GSI: Oltman, (9/12/19)

Problem 1. Let $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, $v_1 = \begin{pmatrix} -2 \\ 5 \end{pmatrix}$, and $v_2 = \begin{pmatrix} 7 \\ -3 \end{pmatrix}$. And let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps x into $x_1v_1 + x_2v_2$. Find a matrix A such that T(x) = Ax for each x.

Problem 2. Show that the transformation T defined by $T(x_1, x_2) = (2x_1 - 3x_2, x_1 + 4, 5x_2)$ is not linear. **Problem 3.** In this problem we will consider the space of polynomials (up to degree 3) as a vector space.

We will identify the arbitrary polynomial $p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$ with the vector $\begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix}$.

- 1. Write the constant polynomial p(x) = 1 as a vector in this way.
- 2. Compute the derivative of p(x) and write this new polynomial as a vector
- 3. Repeat this process for the polynomials $p(x) = x, x^2, x^3$.
- 4. Put all the vectors you found in step 2 into a 4×4 matrix, D. Verify the following claim

Claim 1. Given an arbitrary polynomial of degree at most 4. If you first convert this into a vector, apply D to it, then convert it back into a polynomial, you get the derivative of your original polynomial.

5. think about this

Problem 4. Let $\vec{v}_1 = (4,5)$ and $\vec{v}_2 = (1,3)$ and suppose that T is a linear map that sends \vec{v}_1 to \vec{v}_2 and \vec{v}_2 to \vec{v}_1 . Find T((1,1)).