let u and v be elements of a group H such that w = [u, v] comm.utes 
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with u. uV = wvu and we assume u"-lv - wn-lvu'-l by induction on n. Hence 
UnV -q UUn1V- uwU-lVun-1 Wn-lUV1Un Wn- 1wvuun-1 = WVnUn in general. 
In other words, [Un, V] = [U, V]n if U commutes with [u, v]. Since [Ci, cj] is 
central in G', it commutes with cq, and consequently [ci, cj]P = [cjiP, Cj] which 
equals 1 because ciP is central in G'. 

M = ker. i is isomorphic to r, (Gss) so, by Lemma 5. 2 and the definition 
of h(p), M does not contain a (Zp)h(p)+1. Now set y -- [Cl(P)+2, Cj] for 
1 ? j h (p) + 1. We have just seen that yjP = 1. As jf[ci, cj] [uc,ucj] 

[bi, bj] 1, yj C M. It follows that the yj generate an elementary p-sub- 
group Y in M of rank at most h(p). Since there are h(p) + 1 of the yj, we 
have a relation ylVly2V2 yh(p) +Vh(lp)+ = 1, vj integers not all divisible by p. 
Set c 0CV1C2 2 . * ch(p)+l,Vh()+l and t tlVlt2v2 * th(p)+lv-(P)+1 and notice that 
the fact that [ci, CjCk] [Ci, c] * [ci, Ck], a consequence of the fact that each 
[ci, cq] is central in G', gives us [Ch(p)+2, C] = 1. We now have elements 
a (c, t) and T= (Ch(p)+2, th(p)+2) in G' X Z (G),O such that a- and r generate 
an abelian group in G' X Z (G), whose 0-image is a (Z.)2 inside our original 
(Zp)h(p)+2 in G. 

Now suppose h (p) = 2. As before, we have a (Z,)3 in G generated by 
4V1, 0f8325 4433; we have /j = (bj, tj); and we have jA(cj) - bj. We set 
Y= -- [C1 C02], Y2 [C2, C031, Y3 [C3, Cl] and the yj generate an elementary 
p-subgroup of M which, by definition of h (p), has rank ? 2. This gives us 
a relation of the form yiVIy2V2y3Va3 1, where the vj are integers not all divisible 
by p. We can assune that v, is not divisible by p, so there are integers r 
and s such that yl = y2ry3s. If p divides s, [ClC3, C2] 1. If p doesn't 
divide s, there is an integer u with us = - r (mod p), and [c1c2U, C2C38] = 1. 
In either case we get an abelian group from the cj whose 8-image is a (Z )2 
inside our original (Zp)3 in G. QED. 

Proof of Theorem 5. Let B be an abelian subgroup of r with p-rank. B 
> h (p) + -1. Then B contains a (Z,)h(p)+2. By Lemma 5.3 we have a (Zp)2 
in B which is the 0-image of an abelian subgroup S of G' X Z (G)o. S is 
generated by two elements. By a theorem of A. Borel, mentioned in ? II. 2, 
S lies in a torus of G' X Z(G)0o so 0(5) lies in a torus of G. Hence r 
contains a (Z)2 which lies in a torus of G. As rank. G - rank. K = 1 and 
r n ad (G) K = 1, this contradicts Theorem 4. The proof that h (p) 2 
implies p-rank. B ? 2 is identical. QED. 

COROLLARY 5. 1. Let G be a compact connected Lie group which has 
torsion-free fundamental group, i. e., such that G,, is simply connected. Let 
K be a closed subgroup of G such that rank. G - rank. K = 1 and let r be a 

2 



670 JOSEPH A. WOLF. 

finite subgroup of G such thatr n ad(G)K 1. Then every abelian subgroup 
of r is cyclic. The odd Sylow subgroups of r are cyclic and the 2-Sylow 
subgroups are cyclic or generalized quaternionic, i. e., given by two generators 
A and B with the relations 

A = 1, A2a-2 - B2, BAB-' = A-', a integer, a> 2. 

Proof. Let V be an abelian subgroup of r and write V as a product of 
p-subgroups. By Theorem 5, each of these p-subgroups has rank ? 1, hence is 
cyclic. Since V is a product of cyclic subgroups of pairwise relatively prime 
orders, it follows that V is cyclic. The rest is known ([14], Chapter I) to 
follow. QED. 

Chapter III. An arithmetic criterion and first application 
to the classical groups. 

III. 1. Angular parameters and the arithmetic criterion. Let G be a 
compact connected Lie group of rank n, K a closed connected subgroup of 
rank k, T a maximal torus of G which contains a maximal torus T' of K, 
W= {w,, * . , w} an enumeration of the Weyl group of G relative to T, 
and T =w,(T'). We choose an integral basis of the Lie algebra T of T, 
i. e., an ordered basis X = {X,,. . . , X4 of T such that exp ( a8X,) - 1 if 
and only if each a, is an integer. The Lie algebra Ti of Ti can be described 
as the set of all elements E, a8X, of T such that zY v,8a, == 0 for 1 < j < n - kc 
where each {vij,, * * , . vijn} -Vj is an ordered set of relatively prime integers. 
The vij8 can be chosen to be rational because each Ti is closed in T, and the 
obvious normalization transforms each Vij into a set of relatively prime 
integers. 

DEFINITION. The q(n -k) ordered sets VYj of relatively prime integers 
are the angular parameters of K in G relative to X. 

We remark that, for a given K and G, the choice of X does not specify 
the angular parameters of K in G uniquely. 

Let r be a finite subgroup of G. We choose cyclic subgroups {yt} = rt 
of r such that every element of r is ad (G) -conjugate to an element of one 
of the rt. Then r n ad(G)K=1 if and only if rt n ad(G)K= 1 for each t. 
The angular parameters of K in G give us an arithmetic criterion for 
rtfnad(G)K=- 1: 

THEOREM 6. Let G be a compact connected Lie group of rank n, K a 
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closed connected subgroup of rank kI, Y,= {v,l vij2,5 * *Vi}jn} the angular 
parameters of K in G relative to an integral basis X = {X1) , Xn} of the 
Lie algebra T of a maximal torus of G, B = {f8} a cyclic subgroup of order m 
in G, and X = ,s a8X8 E T such that exp (X) is ad (G) -conjugate to /3. Then 
each b, = mas is an integer, and B n ad (G) K = 1 if and only if each 

=V {m, E. vilsbs, S vN28bs8, * * EsVn-ksbs} 

is a set of relatively prime integers. 

Proof. Each b, = ma3 is an integer because X is an integral basis of T 
and exp (mX) = exp (, b3X8) is conjugate to PM = 1. 

