
BRANCHING PROGRAM UNIFORMIZATION, REWRITING LOWER
BOUNDS, AND GEOMETRIC GROUP THEORY

IZAAK MECKLER

Mathematics Department
U.C. Berkeley
Berkeley, CA

Abstract. Geometric group theory is the study of the relationship between the algebraic, geo-
metric, and combinatorial properties of finitely generated groups. Here, we add to the dictionary
of correspondences between geometric group theory and computational complexity. We then use
these correspondences to establish limitations on certain models of computation.

In particular, we establish a connection between read-once oblivious branching programs and
growth of groups. We then use Gromov’s theorem on groups of polynomial growth to give a
simple argument that if the word problem of a group G is computed by a non-uniform family of
read-once, oblivious, polynomial-width branching programs, then it is computed by an O(n)-time
uniform algorithm. That is, efficient non-uniform read-once, oblivious branching programs confer
essentially no advantage over uniform algorithms for word problems of groups.

We also construct a group EffCirc which faithfully encodes reversible circuits and note the cor-
respondence between certain proof systems for proving equations of circuits and presentations of
groups containing EffCirc. We use this correspondence to establish a quadratic lower bound on the
proof complexity of such systems, using geometric techniques which to our knowledge are new to
complexity theory. The technical heart of this argument is a strengthening of the now classical the-
orem of geometric group theory that groups with linear Dehn function are hyperbolic. The proof
also illuminates a relationship between the notion of quasi-isometry and models of computation
that efficiently simulate each other.

1. Introduction and our results

A group G equipped with a finite generating set A can be thought of as a metric space: the
distance between x, y ∈ G is the length of the shortest string w over the alphabet A with x = wy.
Such a distance also defines a norm on G, given by the distance to the identity element e. Up to
a constant factor, this metric does not depend on the choice of the generating set[24]. The study
of groups from this metric point of view is called geometric group theory. It involves studying
the relationship between a group’s algebraic properties, geometric properties, and combinatorial
properties which can be gleaned from a generating set.

There is a fairly well-known, though scattered, dictionary connecting concepts in geometric group
theory with those in the theory of computing. A key entry in this dictionary which we make use of is
the correspondence between NP-type certificates and disks embedded in groups’ Cayley complexes.
This correspondence is made precise by Birget, Ol’shanskii, Rips, and Sapir’s[5] result that a finitely
generated group G has word problem in NP iff G is a subgroup of a finitely presented group with
polynomial isoperimetric function. Other entries include the theory of automatic groups[12] – that

E-mail address: izaak@berkeley.edu.

1

branching program uniformization, rewriting lower bounds, and geometric group theory

is, the relationship between a group’s geometry and its word problem being encoded by a finite-state
automaton, and Dehn’s algorithm for the word problem in hyperbolic groups[14].

In this paper, we add two entries to the dictionary.

1.1. Growth and branching programs. Branching programs are a well-studied non-uniform
model of space-bounded computation. Barrington’s theorem[4] tells us that polynomial-length
branching programs are exactly as powerful as NC1, so there has been much study of weaker
subclasses. Read-once oblivious branching programs (roOBPs) are one such subclass. An roOBP
is essentially a non-uniform finite state machine, which is allowed to read each input symbol once
in some fixed order (which may depend on the input length). Such a program is also sometimes
called an ordered binary decision diagram, or OBDD[21]. Exponential lower bounds on natural
functions have been known for this subclass for some time (see e.g., [3]). However, to our knowledge,
there is not a general understanding of the capabilities of the class, and the relationship between
non-uniform roOBPs and general uniform computation is not well-understood. Here, we improve
understanding of these aspects of roOBPs.

A subset A of a group G is a generating set if every element of G can be written as a product of
elements of A. G is finitely generated if it has a finite generating set. The word problem for (G,A)
is the following decision problem: given a word w over the alphabet A, is w equal to the identity
element of G? Our first result is a “uniformization” theorem, which states that for word problems,
non-uniform roOBPs confer essentially no advantage over uniform algorithms.

Theorem 1. Let (G,A) be a finitely generated group such that the word problem for (G,A) is
solved by a polynomial width family of roOBPs. Then the word problem for (G,A) is solved by an
O(n)-time multi-tape Turing machine.

We will now give the main ideas of the proof. If (G,A) is a finitely generated group, we define
ρG,A(n) to be the number of elements of G which can be expressed as a word of length at most n
over the alphabet A. The function ρG,A(n) is called the growth of G with respect to A. The above
theorem follows as a corollary of our result that the growth of (G,A) and the optimal size of an
roOBP computing the word problem for (G,A) are commensurate:

Theorem 2. If (G,A) is a finitely generated group and W (n) is the minimum width of a family
of roOBPs computing the word problem for (G,A), then

ρG,A(n/4) ≤W (n) ≤ ρG,A(n).

The upper bound is easy to obtain and the corresponding lower bound relies on the simple
observation that any roOBP must have enough states to distinguish distinct elements in G because
of the presence of inverses.

This bound then allows us to obtain a good deal of information about G. If W (n) is bounded by
a polynomial, then so too is ρG,A(n). Gromov’s theorem – a true gem of geometric group theory
– then tells us that G is virtually nilpotent. Algorithmically, this is a heavy constraint: while the
word problem for general finitely generated groups is undecidable, Building on work of Goodman
and Shapiro[14], Holt and Rees[16] show that the word problem for a finitely generated, virtually
nilpotent group can be solved in linear time on a multi-tape Turing machine, and the theorem
follows.

Using a refinement of Gromov’s theorem due to Shalom and Tao[27], we obtain a sharper uni-
formization result which allows us to assume that the word problem for (G,A) merely has a poly-
nomial size roOBP for one sufficiently large input size.

2

branching program uniformization, rewriting lower bounds, and geometric group theory

1.2. Rewriting systems on reversible circuits. The second entry that we add to the dictionary
connecting complexity with geometric group theory is a construction of a finitely generated group
EffCirc whose elements encode boolean functions in a precise sense. A similar construction was
given by Birget[7] as an example of a group with coNP-complete word problem. A distinguishing
property of our construction is that the word norm approximately coincides with circuit size. We
then use this group to prove a quadratic lower bound on the proof complexity of certain classes of
proof systems for proving equations of circuits.

