Show all your work and circle your answers. You have 30 minutes

Name:_

- 1. Mark the following true or false:
 - (a) Eigenvectors for distinct eigenvalues of real symmetric matrix are orthogonal
 - (b) The determinant of any lower-triangular square matrix is the product of the diagonal entries
 - (c) Any orthogonal matrix is diagonalizable over $\mathbb R$
 - (d) A change of coordinates matrix is always invertible
 - (e) If A is an orthogonal matrix, then the linear map $x \mapsto Ax$ is one-to-one and onto
 - (f) If a 2×2 matrix is diagonalizable, then it has distinct eigenvalues.
 - (g) If A is a 4×3 matrix with orthonormal columns, then A^tA is the orthogonal projection matrix on Col(A)
- 2. Find a vector $v \in \mathbb{R}^2$ such that the sequence $A^n v$ has a non-zero limit as $n \to \infty$

$$A = \begin{pmatrix} 7 & 4\\ -9 & -5 \end{pmatrix}$$

Is A diagonalizable?

3. Find the linear function $y = \ell(x) = ax + b$ given the best fit to the data points (x, y) = (-1, 1); (0, 1); (1, 0); (2, 2) in the sense of minimizing the sum of square errors $\sum (\ell(x) - y)^2$, explain your steps

4. (3 Things:) Compute the orthogonal projection matrix from \mathbb{R}^3 onto the span of the first two columns of A, for:

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

And compute A^4 and find a matrix B such that $B^3 = A$ given that the eigenvalues of A are 2, -1, -1 with eigenvectors $(1, 1, 1)^t, (-1, 0, 1)^t, (-1, 1, 0)^t$.