We will use the notation leading to the definition of the angular para- 
meters of K in G relative to X. An element of T lies in ad(G)K if and 
only if it lies in one of the Ti, so B n ad(G)K = 1 if and only if exp(rX) , Ti 
for any i whenever r E 0 (mod n). X being an integral basis of T, exp (rX) 
E Ti if and only if there is a choice a, of integers such that rX + Es asXs 
=E(ra, + aj,)Xs lies in T7, i. e., such that E vij,(rb, + maj,) = 0 for 
1 < j < n-k. Reducing modulo m this says that r Es vjsb, 0 for 1 < j 
_n - kc. If r # 0 (mod m), this implies that Vi is not a set of relatively 
prime integers. 

Now suppose tha-t Vi is not a set of relatively prime integers. Then 
there is an integer r#0 (mod m) such that rE,vqjjb, -0 (modm) for 
1 < j < n-k. We will show that exp (rX) E Tj, so 83r ad(G)K. Let Uij 
be the (n - 1) -torus whose Lie algebra Uij is the hyperplane E vijsx = 0 in 
T, where the x, are coordinates relative to the basis X. T n= i U,1. VIj being 
a set of relatively prime integers, we have integers c,,j with Es cijsvij, = 1. The 
congruences r E, vij1b3- 0 (mod m) gives us integers tj with mtij + r E, vijb, 
=0, 0so we have integers aij, = cq1tq such that E, vj (rb +- maj,) = 0, for 
1< j <n-k. This just says that exp (rX) C Uij for 1 ? j <n-k, so 
exp(rX) C Ti. QED. 

Theorem 6 can be used to check r n ad (G) K = 1 provided that the inter- 
section of K with the identity component G0 of G is connected and r c G0. 
Let {ft} be automorphisms of G such that the automorphism group ad(G) 
of G is the union of the ad(U0) *ft. Let Kt=ft(K)fn G0. Given r c GUo 
r n ad(G) K = 1 if and only if r n ad(G0)Kt= 1 for every t. We can check 
the rPnad(G0)Kt= 1 with Theorem 6 and thus check rn ad(G)K=- 1. 

The application of Theorem 6 is simplified when the Weyl group W of 
G acts on the integral basis X by signed permutations: the angular para- 
meters can then be chosen so that each VYj is obtained from Vlj by the same 
signed permutations. We will use this trick when G is a classical group. 
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III. 2. Even and odd subgroups of the classical groups. By the 
classical groups we mean the unitary groups U (n), the special unitary groups 
SU (n), the symplectic groups (often called the unitary symplectic groups) 
Sp (n), the special orthogonal groups SO(n), and the spin groups (universal 
covering groups of the special orthogonal groups) Spin (n). They are all 
compact connected Lie groups. U (n) has rank n, semisimple part SU (n) 
and fundamental group infinite cyclic. SU (n + 1) has rank n, is simple for 
n > 1, and is simply connected. Sp (n) has rank n, is simple for n > 1, and 
is simply connected. Sp (n) can be viewed as all elements of U (2n) which 
preserve an antisymmetric nondegenerate 2-form on complex Euclidean space 
C2f. Given an orthonormal basis {e1,. . . , e2,f} of 02n, we'll use the form 

2n 2n n 

A ( xjej, yjej) = E (xjyj+ - YjXj+n). 
1 1 1 

SO(2n or 2n + 1) has rank n. SO(k) is semisimple for k ?3, simple for 
4 k Ic >3, has fundamental group Z2 if c> 3, and has universal covering 
group Spin((k). 

Given a classical group G, we have a canonical choice of a maximal torus 
T of G: 

1. G U (n). T is the set of all matrices diag{a,, a *,,}, where each 
a1 is a unimodular complex number. 

2. G = SU (n). T is the set of all diag{a1, * ,an} of determinant 1, 
where each aj is a unimodular complex number. 

3. G=Sp (n). T is the set of all matrices (D D)) where D is the 

complex conjugate of D and D is in the canonical maximal torus of 
U (n). 

4. G = SO(2n or 2n + 1). T is the set of all matrices 

diag{R(t1), ,R(tn), (1)}, where R1(t) cos 2irt sin 2rt/ 

and the (1) appears only if G = SO (2n + 1). 

5. G = Spin (2n or 2n + 1). T is the complete inverse image of our 
chosen maximal torus in SO (2n or 2n + 1). 

If G is not a Spin or special unitary group, we have a canonical choice of 
integral basis XG = {X1,. . . , Xn} of the Lie algebra T of T: 

1. G=( U(n). exp(tXj)=diag{1, . ., 1, exp(27rit), 1, * ,1}, where 
the exp (2-rit) is in the j-th place and i2 = -1. 
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2. G = Sp (n). exp (tXj) =(%D ?), where D is the complex conjugate 

of D and D =diag{1, . l, exp (2rit), 1, , 1} has the exp (27rit) 
in the j-th place. 

3. G= SO(2n or 2n + 1). Let 12 be the 2 X 2 identity matrix; 
exp (tXj) ==diag{I2, *, 2,R (t), 2, I ,, I, (1) ), where R (t) is the 
j-th block. 

The Weyl group W of G acts on XG by signed permutations: 

1. G_ U(n). W acts on XG by all permutations. 

2. G Sp (n) or SO (2n + 1). W acts on XG by all signed permutations. 

3. G SO (2n). W acts on XG by all signed permutations where the 
the number of sign changes is even. 

Let K be a closed connected subgroup of rank k in a classical group 
G ==U(n), Sp(n) or SO(2n or 2n+ 1). Replacing K by a conjugate, we 
have a maximal torus T' of K which lies in our canonical maximal torus T 
of G. The Lie algebra T' of T' is the intersection of n - k hyperplanes 
Es visx8 0, where the x, are coordinates in T relative to the canonical integral 
basis XG; we can assume that each V17 {vl,, Vj2, . . . , vj,} is a set of relatively 
prime integers. If W = {W1,5 . , Wq} is an enumeration of the Weyl group 
of G relative to T, W envisaged as a group of signed permutations on n-tuples 
from its action on XG, the angular parameters of K in G relative to XG are 
the Vij 7wi (IVj). 

DEFINITION. The n - k ordered sets Vj of relatively prime integers are 
the canonical parameters of K in G- U(n), Sp(n) or SO(2n or 2n + 1). 

Let K be a closed connected subgroup of rank le - 1 in SU (n). Viewing 
SU (n) as a subgroup of U (n), K has canonical parameters VI, , Vnk+ 
in U(n). We may assume that Vk+l {1 1,. . 1. 

DEFINITION. The n - ik ordered sets V1, . , VnIk of relatively prime 
integers are the canonical parameters of K in SU(n). 

Let K be a closed connected subgroup of rank k in Spin(2n or 2n + 1) 
and let f: Spin--> SO be the natural projection. We will use the canonical 
parameters VI,,. . . 7,Vk of f(K) in SO(2n or 2n + 1) for the canonical 
parameters of K in Spin(2n or 2n + 1): 

DEFINITION. The n -k ordered sets Vj of relatively prime integers are 
the canonical parameters of K in Spin(2n or 2n + 1). 
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Given a closed connected subgroup K of a classical group G and an 
integral basis X of the Lie algebra of a maximal torus of G, we can always 
construct the angular parameters of K in G relative to X from the canonical 
parameters of K in G. 