The easiest way of encoding boolean circuits using groups is to consider reversible circuits –
that is, circuits in which all gates compute bijections. For a reversible circuit C on n bits, we
will construct an element Ĉ ∈ EffCirc which encodes C. We construct Ĉ as a word of length
O(|C| log2 n) in the generators of EffCirc, where |C| is the number of gates in C.

We then use this group to prove a quadratic lower bound on a class of rewriting systems for
proving equalities of reversible circuits. We call these systems generalized local transformation
systems, augmenting the terminology of Iwama and Yamashita[17]. Such a lower bound is of
interest as these rewriting systems are essentially universal proof systems: a super-polynomial
lower bound would imply NP 6= coNP.

Making explicit the definition implicitly used in [17], a local transformation system is a collection
of rewrite rules C1 → C2, with the Ci two reversible circuits computing the same function. A
generalized local transformation system (GLTS) allows the rewrite rules to replace portions of the
circuits with arbitrary strings over an extended alphabet A, along with certain axioms ensuring
soundness of the rewrite rules. A GLTS proves that a circuit computes the identity function if
there is a sequence of rewrites taking that circuit to the empty string.

We prove the following lower bound on the proof complexity of such systems, stated informally
here.

Theorem 3 (Informal). Let S be a GLTS over the alphabet A. Suppose that functions cannot be
represented much more efficiently over the alphabet A than as circuits.

Then there is some constant K and infinitely many circuits C computing the identity function –
encoded as words w in EffCirc – such that any sequence of rewrites proving w computes the identity
function has length at least K |w|2.

The formal statement corresponding to this is Theorem 24. The proof has several key ingredients.
The first is essentially the well-known fact that certain rewriting systems can be thought of as
group presentations. In our situation, there is a simple correspondence associating to a GLTS
S over an alphabet A a finitely presented group GS with generating set A and which contains
EffCirc. The next is the formalization of the hypothesis that circuits cannot be represented much
more efficiently over A than as circuits as the requirement that the inclusion of EffCirc into GS is
a quasi-isometric embedding. It proceeds by using the connection between proof complexity and
isoperimetric functions, as well as a novel refinement (Lemma 26) of the standard fact that any
group with o(n2) isoperimetric function is hyperbolic[2].

We stress that the theorem states that there is some encoding w ∈ EffCircGens∗ of C which
requires on the order of |w|2 rewrites; it does not guarantee that w is in the form of our chosen
encoding Ĉ. However, since our encoding is close to optimal, we believe it may be possible to
improve Lemma 26 to prove that there exist circuits C size s over n bits for which Ĉ requires on
the order s2 many rewrites to rewrite to the empty string.

The hypothesis that the inclusion of EffCirc into GS is a quasi-isometric embedding is surprisingly
natural from a complexity-theoretic viewpoint. It states that a function cannot be represented more

3

branching program uniformization, rewriting lower bounds, and geometric group theory

succinctly as a word in A than as a reversible circuit (except up to constant factor). There is also
a relationship between this hypothesis and the intermediate words over the alphabet A being –
as circuits are – easy to compute with descriptions of functions. For example, if words over A
represent circuits over a different basis gate set than the one used in the construction of EffCirc,
then ϕ is a quasi-isometric embedding.

More generally, if the elements of GS admit an efficient notion of “evaluation”, then the inclusion
is close to being a quasi-isometric embedding. More precisely, let us define a family of evaluation
circuits for GS to be a family of circuits Es,n such that for any w of length s over the alphabet A,
with w =GS

ϕ(Ĉ) for C a circuit on n bits, we have C(x) = Es,n(w, x). By analogy with the fact
that circuits themselves have evaluation circuits of size Õ(s+ n)[11], we can then show

Proposition 4. If GS admits a family of evaluation circuits Es,n of size Õ(s+ n), then there is a
constant C0 so that for any g ∈ EffCirc encoding an n-bit circuit, |g|EffCirc is Õ(|g|GS

+ n).

This is close to ϕ being a quasi-isometric embedding, as that is equivalent to saying that |g|EffCirc
is O(|g|GS

).

2. Preliminaries

We now give the necessary background and establish some notation.

2.1. Branching programs. Branching programs are a non-uniform model of space-bounded com-
putation. A read-once, oblivious branching program (roOBP) B of width W , over an alphabet Σ, is
a layered directed graph with n+ 1 layers of vertices along with a permutation π : [n]→ [n]. Each
layer has at most w vertices. The vertices will also be referred to as states. For each vertex v in
layer i and each σ ∈ Σ, there is an edge from v into layer i+ 1 labeled by σ. The first layer has one
vertex, the “start” vertex. The vertices of the last layer are partitioned into two sets: “accepting
vertices” and “rejecting” vertices.

An roOBP B accepts a word w = w1 · · ·wn ∈ Σn if starting from the start vertex, the path
labeled by wπ(1), . . . , wπ(n) ends in an accepting vertex. Otherwise, B rejects w. We say L is
computed by a family of width W = W (n) read-once branching programs if there is a family of
branching programs B0, B1, . . . such that Bn has width W (n) and w ∈ L iff B|w| accepts w.

As a corollary of Theorem 2, we also see that the word problem of any finitely generated group
with exponential growth will have exponential size branching programs. This class of groups in-
cludes free groups, hyperbolic groups[30], the group EffCirc which we define, and many others.

2.2. Group theoretic preliminaries. 2 will denote the set { 0, 1 }. The identity element of a
group will always be denoted by e. We will always assume that generating sets are symmetrized.
That is, if a ∈ A, then a−1 ∈ A as well. Moreover, we will assume that generating sets contain the
identity element e. We will often call a pair (G,A) – with A a finite generating set of G – a finitely
generated group.

Let (G,A) be a finitely generated group. Let A∗ denote the strings over the alphabet A, An
denote the strings of length exactly n, and A≤n the strings of length at most n. For w ∈ A∗ let
|w| represent the length of w. An element of A∗ will be called a word. By analogy to the identity
element, the empty word will be denoted e as well.

There is a natural map evalA,G : A∗ → G given by evalA,G (a1 . . . ak) = a1 · · · · · ak where ·
denotes multiplication in G. When there is no confusion, we will write eval, omitting A and G.
Also, when it is clear from context, we will omit explicit reference to eval, and think of a word
w ∈ A∗ as being the element evalA,G(w) of G. For two words w1, w2, we will use the notation

4

branching program uniformization, rewriting lower bounds, and geometric group theory

w1 =G w2 when evalA,G(w1) = evalA,G(w2). There is also a “formal inversion” on words given by
(a1 . . . ak)−1 = a−1

k · · · a
−1
1 .

