Please show **all** your work and circle your answer! Please read the questions carefully. You have 30 minutes.

Name:___

- 1. (12 pts) For each statement, indicate whether it is true or false.
 - (a) The set of all upper-triangular $n \times n$ matrices¹ is a subspace of vector space of square $n \times n$ matrices.
 - (b) If A is an onto matrix, then the columns of A form a set of linearly independent vectors.
 - (c) The map $T: \mathbb{P}_2 \to \mathbb{P}_4$ which sends $p(x) \mapsto p(x)^2$ is linear.²
 - (d) If T is a linear map with a null space with dimension greater than 1 and \vec{v} is in the image of T, then there exist more than 1 \vec{w} such that $T(\vec{w}) = \vec{v}$
 - (e) The column space of A is equivalent to the column space of the row reduced matrix A (put into row reduced echelon form)
 - (f) $\{2, 1-x, x^2-x-1\}$ forms a basis for \mathbb{P}_2

2. (10 pts) Are the following vectors linearly independent? If so, explain why. If not find a nontrivial linear combination that is equal to zero.

(1)		(3)		(-1)
0		-3		3
2	,	2	,	2
$\left(0 \right)$		1		$\left(-1\right)$

′ 、

. .

¹zero below the diagonal

 $^{^2\}mathrm{recall}$ that \mathbb{P}_n is the vector space of all polynomials of degree less than or equal to n

3. (12 pts) Let
$$b_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, b_2 = \begin{pmatrix} -3 \\ 4 \\ 0 \end{pmatrix}, b_3 = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix}, x = \begin{pmatrix} -8 \\ 2 \\ 3 \end{pmatrix}.$$

- (a) Show that the set $\mathcal{B} = \{b_1, b_2, b_3\}$ is a basis for \mathbb{R}^3
- (b) Find the change-of-coordinates matrix from ${\mathcal B}$ to the standard basis
- (c) Write the equation that relates x in \mathbb{R}^3 to $[x]_{\mathcal{B}}$
- (d) Find $[x]_{\mathcal{B}}$ for the x given above