The fact that the Weyl group acts on the canonical parameters by signed 
permutations allows us to define: 

DEFINITION. Let K be a closed connected subgroup of a classical group 
G U (n), SU (n), Sp (n), SO (2n or 2n + 1) or Spin (2n or 2n + 1) such 
that rank. G - rank. K 1. Let V = {v1,. , vn} be the canonical parameter 
of K in G and set v = vv2 * v. Then K is an even subgroup of G if v 
is an even integer; K is an odd subgroup of G if v is an odd integer. 

The most familiar examples of even subgroups are 

U(n- 1) c U(n), SU(n -1) C SU(n), Sp(n-1) C Sp(n), 
SO (2n-1 ) C SO (2n) and Spin (2n - 1) C Spin (2n). 

In these examples the canonical parameter can be taken to be {1, O, - , 0). 

III. 3. The orthogonal groups. If G is a classical group U(n), 
SU (n + 1), Sp (n) or Spin (2n or 2n + 1) of rank n, K is a closed connected 
subgroup of rank n -1 and r is a finite subgroup of G such that P n ad (G) K 
=- 1, then Corollary 5. 1 tells us that every abelian subgroup of r is cyclic. 
If, however, G = SO (2n or 2n + 1), then we only know that every abelian 
subgroup of r is of the form ZX X Z,, where u is a power of 2. As it is known 
[11] that a (Z2)2 cannot act freely on the sphere S2n-1 - SO(2n)/SO(2n - 1), 
there is, at least for some choices of K, room for improvement: 

THEOREM 7. Let G be a special orthogonal group SO(q) =SO(2n or 
2n + 1) of rank n and let K be a closed connected subgroup of rank n - 1 > 0. 
If K is odd, G has a subgroup B isomorphic to (Z2)2 with B n ad(G)K- 1. 
If K is even and r is a finite subgroup of G such that r n ad(G)EK 1, then 
every abelian subgroup of r is cyclic. 

Proof. Let V- {vi, . , vn} be the canonical parameter of K in G 
and let b C G have order 2. The eigenvalues of b are all 1 or -1. As 
det. b = 1, the multiplicity of the eigenvalue - 1 is some even number 2s. 
It is clear that b is ad( G) -conjugate to exp ( 1Xi + 1X2 + + 2XI), where 
XG = {Xiy . . . , X,} is our canonical integral basis, so the arithmetic criterion 
(Theorem 6) says that b C ad(G)K if and only if some sum of s of the vj, 
without repetitions, is even. When the vj are all odd this means that 
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b E ad(G)K if and only if s is even; when one of the vj is even and s < n, 
this implies that b E ad (G) K. 

Suppose K is odd. Then each of the vj is odd, so we must exhibit a 
(Z,)2 in G in which every elemenit z 1 has the eigenvalue - 1 of multiplicity 
congruent to 2 modulo 4. Let It be the t X t identity matrix; then such a 
Z,)2 is given by generators 

b= diagt- 1, -1, 1, Itq3}, b2 = diag{, -1, - 1, Iq_3} 

Suppose that K is even, so one of the vj is even. By Theorem 5 we need 
only show that r contains no (Z2) 2, so we must show that a (Z2)2 in G has 
an element 7? 1 with eigenvalue -1 of multiplicity not equal to 2n. 
A (Z2) in SO (q) is conjugate to a group of diagonal matrices. It follows 
that G contains a (Z2 where every element = 1 has eigenvalue -1 with 
multiplicity 2n only if q=3. That case was ruled out by the assumption 
rank. K> Q. QED. 

III. 4. Elements of order 2 which act freely. 

THEOREM 8. Let G be a classical group U(n), SU(n), Sp(n), SO(2n) 
or Spin(2n) and let K be an even subgroup (hence closed and connected, 
and rank. G - rank. K = 1). Let r be a finite subgroup of G such that 
r n ad(G)K=: 1. Then r has at most one element of order 2, and an -element 
of order 2 in r is central in G. Let H be a closed connected subgroup of 
SU (n) such that rank. SU (n) -rank. H =1 and let X be a finite subgroup 
of SU(n) such that Y,nad(SU(n)) H=1. Then both n and H are even 
if > has an element of order 2. 

Proof. Suppose G # Spin (2n) and let y C r have order 2. As in the 
proof of Theorem 7, the arithmetic criterion shows that y has the eigenvalue 
-1 with multiplicity 2n if G = SO (2n) or Sp (n), and with multiplicity n 
if G= U(n) or SU(n). Hence y is conjugate to -1, the negative of the 
identity matrix in G. As - I is central in G, y == - I and is central in G. 

Now suppose that G = Spin (2n) and f: G -* SO (2n) is the natural mapx 
Let - 1 denote the element of order 2 in ker. f. If - 1 is in Pt or K, then 
r or K consists of whole f-fibres and we have f(r) n ad(SO(2n) )f(K) = 12fn.. 
If -1 is in neither r nor K, then either f (r) n ad(SO (2n) )f (K) = 12n or 
r has an eleinent y7l1 such that I2n7zf (y) E f(r)n ad(SO(2n))f(K). We 
will show that this last alternative does not occur. For if it does, K has; 
a conjugate K' such that - y C K'. y has order 2, for y g ker. f but 

2 y)2 Pr n K'. We can pass to a conjugate of y and assume 
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= el . e2 e28, where the ej are an orthonormal basis of Euclidean 
space R2n, taken as generators of the Clifford algebra C (R2n), and dots denote 
Clifford multiplication. If s n, y is central and thus, by Theorem 5, the 
only element of r of order 2. If s <n, let 3 =- e2, * e2,+1l Spin(2n) and 
ad(3)y =-y. This implies that both -y and -y are in ad(G)K, which con- 
tradicts p n ad(G)K 1. Now we can assume that f (p) n ad(SO (2n) )f(K) 
= I2n. f(K) is an even subgroup of SO (2n) because K is even in Spin (2n), 
so an element of f(P) of order 2 is - I2n. It follows that an element of r of 
order 2 lies in f1l({( ? 2n}), hence is central in Spin(2n). Uniqueness 
follows from Theorem 5. 

Let G = SU(n) and let a C : have order 2. If H is odd, the arithmetic 
criterion implies that the eigenvalue - 1 of a has odd multiplicity, contra- 
dicting det. f f1. Thus H is even. If n is odd, we again contradict 
det. u = 1, for, H being even, the arithmetic criterion says that u = -In. 
QED. 

Chapter IV. Finite subgroups of classical groups which have all 
abelian subgroups cyclic. 

Theorems 5 and 7 tell us that if G is a classical group and K is a closed 
connected subgroup, assumed to be an even subgroup if G is special orthogonal, 
such that rank. G - rank. K 1, and P is a finite subgroup of G such that 
r n ad (G)K - 1, then every abelian subgroup of r is cyclic. For this reason, 
we'll examine the finite groups with all abelian subgroups cyclic. 