Finally, we will denote by LoopsG,A(n) (or sometimes just LoopsG(n)) the words w ∈ A∗ of length
at most n with w =G e, and by LoopsG,A (resp., LoopsG) the union

⋃
n∈N LoopsG,A(n).

For each element g ∈ G, we define the length of g with respect to A to be
|g|A = min { |w| : w ∈ A∗, eval (w) = g }

For two generating sets A,A′, the functions |−|A and |−|A′ differ by at most a constant factor, and
thus we will sometimes write |−|G, keeping the generating set implicit. When the group G is clear
from context, we will simply write |g|. We also have a metric on G, called the word metric, defined
by dG(g, h) =

∣∣hg−1∣∣
G.

The Cayley graph of G with respect to A, denoted Cay(G,A), is the graph whose vertices are
the elements of G and where there is an edge (g, ag) for each g ∈ G and a ∈ A. The word metric
defined above is also the “shortest path” metric for the Cayley graph of G. See [24] for more details.

Definition 5. A presentation of (G,A) is a set R ⊆ A∗ – called the set of relations – such that for
every w ∈ A∗ with eval (w) = e we have for some ui ∈ A∗ and ri ∈ R

w =
N∏
i=1

uiriu
−1
i

as elements of the free group on the letters A. A presentation R = { r1, . . . , rk } of (G,A) (where
A = { a1, . . . , am }) is typically notated as 〈a1, · · · am | r1, . . . , rk〉. One may think of the presence
of each ri as encoding the equation ri = e in G.

Definition 6. For each w ∈ LoopsG,A, define areaG,A,R (w) to be the minimal N such that w may
be expressed as a product of N terms of the above form. It is called area because such an expression
can be thought of as an embedding of a disk of simplicial area N , called a van Kampen diagram,
into the Cayley complex of G. Van Kampen diagrams are also sometimes called fillings. See [1] for
details.

Define the Dehn function of (G,A,R) by
dehn(G,A,R)(n) = max

w∈LoopsG,A(n)
area(G,A,R) (w)

The Dehn function may be thought of as the maximal proof length required to prove any equation
w =G e of length n. A function which upper bounds the Dehn function is called an isoperimetric
function.

Definition 7. We define ρG,A, the growth function of G with respect to A, as ρG,A(n) =
∣∣eval

(
A≤n

)∣∣.
That is, ρG,A(n) is the number of elements in G which may be expressed as a word of length at
most n. If A,A′ are two finite generating sets of G, then ρG,A′ = Θ(ρG,A)[24]. Thus, we will often
keep the generating set implicit and write ρG.

Example 8 (Growth). Here are several examples of groups with various group types.
(1) Zk has growth function Θ(nk).[24]
(2) The group U`(Z) of upper triangular matrices ` by ` with integer entries and 1s on the

diagonal has growth function Θ(nk) for some k1

(3) The free group on k generators has growth function Θ((2k − 1)n).[24]
1This is because it is nilpotent. The statement then follows from Gromov’s theorem.

5

branching program uniformization, rewriting lower bounds, and geometric group theory

Definition 9. An inclusion ϕ : (H,B) → (G,A) of one finitely generated group into another is
called a quasi-isometric embedding if there exists a constant C0 for which |g|G,A ≥ C0 |g|H,B. That
is, the most efficient encoding of a group element in the alphabet A is not more than a constant
factor better than its encoding in B.

2.3. The word problem. The word problem for a finitely generated group (G,A) is the problem
of deciding when a given word represents the identity element of G. That is, it is the decision
problem associated to the set

WPG,A = { w ∈ A∗ : eval (w) = e } .

The word problem for groups is a classical algorithmic problem introduced by Dehn[10]. Word
problems serve as a fairly general model of computational phenomena: there are groups whose
word problems are undecidable[25], NP-complete[6], coNP-complete[7], and complete for logspace-
uniform NC1 under logspace-uniform AC0 reductions[26]. In fact, Birget showed[6] that every
decision problem can be reduced by a one-to-one linear time reduction to the word problem of
a group which has the same time complexity up to a linear factor. “Word problems” – broadly
interpreted as deciding semantic equivalence of syntactic representations of algebraic objects – are
ubiquitous in theoretical computer science. The problem UNSAT of deciding whether a boolean
formula is unsatisfiable may be thought of as the word problem for the lattice of boolean functions,
polynomial identity testing over a field F is the word problem in the ring F[x1, x2, . . .], and non-
commutative polynomial identity testing is essentially the word problem in the free-skew ring over
many variables[13].

3. Groups with word problem solved by efficient roOBPs

We will now proceed with the characterization of groups whose word problems are solved by
polynomial-width families of roOBPs. It is straightforward to see that the following holds:

Proposition 10. Let (G,A) be a finitely generated group with growth function ρG,A. Then WPG,A
is computed by a width ρG,A roOBP.

For input length n, one simply takes as states the ρG,A(n)-many elements of the group which
can be written as a word of length at most n. A full proof appears in the appendix.

We now give the first technical contribution of this paper, which is an approximate converse to
the above claim:

Theorem 11. Let (G,A) be a finitely generated group with growth function ρG,A. If the word
problem for G is solved by a width W (4n) roOBP B for inputs of length 4n, then W (4n) ≥ ρG,A(n).

The proof of Theorem 11 is relatively straightforward, but due to space constraints we give the
proof in the special case that the input symbols are read in order, which gives the general flavor.
The idea of the proof is simply the following: after reading a word w, the branching program
could read the word w−1, which would cause it to accept. If w 6= w′ in G, then the branching
program would not accept after reading w′ and then w−1. Thus, if w 6= w′ in a group G, then the
states of the branching program after reading w and w′ must be distinct. The general argument
is reminiscent of, though distinct to, the argument that m-mixed boolean functions do not have
read-once branching programs of width less than 2m − 1 (see [19]).

We now give this argument more precisely.

6

branching program uniformization, rewriting lower bounds, and geometric group theory

Claim 12. Let (G,A) be a finitely generated group with growth function ρG,A. If the word problem
for G is computed by a width W family of in-order, read-once branching programs B, then ρG,A(n) ≤
W (2n).

Proof. Let L0, . . . L2n be the layers of B2n. Since ρG,A(n) =
∣∣eval

(
A≤n

)∣∣ and |Ln| ≤ w(2n), to
prove the claim, it suffices to exhibit an injection q : eval

(
A≤n

)
→ Ln.

