(5.1,5.2,5.3,5.4) Eigenvalues, Eigenvectors, Characteristic equation, Diagonalization, Geometry of Diagonalization

Problem 1. Compute the eigenvalues and eigenvectors for $A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$

Problem 2. Determine the eigenvalues for:

$$A = \begin{pmatrix} 186 & 324\\ 117 & 303 \end{pmatrix}$$

this problem is courtesy of my officemate Adam.

Problem 3. Compute D^6 for $D = \begin{pmatrix} 5 & 0 \\ 0 & 3 \end{pmatrix}$

Problem 4. Compute A^6 for $A = \begin{pmatrix} 7 & 2 \\ -4 & 1 \end{pmatrix}$, given the information that

$$A = \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix}$$

Problem 5. What are the eigenvalues and eigenvectors for the above matrix?Problem 6. Compute the eigenvalues and eigenvectors for:

$$A = \begin{pmatrix} 4 & 0 & 2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{pmatrix}$$

Problem 7. Define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(x) = \begin{pmatrix} 0 & 1 \\ -3 & 4 \end{pmatrix}$. Find a basis \mathcal{B} such that $[T]_{\mathcal{B}}$ is diagonal.

Problem 8. Determine if the following are true or false

- 1. A matrix can have 0 as an eigenvalue
- 2. A matrix can have $\vec{0}$ as an eigenvector

3. If A, B, C are square matrices such that $A = BCB^{-1}$ then A and C have the same eigenvalues

4. If A, B, C are square matrices such that $A = BCB^{-1}$ then A and C have the same eigenvectors

Problem 9. Determine all possible eigenvalues of A if $A^2 = 1$.