IV. 1. Classification of finite groups with all abelian subgroups cyclic. 
The finite groups with all abelian subgroups cyclic fall into two classes ([14], 
-Chapter I)-those with all Sylow subgroups cyclic, and those with odd Sylow 
subgroups cyclic and 2-Sylow subgroups generalized quaternionic. H. Zassen- 
haus ([16], p. 198, p. 202) and M. Suzuki ([13], p. 689) have given a 
complete classification of these groups in terms of generators and relations. 
We will not use this classification, but rather will rely on a simpler description 
given in HI. Zassenhaus' book ([17], p. 175) for the finite groups with all 
Sylow subgroups cyclic, and on the fact that a finite group with all abelian 
subgroups cyclic has all Sylow subgroups cyclic if its 2-Sylow subgroups are 
not generalized quaternionic. For reference, the generalized quaternionic 
groups are the groups Q2a of order 2a, a ? 3, given by 

A 2a~- 1, B2 - A2a-2, BAB- - A-', a integer, a ? 3. 
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A finite group of order N with all Sylow subgroups cyclic is given by Am = Bn 
-1) BAB-1-= Ar, O < M, mn n N, ( (r -1) n, rn) = 1, rn -=1 (mod mn). 

Our plan of attack is to calculate representations of these groups in the 
classical groups, and find conditions under which the image of a representation 
acts freely on an appropriate coset space. 

IV. 2. Classical representations of the generalized quaternionic groups. 
Following G. Vincent ([14], Chapter III), elementary techniques of repre- 
sentation theory tell us that the irreducible unitary representations of the 
generalized quaternionic group Q2a are: 

1. The 4 U (1) -representations given by A- ?+ 1 and B ? 1. 

2. The 20-2 -1 U (2) -representations Sr, 1 <r< 2a2, given by 

Sr A-(O O .)and B*((01)r 1), where u =exp(27ri/2a-1). 

Note that Sr is faithful if and only if r is odd. Let S denote the U (1)- repre- 
sentation A -4 1 and B o---1. 

It follows that a special unitary representation of Q2a is an appropriate 
sum of U (1)-representations plus a sum of some of 

1. The 2a-3 SU (2)-representations Sr, where r is odd. 

2. The 2 ,-3 SU (3) -representations Sr + S, where r is even. 

3. The SU (4)-representations Sr, + Sr2, where r1 and r2 are even. 

Similarly, a symplectic representation of Q2a is an appropriate sum of U (1)- 
representations plus a sum of some of 

1. The 2a-3 Sp(1)-representations Sr, where r is odd. 

2. The 2a-3 Sp (1)-representations Sr + Sr*, where r is even and Sr* 
is the complex conjugate representation of Sr* 

A unitary, special unitary or symplectic representations of Q2a is faithful if 
and only if it has a summand Sr with r odd. 

Sr is unitarily equivalent to its conjugate representation Sr*, and is 
equivalent to a real representation if and only if r is even. As before, we 

set R(t)=( cos (2rt) sin(2 t) )ESO(2); the irreducible orthogonal repre- -sin (2irt) cos (2irt) 
sentations of Q2a are: 

1. The 4 0(1)-representations given by A-- ? 1 and B- ? 1. 
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2. The 2a-3 1 0(2) -representations Sr5 r even, unitarily equivalent to 
the corresponding U(2)-representations, given by Sr: A-* R(r/2411) 

and B ( 0 0) 
3. The 2a-8 0 (4)-representations Tr, r odd, equivalent to Sr + Sr*, given 

by Tr: A O>(Rr2 R(-r/2a-1)) and B 2 ) 
A special orthogonal representation of Q2a is an appropriate sum of 0(1) - 

representation plus a sum of some of 

1. The SO (3)-representations Sr + S (r even, of course). 

2. The SO (4)-representations Sr: + Sr2 with r1 and r2 even. 

3. The SO (4)-representations Tr (r odd, of course). 

An orthogonal or special orthogonal representation of Q24 is faithful if and 
only if it has a summand Tr. 

Each of the Tr can be lifted to a faithful Spin(4)-representation of Q2a. 
Let T be one of the Tr and let {ej} be the orthonormal basis of R4 with 
respect to which our matrices are written; the {ej} generate the Clifford 
algebra C(R4). We choose T'(A) C Spin(4) over T(A) and T'(B) C Spin(4) 
over T (B). We then have 

T'(A) ?(cosx+ e2 * e1sinx) (cosx-e4 + e3sinx), 

T' (A)'-1 + (cos x-e2 - e1 sin x) (cos x + e4 * e3 sin x) 
and 

T'(B)=+A---(1+e, * el) (1+e4 e2), 

where dots denote Clifford multiplication, and x = 7rr/22-a. A short calcu- 
lation shows that T'(A)22 e- e , * e * e= T'(B) 2. Another calculation 
shows that T'(B) * T'(A) =T'(A)-1 * T'(B). It follows that T'(A) and 
T'(B) generate a Q2a in Spn (4), so T' extends to a Spin (4)-representation 
of Q2a. T' is faithful because it covers a faithful representation. 

Let V =- Sr^ + Sr2, r= 2uf, a non-faithful SO (4)-representation of Q2a. 
If V'(A) C Spin (4) lies over V (A) and V'(B) E Spin (4) lies over V (B), 
a short calculation shows that V'(B)2- -1, V'(B)* V7'(A)* V.(B)-1 
=V'(A)-1, and V'(A)2'-2 --1 if and only if UHl +U2 is odd. In other 
words, V' extends to a Spin (4)-representation V'of Q2a if and only if one 
of the ul is odd and the other is even. In that case, V' is faithful and -1 
is the element of order 2 in VT(Q2a). 

Let U Sr + S, r = 2u, a non-faithful S0(3)-representation of Q2a. 
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Choosing U'(A) and U'(B) in Spin (3) over U(A) and U(B), we see that 
U'(B)2 -1, U' (B) U'(A) - U' (B) -1 U' (A) -1, and U f(A ) 2a- -1 if 
and only if u is odd. Thus U' extends to a Spin (3)-representation U' of 
Q2aL if and only if u is odd; in that case, U' is faithful and -1 is the element 
of order 2 in U'(Q2a). 