Let x ∈ eval
(
A≤n

)
and take w ∈ A≤n such that x = eval (w). Since we assume e ∈ A, w may

be padded to a word wx of length exactly n with eval (wx) = x. Define q(x) to be the state in Ln
which B2n enters upon reading wx.

Let us show that f is injective. Suppose q(x) = q(y). That is, the state q(x) ∈ Ln corresponding
to wx equals the state q(y) corresponding to wy. Let w = wx

−1 so that |w| = n and eval (w) = x−1.
Then eval (wxw) = e, so the the path beginning at q(x) labelled by w terminates at an accepting
vertex. Thus, since q(x) = q(y), the path corresponding to wyw terminates at the same accepting
vertex. This implies that e = eval (wy) eval (w) = yx−1. Multiplying both sides by x−1 yields x = y.
Thus f is injective. �

Now, if WPG,A is computed by a width W (n) family of roOBPs with w a polynomial, then ρG(n)
is bounded by the polynomial W (4n). A celebrated theorem of Gromov allows us to transform this
coarse information into a precise algebraic characterization of G:

Theorem 13 (Gromov). If ρG is bounded by a polynomial, then G is virtually nilpotent[15].2

As mentioned, the work of Goodman and Shapiro[14] and Holt and Rees[16] shows that virtually
nilpotent groups have efficient uniform algorithms. Precisely,

Theorem 14 (Holt and Rees). Let (G,A) be a finitely generated, virtually nilpotent group. Then
WPG,A is solved by an O(n)-time multi-tape Turing machine.

Taken together, these two theorems immediately imply the following corollary to Theorem 11:

Corollary 15. Let (G,A) be a finitely generated group such that the word problem for (G,A) is
solved by a polynomial width family of roOBPs. Then the word problem for (G,A) is solved by an
O(n)-time multi-tape Turing machine.

There is a wonderful refinement of Gromov’s theorem due to Shalom and Tao[27] which states
that in fact, polynomial growth at a single scale is sufficient to guarantee virtual nilpotence. In our
situation, we thus obtain a corresponding refinement of Corollary 15:

Corollary 16. Let {Bn }n∈N be a family of branching programs computing WPG,A.
There is a constant C such that for any k > 0, if Bn has width at most nk for a single n ≥

exp
(
exp

(
CkC

))
, then WPG,A is computed by an O(n)-time multi-tape Turing machine.

4. Reversible circuits

Reversible circuits are a model for computing bijections 2
k → 2

k[28]. A gate computing a
function 2

k → 2
k is reversible if the function it computes is a bijection. A reversible circuit over

a basis set U of reversible gates is simply a boolean circuit over U . We assume that a reversible
circuit comes equipped with a topological ordering of its gates. We note that reversible circuits are
also sometimes referred to as quantum boolean circuits[17].

2We omit the definition of virtual nilpotence, as we will use the concept purely as a black box. We direct interested
readers to [23].

7

branching program uniformization, rewriting lower bounds, and geometric group theory

Note that since any reversible gate necessarily has the same number of inputs as outputs, a
reversible circuit does as well. Moreover, since a reversible circuit arises as a composition of
reversible gates, it will also compute a bijection. The size of a reversible circuit is number of
gates it contains. Reversible circuits are a general model of computation and for any function
f : 2n → 2

m with a circuit of size s, there is a reversible circuit of size O(s + m) computing the
function (x, z) 7→ (x, f(x)⊕ z)[29].

4.1. Groups of circuits. In order to properly define the rewriting systems of interest, we con-
struct two finitely generated groups (Circ,CircGens) and (EffCirc,EffCircGens) in which words encode
reversible circuits in a straightforward way.

Let 2Z denote the set of maps from the integers Z to 2. Such a map may be thought of as a
bi-infinite bitstring. Let S(2Z) be the group of bijections 2Z → 2

Z, and let (i; j) denote the element
of S(2Z) which swaps bit i with bit j. Finally, let U be the set of all 23! three bit reversible gates.
Definition 17. Let CircGens be the subset of S(2Z) containing the followings maps:

(1) The right-shift t given by t(b) = i 7→ b(i− 1).
(2) The map (0; 1) which swaps bits 0 and 1.
(3) For each gate g ∈ U , the map ĝ given by ĝ(. . . b−1b0b1b2b3 . . .) = . . . b−1g(b0b1b2)b3

and let Circ be the group generated by CircGens. It is straigthforward to show that any reversible
circuit C may be represented by an element by an element of Circ.

Claim 18. Let C be an n-bit reversible circuit of size s. Then there is a word Ĉ ∈ CircGens∗ of
length O(sn) such that

Ĉ(. . . b−1b0 . . . bn−1bn . . .) = . . . b−1C(b0 . . . bn−1)bn . . .

g
1

g
2g

2

0 1 2-1-2 0 1 2-1-2… …3 4

0 1 2-1-2 0 1 2-1-2… …3 4

0 1 2-1-2 0 1 2-1-2… …3 4

0 1 2-1-2 0 1 2-1-2… …3 4

t-2

t2

g
1

g
1

g
2

Figure 1. The encoding of a ciruit as a word in CircGens∗.

The idea of the construction is to use the shift (and transpositions) to bring the desired wires
down to the first three, where they can then be acted upon by a gate. The proof of this claim
appears in the appendix.

The inefficiency of the above construction comes from the fact that shifting bits down into the
first three bits requires quadratically long words. By using a simple trick of combinatorial group
theory called an HNN extension[22], we can obtain the following more economical encoding:

8

branching program uniformization, rewriting lower bounds, and geometric group theory

Theorem 19. Circ includes into a finitely generated group (EffCirc,EffCircGens) such that for any
reversible circuit C of size s acting on n bits, the element Ĉ described in Claim 18 can be written
as a word of length O(s log2 n).

The construction of this group is in the appendix. We will treat it as a black box for the rest of
the paper.

4.2. Local transformation systems. Circuit-UNSAT – the problem of deciding whether a circuit
computes an identically zero function – is the prototypical coNP-complete problem. The corre-
sponding problem for reversible circuits is the Circuit-Identity problem: given a reversible circuit,
does it compute the identity function? Jordan showed that this problem is coNP-complete[18].
Thus, from the point of view of proof complexity, it is natural to investigate proof systems that
prove that circuits compute the identity function.

Following Iwama and Yamashita[17], we will describe a class of proof systems termed local trans-
formation systems. Iwama and Yamashita do not give a formal definition of local transformation
system, but we give one now which generalizes their use of the term.

Definition 20. A local transformation is a rule x → y, with x and y words in the generators of
EffCirc. If x occurs as a subword of a word w, one calls the replacement that subword with y a
rewrite.

A local transformation system (LTS) is a collection of local transformations S such that
(1) If x→ y is in S, then so is y → x.
(2) For every a ∈ EffCircGens, S contains the rule aa−1 → e.
(3) (Soundness and completeness) A circuit C computes the identity function iff there exists a

sequence of rewrites taking Ĉ to the empty string.

In group theoretic terms, an alternative, simpler definition is that an LTS is a presentation of
EffCirc. We give the above definition to emphasize the way in which presentations of EffCirc may
be thought of as rewriting systems for reversible circuits.

Iwama and Yamashita[17] constructed an explicit local transformation system. Although their
list of rules is quite easy to describe, it is infinite, which makes it unsuited for the group theo-
retic tools we will use. To that end, we define the closely related notion of a generalized local
transformation system.

Definition 21. Fix an alphabet A containing the generating set of EffCirc.
A generalized local transformation is a rule x→ y, with x, y ∈ A∗.
A generalized local transformation system (GLTS) is a finite collection of generalized local trans-

formations S, such that
(1) If x→ y is in S, then so is y → x.
(2) For every a ∈ A, there is some a−1 ∈ A such that S contains the rule aa−1 → e.
(3) (Soundness and completeness) A circuit C computes the identity function iff there exists a

sequence of rewrites taking Ĉ to the empty string.

If there is a sequence of rewrites taking w to w′, we write w =S w
′. In addition, for w ∈ A∗ with

w =S e, define the proof complexity of w, denoted pcS (w), to be the the least number of rewrites
required to take w to the empty string, not counting rewrites of the form aa−1 → e or e → aa−1.
Define the proof complexity of S to be

PCS(n) = max
w∈EffCircGens≤n,w=Se

pcS (w) .

9

branching program uniformization, rewriting lower bounds, and geometric group theory

Note that the maximum is only over words in the alphabet EffCircGens and not the larger alphabet
A.

As with LTSs, there is a group theoretic interpretation of GLTSs. Let S be a GLTS over the
alphabet A. We associate to S the finitely presented group GS = 〈A | xy−1, (x→ y) ∈ S〉. Once
comfortable with the definitions, it is straightforward to prove the following proposition:
Proposition 22. Given a GLTS S over an alphabet A, let GS = 〈A | xy−1, (x→ y) ∈ S〉. Then
EffCirc embeds into GS.

Moreover, for w ∈ EffCircGens∗, areaGS
(w) = pcS (w).

So, GLTSs are essentially finitely presented groups containing EffCirc, since any such group also
gives rise to a GLTS (Proposition 32).

We will be interested in the case where EffCirc is a quasi-isometrically embedded subgroup of
GS . We first verify that such GLTSs exist.
Claim 23. There exists a GLTS S such that EffCirc is quasi-isometrically embedded in GS and
PCS(n) = 2O(n2).

As indicated above, GS is closely tied to S complexity-wise as areaGS
(w) = pcS (w). However, it

is important to note that in general dehnGS
(n) 6= PCS(n). The former takes the maximum over all

words in A≤n, while the latter only takes a maximum over the subset EffCircGens∗. This presents a
difficulty in using the theorem that groups with subquadratic Dehn function are hyperbolic directly,
which we remedy by proving Lemma 26.

We exploit the relationship between area and proof complexity to obtain the following quadratic
lower bound.
Theorem 24. Let S be a GLTSs and suppose the inclusion ϕ : EffCirc → GS is a quasi-isometric
embedding. Then PCS(n) is not o(n2).

The proof of this theorem is one of the primary technical contributions of this paper, as it uses
mathematical tools which to our knowledge have yet to be applied to complexity theory. Let us
motivate the requirement that the inclusion EffCirc → GS is a quasi-isometric embedding from a
complexity theoretic point of view. First, we note that non-deterministic algorithms give rise to
such rewriting systems.
Proposition 25. If there is an NTIME (T (n)) algorithm for solving the word problem of EffCirc,
then there is a GLTS S such that the inclusion EffCirc → GS is a quasi-isometric embedding and
such that PCS(n) is bounded by O(n2T (n2)4).
Proof. This follows immediately from the embedding theorem of [5], which states that given such
an algorithm we obtain a group G in which EffCirc is quasi-isometrically embedded and whose
Dehn function is O(n2T (n2)4). Then, taking S to be the rewriting system associated to G (as in
Proposition 32), we have GS = G and by Proposition 22, the proof complexity of S is bounded by
the Dehn function of G. �

Second, we relate the notion of quasi-isometry to the condition of words in GS being representa-
tions of functions which are as easy to compute with, as circuits are. Recall that we define a family
of evaluation circuits for GS to be a family of circuits Es,n such that if w ∈ A∗ is equal in GS to Ĉ
for a circuit C of size s on n bits, then Es,n(w, x) = C(x) for every n-bit string x.

Proposition 4. If GS admits a family of evaluation circuits Es,n of size Õ(s+ n), then there is a
constant C0 so that for any g ∈ EffCirc encoding an n-bit circuit, |g|EffCirc is Õ(|g|GS

+ n).

10

branching program uniformization, rewriting lower bounds, and geometric group theory

Proof. Let Ĉ ∈ EffCirc be the encoding of an n-bit circuit C. Let w be the string of length s := |g|GS

with w =GS
g.

Let C0 be the not necessarily reversible circuit C0(x) = Es,n(w, x), with w hard-coded. C0
has size Õ(s + n) + s = Õ(s + n). By [29], we can turn C into a reversible circuit C1 of size
O(Õ(s + n) + n) = Õ(s + n). Now, by Theorem 19, we have a word Ĉ1 over EffCircGens of size
Õ(s + n) log2 n = Õ(s + n) representing C1. Since C1 computes the same function as C, and C

computes g, this implies that |g|EffCirc is Õ(s+ n). �

This is substantially weaker than EffCirc being a quasi-isometry, which is equivalent to saying
|g|EffCirc is O(|g|GS

) for all g ∈ EffCirc (whereas this proposition only proves the weaker upper bound
for g which encode circuits). However, it does have a similar flavor and we believe illustrates the
interplay between EffCirc as a computational object and as a geometric space.