IV. 3. Unitary representations of finite groups which have all Sylow 
subgroups cyclic. Let r be a finite group of order N with every Sylow sub- 
group cyclic. r is given by two generators A and B with relations Am = Bn = 1, 
BAB-' Ar, 0< M,mn n=N, ((r-1)n, m) =1, rnh-1 (modm). Note that 
m is odd; if m were even, r would be odd because A and Ar have the same 
order, so 2 i ( (r - 1)n, m), where we denote a divides b by a i b. Note also 
that not r but only the mod n residue class of r is important. Let 4 be the 
Euler +-function and let G. be the multiplicative group of integers prime 
to m, taken modulo m. As m is odd, there can be no confusion with the 
exceptional Lie group G2. Given CC P, let {(C} denote the cyclic subgroup 
of r generated by C. Let d be the order of r in G.. As rns 1 (mod n), 
d I n and we can write n-==n'd. If mn I m, set d== order of r in G, 
n d,n.'. G. Vincent has proved ([14], p. 156): 

r has exactly )(mnj)n'd/dj2 irreducible unitary representations of degree dj. 
On restricting one of these representations to {A}, it has kernel - {AnlsI}. 
As m1 runs over all divisors of mn, including 1 and mn, these representations of 
degree dj give all irreducible unitary representations of r. 

This, together with other results of G. Vincent ([14], Chapter III) 
make it fairly easy to verify that the irreducible unitary representations of 
degree dj of r are given by: 

fjk(A = diag{exp (27ri/mj), exp (27rir/mj), exp (2rird-l/Mj) } 

0 10 . ..00O K 0~ 
. 0 j0 or 

fjk(B) - exp(2(riik/n)' ? for 1 ?k < (mj) n'd/d2 

0l O O 0 
. . 

0 01 

Chapter V. A second application of the arithmetic criterion 
to the classical groups. 

V. 1. Generalized quaternionic subgroups of classical groups which 
act freely. Suppose G is a classical group of rank n and K is a closed 
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connected subgroup of rank n -1, assumed to be an even subgroup if G is a 
special orthogonal group. A generalized quaternionic subgroup r of G can be 
considered to be the image of a faithful G-representation of the appropriate 
Q2a. Since we know these representations explicitly, we can apply the arith- 
metic criterion to check whether r n ad ( G) K 1. The importance of this 
procedure is that if no generalized quaternionic subgroup of G can act freely 
on G/K, then every finite subgroup of G that acts freely on G/K has all 
Sylow subgroups cyclic. Such groups have particularly simple structure among 
the finite groups with all abelian subgroups cyclic. 

THEOREM 9. 1. Let G be a classical group U(n), SU(n), Sp(n), or 
SO (2n or 2n + 1), K a closed connected subgroup with rank. G - rank. K = 1, 
V = {v1,, , v%} the canonical parameter of K in G, and q the number of 
vj which are odd. Then G has a generalized quaternionic subgroup r such 
that r n ad(G)K= 1 if and only if 

n is even and q is odd, if G:=7/Sp(n); q is odd or q n, if G-=Sp(n). 
If G has a generalized quaternionic subgroup r such that rn ad(G)K ==1 
and if B is any generalized quaternionic group, then G has a subgroup B' 
isomorphic to B such that B' n ad(G)K = 1. If K is an even subgroup in 
case G=SO(2n or 2n+ 1), if 

n is odd or q is even, if G =A Sp(n); q is even and q < n, if G==Sp(n), 
and if X is a finite subgroup of G such that Y.f nad(G)K 1, then every 
Sylow subgroup of : is cyclic. 

Proof. Let r be a generalized quaternionic subgroup of G= U (n), 
Sp (n) or SO (2n or 2n + 1), considered as the image of a faithful G-repre- 
sentation F of Q2a. Checking the various possible summands of F, we see 
that every element of r is ad(G)-conjugate to a power of F(A) or F(B); 
it follows that r n ad(G)K 1 if and only if {F(A)} nfad(G)K==1 
= {F (B) } n ad ( G) K. We will apply the arithmetic criterion (Theorem 6) 
to these two cyclic subgroups of r. When we do this, the integer m in the 
formulation of the arithmetic criterion will be a power of 2, as r is a 2-group, 
so we may ignore the integers bj which are even. As the kernel of a non- 
faithful G-representation of Q2a contains the element B2 =-A2 2 of order 2, 
this means we need only consider the faithful summands of F. Replacing r 
by an ad(G)-conjugate if necessary, we can assume F = S1+ ' '+ Sr, if 
G =U(n) or Sp(n) and F=Tr,+ *+Tr, if G=- SO(2n or 2n+1), 
where the rj are odd. An application of the arithmetic criterion now tells 
us that the condtion for r n ad(G) K = 1 is that, for every element g of the 
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group S(n) of all permutations on {1,2, *,n}, EjrJ(V9(2j-1)-V,(2j)) and 
Yj( ( Vg (2jJ) Vg(23)) are odd if G= U(n), Ejrj(? vg(j)) and zj(? v (;)) are 
odd for any arrangement of + signs if G = Sp (n), and 

Ei r1 ( + Vg(2j.1) - ( Vg(2J) ) ) and Y ( + Vg(2j1.) -( + Vg(2j))) 

are odd for any arrangement of ? signs, requiring only that the number of 
minus signs be even if G=SO(2n), if G=SO(2n 'or 2n+ 1). As the rj 
are odd, the first number has the same residue mod 2 as the second, so we may 
ignore the first one in each case. Similarly, we may ignore signs. We now 

28 
see that the condition for r n ad(G)K = 1 is that, for every g E S(n), E vg(j) 

8 j=1 

is odd if G#Sp(n); Evg(j) is odd if G = Sp(n). This is independent of 
j=1 

a and of the rj, and depends only on n, s and q. It happens if and only if 
n 2s and q is odd if G =;Sp(n); q is odd or q=n if G-Sp(n). 

The theorem is now proved except for G=SU(n). Suppose G= SU(n) 
C U(n) and let K' be a closed connected subgroup of rank n-1 in U(n) 
such that K==K' n SU(n). If r is a subgroup of SU(n), rn ad(SU(n))K 
= r n ad (U (n) ) K', so we are done because a generalized quaternionic sub- 
group of U(n) can be assumed, for purposes of checking r n ad(U(n) )K'= 1, 
to be the image of a sum of Sri with rj odd, and hence can be assumed to lie 
in SU(n). QED. 

The situation with the Spin groups is more complicated because of the 
relative abundance of faithful Spin-representations of the generalized quater- 
nionic groups. 

LEMMA 9. 1. Let K be a closed connected subgroup of rank n-1 > 0 
in G Spin(2n or 2n+1) and let -1 be the element of order 2 in the 
kernel of the natural projection f: Spin -> SO. Then K is an even subgroup 
of G if and only if it contains - 1. 

Proof. K contains - 1 if and only if -1 lies on a 1-parameter sub- 
group of K, as K is connected. Let Y be a 1-parameter subgroup of K. As 
-1 is central in G we may assume that (f Y) (t) =exp (, ta,X,), where 
the exponential is taken in SO (2n or 2n + 1) and {X1, * , Xn} is our 
canonical integral basis for SO (2n or 2n + 1). We may assume Y normalized 
so that (f 11Y) (t) = I if and only if t is an integer; the a, are then integers 
and- 1 lies on Y if and only if 1- Y(1). Y(1)= 1 if and only if 
the number of odd aj is odd. 

Let V = {v1, * , v,} be the canonical parameter of K in G, i. e., the 
canonical parameter of f (K) in SO. If K is odd, E, v8a, = 0 implies that 
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an even uiumber of a, are odd and - 1 =A Y (1). If K is even, we can assume 
v. even and v2 odd; we construct a conjugate X of a 1-parameter subgroup of 
K which contains -I by (fX) (t) =exp(t(v2X1- vX2)). QED. 

We mention an interesting consequence of Lemma 9. 1: 

COROLLARY 9. 1. Let K be a closed connected subgroup of rank n - 1 > 0 
in G = SO (2n or 2n + 1). Then G/K is simply connected if and only if K 
is an even subgroup of G; qr1(G/K) = Z2 if K is odd. 

Proof. The universal covering of G/K is Spin (2n or 2n + 1)/EK', where 
K' is the identity component of f- (K). QED. 

THEOREM 9. 2. Let K be a closed connected subgroup of rank n-I > 0 
in G=Spin(2n or 2n + 1), V== {v, * , v"} the canonical parameter of K 
in G, and q the number of vj which are odd. 

Suppose K is even. Then G has a generalized quaternionic subgroup r 
such that r n ad (G)K== 1 if and only if n is even (say n 2s) and q is odd, 
and any such r is ad (G) -conjugate to the image of a faithful G-representation 
' of a Q2a, where F'- T'r + + T'r, for some choice of odd integers r1. 
If n = 2s, q is odd, a > 3, {r1,i * , rJ} are odd integers and 

r= (T'ri + + rr)(Q2a 

then r n ad (U) K 1. If n is odd or q is even, and :, is a finite subgroup of 
G such that , n ad (G)K=== 1, then every Sylow subgroup of Y is cyclic. 

Suppose K is odd. Uiven a ? 3, G has a subgroup r isomorphic to Q2a 
such that rn ad(G)K=1, -1 is the element of order 2 in r, f(r) is a 
dihedral 2-subgroup of SO(2n or 2n + 1) U G' such that f (r) n ad (G')f (K) 
=1 and f (r) is ad (G') -conjugate to the tmage of a non-faithful G'-repre- 
sentation F of Q2a which is a sum of representations of the forms S + S4s, 
r odd, and S2t+ S, t odd. 

Proof. f: U Spin -4 SO = G' being the natural projection, -1 is the 
element of order 2 in ker. f and K' f (K). Suppose K is even, so - 1 E K; 
given a subgroup r of G, r n ad(U)K= 1 if and only if f( r) nad(G')K'= 1 
and -1 P. A generalized quaternionic subgroup r of U not con- 
taining - 1 is ad (G) -conjugate to the image of a faithful G-representation 
F' T'r +*** + T'r, + t', t' not faithful, of Q26. f F' is a faithful G'- 
representation F = Tr, + - * + Trs + t, t not faithful, of Q2a. In the proof 
of Theorem 9.1 we saw that f(r) n ad(G)K'= 1 if and only if n-=2s and 
q is odd, and this is independent of the choices of a and of the odd integers rj. 
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If n 2s, then t, and hence t', is trivial because F represents by matrices of 
determinant 1. 

Now suppose K is odd. Given a,> 3 we will construct a subgroup r' 
of G', isomorphic to the dihedral group D2a-1 of 2a-1 elements, such that 
r' f ad(G')K'=1 and =Pf-1(r') is isomorphic to Q2a. Then -1 will be 
the element of order 2 in r. Given yE Er n ad(G)K, f(y)= 1; as -1 , K 
it follows that y=l, so rn ad(G)K==i. 

Let r' be a dihedral 2-subgroup of G'. As D2a-l is the quotient of Q2a 
by the subgroup generated by B2- A2 2, we may view Iv as the image of a 
representation F = S2r1 + * * '+ S2r1 + S4t1 + * * * + S4t, + s, rj odd and s 
a sum of 0(1) -representations, of Q2a. Let 2w' and w be the multiplicities 
of the eigenvalue -1 of s(A) and s(B); the eigenvalue -1 of F(B) has 
multiplicity u + v + w = 2x. K' is odd because K is odd; as in the proof of 
Theorem 9. 1 the arithmetic criterion shows that {F(A) } n ad (G')K' 1 if 
and only if u is odd when a > 3, if and only if u + w' is odd when a =3. 
It also shows that { F(B) } n ad( G')K' ==1 if and only if x is odd. 

The representations F which lift to Spin are of the form 

-F (S2ri + S4s1) + * * * + (S2r, + S4s,) 

+ (S2t1+S) + * + (S2tq+S) 

with rj, tj odd and where S: A -1, Be--1c0(1). In this case, every 
element of r' is conjugate to a power of F (A) or F (B) and we have 
u=p+q=x, w' =- O; it follows that i'fnad(G)K'=1 if and only if 
p + q is odd. rank. K > 0 implies n > 1, so we can find non-negative integers 
p and q with p + q odd and 4p + 3q C 2n, hence a G'-representation F of the 
form (*) with p + q odd. QED. 

V. 2. Subgroups of the unitary group which have all Sylow subgroups 
cyclic and act freely. Suppose that K is a closed connected subgroup of 
U (n) of rank n -1 and r is a finite subgroup of U (n) with all Sylow sub- 
groups cyclic. r is conjugate to the image of a faithful representation of an 
abstract finite group , with all Sylow subgroups cyclic, and we can replace r 
by that conjugate. We will apply our arithmetic criterion (Theorem 6) to 
see whether r n ad(U(n) )XK 1. This is of considerable interest if n is odd 
or the number of odd elements of the canonical parameter of K in U(n) is even. 
for then every finite subgroup B of U(n) such that B n ad(U (n) )K = 1 has 
every Sylow subgroup cyclic. 

Let N be the order of E. We represent X by generators and relations: 
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Am Bn= 1, BAB-l=Ar, 0K<m, mn=N, ((r-1)n,m) = 1 and rnl1 
(mod n). If Y is cyclic, m = 1 and this becomes BN 1. 

If r is cyclic of order t and has a generator y with eigenvalues 

exp (Xtrir/t) , -* , exp (2-rir./t) , 

and V = {v1, , v4} is the canonical parameter of K in U(n), a direct 
application of the arithmetic criterion shows that r n ad (U (n) ) K = 1 if and 
only if , r8vg () is prime to t for every element g of the permutation group 
S (n). We will, then, ignore this case and henceforth assume that E is not 
cyclic. 

In the notation of ? IV. 3, we can assume that r is the image of the 

faithful representation F= . k of X in U (q), 
j=1 p=1 

Given an integer u and a divisor mj of m, we define u()- (u, dj), 
0 ?u uj < dj and uj=u(mod dj), dj(u) * u(i) dj, and 

r(uf) = 1 + ru + r2uf + . + r(d(u)1)us. 