To prove Theorem 24, we need several geometric lemmas involving the standard notion of hy-
perbolicity. In what follows, we will treat this notion as a black-box, so we defer its definition to
the appendix, where we will need it.

Lemma 26. Let G = 〈A | R〉 be a finitely presented group and H a quasi-isometrically embedded
subgroup generated by B ⊆ A. Suppose there is some constant K such that

max
w∈LoopsH(n)

areaG(w) ≤ Kn.

Then H is hyperbolic.

The proof of this lemma (which appears in the appendix) is a refinement of a proof appearing
in [2] of the fact that groups which themselves have linear Dehn function are hyperbolic.

Lemma 27. Let G = 〈A | R〉 be a finitely presented group and H a quasi-isometrically embedded
subgroup generated by B ⊆ A. Suppose that max

w∈LoopsH(n)
areaG(w) = o(n2). Then H is hyperbolic.

Proof. Let Cay(H,B) be the Cayley graph of H with respect to B. and let ΩH denote the set of
simple loops (not necessarily based at e) in Cay(H,B). Let areaH : ΩH → N denote the restriction
of areaG to Cay(H,B).

We would like to apply the main theorem of [8], which states that areaH(n) = O(n) if areaH
satisfies the following two properties.
1 Take any x, y ∈ H and let α0, α1, α2 be three paths in Cay(H,B) from x to y. Let γi be the

path obtained by concatenating αi with the reverse of αi+1 (taking subscripts mod 3). Then
areaH(γ2) ≤ areaH(γ0) + areaH(γ1).

2 Suppose γ ∈ ΩH is the concatenation of the four paths α1, α2, α3, α4. Then there is some constant
K0 such that areaH(γ) ≥ K0dH(α1, α3) · dH(α2, α4), where dH(αi, αj) is the Hausdorff distance

dH(αi, αj) = max
{

sup
xi∈αi

inf
xj∈αj

dH(xi, xj), sup
xj∈αj

inf
xi∈αi

dH(xi, xj)
}
.

Property (1) clearly holds since it holds more generally already for paths in the Cayley graph of
G, as stated in [8]. Property (2) holds since as stated in [8], the analogous statement holds for dG
instead of dH , and dH is equivalent to dG up to constant multiplicative error.

Thus, there is some K such that areaH(w) ≤ K|w| for every loop w in Cay(H,B). By Lemma 26,
we conclude that H is hyperbolic. �

We can now prove Theorem 24 without much difficulty.

11

branching program uniformization, rewriting lower bounds, and geometric group theory

Proof. Let S be a GLTSs and suppose and suppose that the inclusion ϕ : EffCirc→ GS is a quasi-
isometric embedding. Assume for a contradiction that PCS(n) = o(n2). Untangling the definition
of PCS , this says precisely that max

w∈LoopsEffCirc(n)
areaGS

(w) = o(n2). Thus, by Lemma 27, EffCirc is

hyperbolic. The finite subgroups of a hyperbolic group have bounded order[20]. EffCirc, on the
other hand, has arbitrarily large finite subgroups: for every n, it contains the group A(2n) of all
even permutations on n-bits[9], which has order (2n)!

2 . Thus we have a contradiction, so PCS is not
o(n2). �

5. Discussion

It seems likely that the conclusion of Theorem 11 can be strengthened to hold for a read-once
branching program which is not fixed order. That is, a branching program such that each variable
is read at most once along any computation path. For read-many branching programs, no directly
analogous statement can be proved: By Barrington’s theorem, read-many branching programs can
compute all of NC1. NC1contains the word problem of the free group on two generators, which has
exponential growth. However, there is no immediate reason to rule out an analogous statement for
read-twice or even read-k times branching programs.

Another interesting direction for future research is the fact that although proving that EffCirc
does not quasi-isometrically embed into a group with polynomial Dehn function is equivalent to
proving NP 6= coNP, there are, to our knowledge no immediate complexity theoretic implications of
proving exponential lower bounds on the Dehn function of EffCirc itself. Put another way, it may
be possible to show that any efficient rewriting system for circuits would have to use strings which
are not circuits as intermediate stages in a rewrite sequence.

Finally, it seems very likely that the method of Lemma 26 can be strengthened to prove that
for any GLTS S, there exist circuits C of size s such that the exact encoding Ĉ (rather than just
some encoding as we have shown) requires on the order of s2 rewrites. It also seems likely that
the condition that the inclusion EffCirc → GS is a quasi-isometric embedding can be weakened to
the condition that the length of a word in EffCirc is only a polylogarithmic factor longer than in
GS . Taken together, these two facts along with Proposition 4 would then imply that for any S
admitting a a family of evaluation circuits, there are circuits C of size s for which Ĉ requires on
the order of s2 many rewrites to reduce to e.

12

branching program uniformization, rewriting lower bounds, and geometric group theory

Appendix A. Branching programs for word problems

First, let us show prove an upper bound on the width of a minimal branching program for
computing the word problem in terms of the growth.

Proposition 10. Let (G,A) be a finitely generated group with growth function ρG,A. Then WPG,A
is computed by a width ρG,A roOBP.

Proof. We describe the layers L0, . . . , Ln of an in-order branching program B computing WPG,A
over the alphabet A. Let Li = eval

(
A≤i

)
. L0 consists of only the identity element of G, which

will be the start vertex. The identity element of G is the sole accepting vertex in Ln and all other
vertices are rejecting.

For each g ∈ Li and a ∈ A, it is clear that ga ∈ Li+1: if g = eval (w) with |w| = i, then
ga = eval (wa) and |wa| = i+ 1. Thus, for each g ∈ Li and a ∈ A our branching program will have
the edge (g, ga) labelled by a.

Let us verify that B computes WPG,A. Let w = a1 · · · an be a word of length n. We claim that
for each i ≤ n, the target of the path induced by a1 · · · ai is eval (a1 · · · ai). For i = 0 this is clear as
a1 · · · a0 is the empty word, which evaluates to e ∈ G, the target of the empty path. Now suppose
it holds for i < n. The path induced by a1 · · · ai+1 is the path induced by a1 · · · ai followed by the
edge labelled ai+1. So, if g is the target of the path induced by a1 · · · ai, the target of the path
induced by a1 · · · ai+1 is

gai+1 = eval (a1 · · · ai) ai+1

= eval (a1 · · · aiai+1)
as desired.