Given a second integer v, we define h (u, v) to be the order of BuAV in >. 
A calculation shows that fjkjp(BuAV) has eigenvalues 

exp (2iri[ (h (u, v)/nmj) (kjlumj + u(j)mjnj'e + nj'vu(i)r(u)rt) ]/h (u, v)) 

for 0 < e < dj(u) and 0 ? t < u('). If u is prime to dj, a calculation shows 
that this means that fjkj(BuAv) has eigenvalues exp (2ri[kjpu- en1']/n) for 
0 < e < di, hence is ad(U(dj) )-conjugate to fjkjp(Bu). If d j u, another 
calculation shows that the eigenvalues of fjkp (BuAv) can be written, on setting 
u=fwd so u/n =w/n', as 

exp (27ri[kjpwm + (mn'/m1)vrt]/mn') for 0 < t < dj. 

Now set Nipe, = , d,b + (p- 1) dj + e + 1, and, given an integer u, 
set N;pet (u) = Yc<j d0bc + (p - 1) dj + eu(j) + t + 1. With this notation, an 
application of the arithmetic criterion now yields: 

THEOREM 10. Let K be a closed connected subgroup of rank q -1 in 
the unitary group U(q), JV {Vl,. , Vq} the canonical parameter of K 
in U(q), S(q) the group of all permutations on {1,2, - ,q} and r a 
finite subgroup of U(q) which is the image of a faithful representation 

aF bfi 
F = Efjk, of the abstract finite non-cyclic group : with all Sylow sub- j=1 p=1 

groups cyclic. Then r n ad (U(q) )K= 1 if and only if for every g E S(q) 
we have: 
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a b, dj-l 
1. I Vg(Njpe) (kjlp + enj') is prime to n. 

j=1 p=1 e=O 

a b1 d1-1 
2. E Vg(N,,) ' (m?kj, + (m/mj)rn're) is prime to mrn'. 

j=1 p=l e=o 

3. Given integers u and v with 1 _ u < n, 1 ? v < m and 1 < (u, d) < d, 
a b1 d,(u)-1 u(J)-l 

'YE E E: Vg(NjpZet (u)) - (h (u, v) /nmj) j=1 p=1 e=O t=O 

(kjlrumj + u(j)mjnjfe + nj'vu(i)r(u)rt) w 0 (mod h (u, v)). 

To adapt these formulae to the other classical groups, we proceed as 
follows: 

SU (q). K must have rank q-2 and r must lie in SU (q). Formulae 
(1, 2, 3; Theorem 10) remain unchanged. 

Sp(q). r C Sp(q) C U(2q), S(q) must be replaced by the group S'(q) 
of all signed permutations on V, and, for each formula of Theorem 10, the 
numbers following the v's fall into two sets, one of which is the negative of 
the other, and only one must be summed. 

SO(2q + 1). r c SO(2q + 1) C U(2q + 1) and we proceed as for 
Sp (q). 

SO(2q). r c SO(2q) C U(2q), S(q) must be replaced by the group 
S" (q) of all signed permutations on V which involve an even number of 
changes of sign, and we proceed as for Sp (q). 

Spin(2q or 2q + 1). We proceed as for SO(2q or 2q + 1). 

Recall that if G U(q), SU(q), Sp(q), SO(2q or 2q + 1), or Spin(2q 
or 2q+1), and if KE U(q-1), SU(q-1), Sp(q-1), SO(2q-1 or 
2q -2), or Spin (2q -1 or 2q -2), respectively, imbedded in the usual way, 
the canonical parameter of K in G is {1, o, , 0}. With this in mind, we 
can use Theorem 10 to generalize some rather nice theorems of H. Zassenhaus 
[16] and G. Vincent [14]: 

COROLLARY 10. 1. Let G be a classical group U(q), SU(q), Sp(q), 
SO(2q or 2q + 1) or Spin(2q or 2q + 1) and let K be a closed connected 
subgroup such that rank. G - rank. K = 1 and the canonical parameter of K 
in G is {1, O, O, , O}. Let r be a finite subgroup of G with r n ad(G)KE =, 
such that the order of r is either the product of two primes or is prime to 2q. 
Then r is cyclic. 
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Proof. Suppose first that the order of F is prime to 2q. As every abelian 
subgroup of r is cyclic and r has odd order, every Sylow subgroup of r is 
cyclic. Formula 2 of Theorem 10 now says that mkjp + (mr/nj)nmre is prime 
to mn', hence to m, so mj = m and consequently each dj = d. This implies 
that d divides both q and the order of r, which are relatively prime, so d = 1. 
But d = 1 ifplies r = 1 and thus that r is cyclic. 

Suppose r has order mn with m and n prime, and that r is not cyclic. 
As r is not abelian, mn =? n. It follows that every Sylow subgroup of r is 
cyclic, so we look at Theorem 10, which, by switching mn and n if necessary, 
is directly applicable. dI n and n is prime, so d = 1 or d m n. As d - 1 
implies that r is cyclic, d = n. Formula 2 of Theorem 10 then shows mj = m, 
so n' mn'= 1. Formula 1 of Theorem 10 then says thlat kjp + e is prime 
to n for 0 ? e < n, which is impossible. QED. 

In addition to providing known information on spheres, Corollary 10. 1 
tells us something about the Grassmann manifolds SO(2q)/S0(2q-2), 
SO(2q + 1)/SO(2q-1) and SO(2q + 1)/SO(2q - 2). The formulae of 
Theorem 10 can yield all sorts of information by placing special conditions 
on the canonical parameter. 

Chapter VI. Manifolds with non-zero Euler characteristic. 

After stating that we would for the most part concentrate on the case 
rank. G - rank. K < 1, we devoted our attention primarily to the case 
rank. G - rank. K= 1. In this chapter, we will prove a theorem about the 
case where rank. G = rank. K. First recall the well-known fact ( [10], p. 15) 
that a coset space G/K of a compact connected Lie group G by a closed sub- 
group K has Euler characteristic X (G/K) ? 0, and that x (G/IK) > 0 if and 
only if rank. G = rank. K. We will prove: 

THEOREM 11. Let M be a compact connected Riemannian homogeneous 
manifold with Euler characteristic x(M) Z 0. Then there are only a finite 
number, up to isometry, of Riemannian manifolds which admit J1/I as a 
Riemannian covering manifold. 

Remark. If dl' admits a Riemannian covering of multiplicity n by 21/, 
we have x(M) =mn x(M'). As x(M') must be an integer, it is clear, 
intuitively speaking, that one can go down only a finite number of steps 
from M1. The theorem says, then, that there are only a finite number of 
steps from M. The theorem says, then, that there are only a finite number 
of " directions " in which one can go down. These various " directions " will 
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be seen to correspond roughly to the subgroups of the finite group G/G,,, 
where G, is the identity component of the group G of isometries of M. 