Thus, the vertex in Ln induced by w is eval (w). If eval (w) = e, then this is an accepting
vertex, and it is rejecting otherwise. So B does compute WPG,A. Now, for each Li, we have
|Li| ≤ |Ln| = ρG(n), so B has the claimed width. �

Now we will prove the matching lower bound by a similar argument to Claim 12.

Theorem 11. Let (G,A) be a finitely generated group with growth function ρG,A. If the word
problem for G is solved by a width W (4n) roOBP B for inputs of length 4n, then W (4n) ≥ ρG,A(n).

Proof. Let π : [4n] → [4n] be the permutation specifying the order in which B reads the input
symbols. Let I = { π(1), . . . , π(2n) } and let J = [4n] \ I = { π(2n+ 1), . . . , π(4n) }.

Let k be the nth smallest element of I, and let
X0 = { 1, . . . , k }
X1 = { k + 1, . . . , 4n }

Since J = (X0∩J)t (X1∩J), we may pick b so that |Xb ∩ J | ≥ |J | /2 = n. Note that we also have
|X0 ∩ I| = |X1 ∩ I| = n.

Let L2n be the 2nth layer in the branching program. Similarly to the proof of Claim 12, we will
exhibit an injection q : eval

(
A≤n

)
→ L2n. For each x ∈ eval

(
A≤n

)
, let wx be a word of length n

with eval (wx) = x. If we provide an assignment of symbols to the positions in I, then we may run
the machine B up to layer L2n. Let X1−b ∩ I = i1 < · · · < in. Let ux be the partial assignment
i` 7→ (wx)` and i 7→ e for i ∈ I \X1−b. In other words, we write wx in order on X1−b ∩ I and put
identity symbols e everywhere else. Now let q(x) ∈ L2n be the state B enters after reading the
partial assignment ux.

13

branching program uniformization, rewriting lower bounds, and geometric group theory

Let us now show that q is an injection. Suppose q(x) = q(y). We will extend the partial
assignments ux, uy to total assignments u′x, u′y. To do so, we must provide values for the indices in
J . We have |Xb ∩ J | ≥ n, so let j1, . . . , jn be the first n elements of Xb ∩ J . Extend ux to u′x and
uy to u′y by taking j` 7→ (wx−1)` and j 7→ e for every other j ∈ J . That is, we write wx−1 in order
on Xb ∩ J and put identity symbols e everywhere else.

Now u′x has wx written on X1−b and wx
−1 written on Xb, while u′y has wy written on X1−b

and wx
−1 written on Xb. Whether b = 0 or b = 1, eval (u′x) = e. This is because eval (ux) =

eval
(
wx
−1) eval (wx) = e if b = 0 and eval (ux) = eval (wx) eval

(
wx
−1) = e if b = 1.

Since u′x agrees with u′y on the final 2n symbols to be read and q(x) = q(y), eval
(
u′y

)
=

eval (u′x) = e. Thus, yx−1 = e, so x = y. This proves that the map q is indeed an injection, and
the desired inequality follows. �

The theorem of Shalom and Tao[27] states

Theorem 28. Let B0, B1, . . . be a family of branching programs computing WPG,A.
There is an absolute constant C (not depending on (G,A)) such that for every finitely generated

group (G,A) and k > 0, if there exists a single n ≥ exp
(
exp

(
CkC

))
for which ρG,A(n) ≤ nk, then

G is virtually nilpotent.

Thus, the weakened hypotheses give us the following corollary.

Corollary 16. Let {Bn }n∈N be a family of branching programs computing WPG,A.
There is a constant C such that for any k > 0, if Bn has width at most nk for a single n ≥

exp
(
exp

(
CkC

))
, then WPG,A is computed by an O(n)-time multi-tape Turing machine.

Appendix B. Reversible circuits

Here we provide the construction of Circ and EffCirc, the encodings of circuits as words in these
groups, prove that the word problem for EffCirc is coNP-complete, and prove that GLTSs correspond
to finite presentations of groups containing EffCirc.

Claim 18. Let C be an n-bit reversible circuit of size s. Then there is a word Ĉ ∈ CircGens∗ of
length O(sn) such that

Ĉ(. . . b−1b0 . . . bn−1bn . . .) = . . . b−1C(b0 . . . bn−1)bn . . .

Proof. Our strategy is as follows. First, we show that we can swap the ith bit with any of the first
three bits with a word of length O(i). Then, we will assemble the circuit gate by gate, swapping
the correct bits into the first three, acting by an element of U , and then returning them.

Consider the map σ = (0; 1) t illustrated in Figure 2. One can easily verify that w0(i) =
σi (0; 1)σ−i is equal to the map (0; i+ 1). The length of this word is clearly O(i), and thus O(n).
By analogous constructions, we may construct a word w1(i) of length O(n) representing (1; i) and
also a word w2(i) representing (2; i).

Now let g1, . . . , gs be a topological ordering of the gates in C so that gs is the final gate. For
each gi, let x0,i, x1,i, x2,i be the three bits that it acts on. Let ui = w0(x0,i)w1(x1,i)w2(x2,i) and
consider the map represented by uiĝiui. This element of S(2Z) acts by moving the three input bits
of gi to the first three bits, acting by gi, and then moving the three bits back. Thus, by taking the
product

(usĝsus)(us−1ĝs−1us−1) . . . (u1ĝ1u1)

14

branching program uniformization, rewriting lower bounds, and geometric group theory

0 1 2-1-2-3 3

0 1 2-1-2-3 3

0 1 2-1-2 0 1 2-1-2-3 3

0 1 2-1-2-3 3

Figure 2. The map σ, which just skips over zero.

we obtain a word which represents the map

Ĉ(. . . b−1b0 . . . bn−1bn . . .) = . . . b−1C(b0 . . . bn−1)bn . . .

and which has length O(sn) since there are s terms, each of length O(n). �

The inefficiency of the encoding in Claim 18 stems from the fact that we must use a word of
length O(n) to swap the bits each gate acts on into the first three bits. Let us show that it is
possible to modify the encoding using a simple trick called an HNN extension[22] to reduce the
length of the word representing that swap to O(log2 n).

Proposition 29. Circ embeds into a finitely presented group (EffCirc,EffCircGens) in which the map
(0;n+ 1) is represented by a word of length O(log2 n) for every n ≥ 0.