Proof. We will first show that we may assume M simply connected, so 
that we will only have to consider normal coverings, i. e., coverings which are 
effectuated by the group of deck transformations. Let K0 be the intersection 
of an isotropy subgroup K of the group G of isometries of M with the identity 
component GO of G, so Al = GO/KO. K0, contains a maximal torus of GO 
but contains no nontrivial normal subgroup of Go; it follows that GO is 
centerless, hence semisimple, and thus has finite fundamental group. The 
homotopy sequence of the fibring G, -* GO/Ko AM then shows that M has 
finite fundamental group, so the universal Riemannian covering manifold M" 
is compact. We will be done if we show that only a finite number, up to 
isometry, of Riemannian manifolds admit a Riemannian covering by M", so 
we may assume M simply connected. 

We now need only show that there are only a finite numnber of properly 
discontinuous subgroups of G which give mutually non-isometric quotient 
manifolds of Al. As conjugate subgroups of G give isometric quotients, we 
need only show that there are only a finite number of mutually non-conjugate 
properly discontinuous subgroups of G. As rank. G== rank. K, ad( G) K 
contains Go so a properly discontinuous subgroup of G meets Go only. at 1 
and is thus isomorphic to a subgroup of the finite group G/GO. The proof of 
Theorem 11 is thus reduced to: 

LEMMA 11. 1 (MOSTOW). Let G be a compact Lie group and r a finite 
group. Then G contains only a finite number of conjugacy classes of iso- 
morphs of r. 

Proof. Suppose the contrary and let {rn} be a sequence of mutually 
non-conjugate isomorphs of r which lie in G. We can assumie that rP. 
-{yln,1Y2W, * , ymkl} ordered so that 7yjnmyj is an isomorphism rnr -* r 
for every m and n. As r is finite and G compact, we can assume that each 
sequence {-yn}n converges, {yj,} - yj. It is clear that z = {y< * , yk} is a 
subgroup of G, although we don't yet know that the yj are all distinct. A 
theorem of D. Montgomery and L. Zippin ([9], p. 216) says that X has a 
neighborhood U such that every subgroup of G in U is ad(G)-conjugate to a 
subgroup of >. As the r,, eventually lie in U, this contradicts their mutual 
non-conjugacy. QED. 

The proof of Theorem 11 also furnishes a proof of: 

THEOREM 11'. Let M be a compact connected Riemannian homogeneous 
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manifold. If .31 has finite fundamental group, there are only a finite number, 
up to isometry, of Riemannian manifolds with a given fundamental group 
which admit M as a Riemannian covering manifold. It any given case, there 
are only a finite number, up to isometry, of Riemannian manifolds which 
admit a normal Riemannian covering by Mll with a given group of deck trans- 
formations. 

THE UNIVERSITY OF CHICAGO. 

REFERENCES. 

[1] A. Borel, "Fixed point theorems for elementary abelian groups, I," Seminar OJI 

Transformation Groups, notes, The Institute for Advanced Study, Prince- 
ton, 1959. 

[2] " Commutative subgroups and torsion in compact Lie groups," (to appear). 
[3] and J, de Siebenthal, " Les sous-groupes fermes de rang maximum des 

groupes de Lie clos," Commentarii Mathematici Helvetici, vol. 23 (1949), 
pp. 200-221. 

[4] C. Chevalley, Theory of Lie groups, vol. I, Princeton, 1946. 
[5] P. E. Conner, " On the action of a finite group on Sn X sn, Annals of Mathe- 

matics (2), vol. 66 (1957), pp. 586-588. 
[6] A. Heller, "A note on spaces with operators," Illinois Journal of Mathematics, 

vol. 3 (1959), pp. 98-99. 
[7] A. G. Kurosh, The theory of groups, vol. I, New York, 1955. 
[8] J. Milnor, " Groups which act on AS" without fixed points," American Journal of 

Mathematics, vol. 79 (1957), pp. 623-630. 
[9] D. Montgomery and L. Zippin, Topological transformation groups, New York, 1955. 

[10] H. Samelson, " On curvature and characteristic of homogeneous spaces," Mich igan 
Mathematical Journal, vol. 5 (1958), pp. 13-18. 

[11] P. A. Smith, " Permutable periodic transformations," Proceedings of the National 
Academy of Sciences of the United States of America, vol. 30 (1944), pp. 
105-108. 

[12] N. Steenrod, The topology of fibre bundles, Princeton, 1951. 
[13] M. Suzuki, " On finite groups with cyclic Sylow subgroups for all odd primes," 

American Journal of Mathematics, vol. 77 (1955), pp. 657-691. 
[14] G. Vincent, "Les groupes lineaires finis sans points fixes," Commentarii Mathe- 

matici Helvetici, vol. 20 (1947), pp. 117-171. 
[15] B. L. van der Waerden, Modern Algebra, vol. II, New York, 1950. 
[16] H. Zassenbaus, " iber endliche Fastkbrper," Abhandlungen aus dem Mathema- 

tischen Seminar der Hamburgischen Universitdt, bd. 11 (1935), pp. 187-220. 
[17] , The theory of groups, second edition, New York, 1958. 


	Article Contents
	p. 661
	p. 662
	p. 663
	p. 664
	p. 665
	p. 666
	p. 667
	p. 668
	p. 669
	p. 670
	p. 671
	p. 672
	p. 673
	p. 674
	p. 675
	p. 676
	p. 677
	p. 678
	p. 679
	p. 680
	p. 681
	p. 682
	p. 683
	p. 684
	p. 685
	p. 686
	p. 687
	p. 688

	Issue Table of Contents
	American Journal of Mathematics, Vol. 82, No. 4 (Oct., 1960), pp. 653-937
	Front Matter [pp. ]
	Solvable Lie Groups Acting on Nilmanifolds [pp. 653-660]
	The Manifolds Covered by a Riemannian Homogeneous Manifold [pp. 661-688]
	Fundamental Groups of Compact Solvmanifolds [pp. 689-697]
	Compact Transformation Groups of S<sup>n</sup> with an (n - 1)-Dimensional Orbit [pp. 698-748]
	Conformal Transformations of Riemann Surfaces [pp. 749-760]
	Subgroups of the Modular Group and Sums of Squares [pp. 761-778]
	Abelian Extensions of Differential Fields [pp. 779-790]
	The Algebraic Determination of the Genus of Knots [pp. 791-798]
	An Ultrahyperbolic Equation with an Integral Condition [pp. 799-811]
	Quadratic Forms Over Fields of Characteristic 2 [pp. 812-830]
	A Generalized Theorem of Krull-Seidenberg on Parameterized Algebras of Finite Type [pp. 831-850]
	The Wedderburn Decomposition of Commutative Banach Algebras [pp. 851-866]
	Functions that are Harmonic or Zero [pp. 867-872]
	Fundamental Groups on a Lorentz Manifold [pp. 873-890]
	Analytic and Algebraic Dependence of Meromorphic Functions [pp. 891-899]
	Hereditarily Compact Spaces [pp. 900-916]
	Imbedding of Holomorphically Complete Complex Spaces [pp. 917-934]
	Deformations of Compact Differentiable Transformation Groups [pp. 935-937]
	Back Matter [pp. ]