Proof. Let σ = (0; 1) t as above. We have (0;n+ 1) = σn (0; 1)σ−n. Thus, to construct a more
efficient encoding of (0;n+ 1), we can construct a more efficient encoding of σn.

15

branching program uniformization, rewriting lower bounds, and geometric group theory

To this end, let EffCirc be the group obtained by adjoining an element q to Circ and quotienting
out by the relation qσq−1 = σ2. In other words, we take

EffCircGens = { σ } ∪ { ĝ : g a three bit reversible gate }
EffCirc = 〈A, q | R, qσq−1σ−2〉

where R is the set of all words in A∗ evaluating to e in Circ.
Now, we can use q to efficiently express σ2k for any k.

Claim 30. For any k ≥ 0, qkσq−k = σ2k .

Proof. The claim is clearly true for k = 0, supposing it holds for k, we have

qk+1σq−(k+1) = qkqσq−1q−k

= qkσ2q−k

= qkσq−kqkσq−k

= σ2k
σ2k

= σ2k+1

as desired. �

For an arbitrary power σn, we can use the above claim to express it as a word of length of length
O(log2 n) as follows: write n =

∑blognc
i=0 ai2i with ai ∈ { 0, 1 }. Now, we have
blognc∏
i=0

(
qiσq−i

)ai =
blognc∏
i=0

σai2i

= σn

This is a product of at most logn terms, each of length at most 2 logn+ 2, so we can express σn as
a word of length O(log2 n), and thus we can express (0;n+ 1) as a word of length O(log2 n). �

Theorem 19. Circ includes into a finitely generated group (EffCirc,EffCircGens) such that for any
reversible circuit C of size s acting on n bits, the element Ĉ described in Claim 18 can be written
as a word of length O(s log2 n).

Proof. This follows immediately from the construction of Claim 18 and the improved efficiency in
Proposition 29. �

Claim 31. The word problem for EffCirc is coNP-complete.

Proof. By Theorem 19, we have a reduction from the Circuit-Identity problem to WPEffCirc: for a
given circuit C, the word Ĉ obtained in the construction of Theorem 19 is the identity in EffCirc
iff C computes the identity function. Thus WPEffCirc is coNP-hard.

It remains to show that WPEffCirc ∈ coNP. Here we will give an algorithm. Our goal will be to
remove all occurrences of q from an input word w. If this is possible, then we can intepret w as an
element of S(2Z) and universally check that w is the identity on a suitable set of bitstrings. If this
is not possible, then we can show that w 6= e.

Let w ∈ EffCircGens∗ and let n = |w|. First, assume w is freely reduced (this can clearly be done
in polynomial time). As we manipulate w, we will represent it by compressing repeated occurences

16

branching program uniformization, rewriting lower bounds, and geometric group theory

of characters. E.g., the string g0qqqg1g1 will be represented as (g0, 1)(q, 3)(g1, 2), where integers
are represented in binary.

Call a word in EffCircGens∗ reduced if it does not contain a subsequence of the form qσkq−1 or
q−1σ2kq for k ∈ Z.

We can turn w into a reduced word by iteratively checking for and eliminating occurences of
subwords of the above form. On one iteration, we do the following: Check if w contains a subword
of the form qσkq−1. If it does, replace it with σ2k. Then check if w contains a subword of the form
q−1σ2kq. If it does, replace it with σk. Neither of these replacements changes the group element
represented by w. Moreover, each of these replacements decreases the number of occurences of q
in w by 2, and so w will be reduced after at most n/2 iterations. Finally, each iteration increases
the size of the representation of w by at most 1, so this can all be done in poly (n) time.

Britton’s Lemma[22] says that if w is reduced and contains q, then w 6= e. So, now that w is
reduced, if it contains q, then it is not equal to e and we reject. If it does not, then it is a word in
the alphabet { σ }∪{ ĝ : g a three bit reversible gate }. It is clear that such a w can be interpreted
as a map S(2Z)→ S(2Z). Let N be the highest power of σ now occurring in w. We have N ≤ 2n.
Since w has at most n gates, it only inspects at most n bits. The indices of those bits necessarily
lie in [−N,N]. and we can determine these indices by inspection of w. Now, universally choose
an assignment to these bits, evaluate the map corresponding to w on these bits, and accept iff the
output computed is the identity. �

Let us now demonstrate the correspondence between GLTSs and group presentations. First, we
show that a group presentation can be thought of as a GLTS.

Proposition 32. If G = 〈A | R〉 is a finitely presented group containing EffCirc (and EffCircGens ⊆
A), then there is a GLTS SG with proof complexity bounded by dehnG.

Proof. Let R be a finite set of relations for G. Now take SG to consist of the rewrite rules
• aa−1 → e and e→ aa−1 for a ∈ A.
• r → e for r ∈ R.

Let us show that S has the desired proof complexity. Take w ∈ EffCircGens∗ with w = e. Now,
there exist r1, . . . , rN ∈ R and u1, . . . , uN ∈ A∗S with N ≤ dehnG(|w|) such that

w =
N∏
i=1

uiriu
−1
i

as elements of the free group on the letters A.
Thus, we can perform a series of rewrites on w, introducing or removing subwords of the form

uu−1, so that w =
∏N
i=1 uiriu

−1
i on the nose as a string. Then, we simply apply the rewrites

r1 → e, . . . , rN → e so that w becomes the string
∏N
i=1 uiu

−1
i . Finally, we simply apply the rewrites

u1u1
−1 → e, . . . , uNuN

−1 → e to reduce w to the empty string. Not counting reductions of the
form uu−1 → e or e→ uu−1, we used N ≤ dehnG(|w|) rewrites, as desired. �

Now, we show that a GLTS can be thought of as a group presentation.

Proposition 22. Given a GLTS S over an alphabet A, let GS = 〈A | xy−1, (x→ y) ∈ S〉. Then
EffCirc embeds into GS.

Moreover, for w ∈ EffCircGens∗, areaGS
(w) = pcS (w).

Proof. Let GS be as stated. Let us show that two words w1, w2 ∈ A∗ are equal in GS iff w1 can be
rewritten to w2 in S. First, suppose w1 equals w2 in GS . So, w−1

1 w2 =GS
e. This means that there

17

branching program uniformization, rewriting lower bounds, and geometric group theory

exist words u1, . . . , uN ∈ A∗ and r1, . . . rN ∈ R such that

w−1
1 w2 =

N∏
i=1

uiriu
−1
i

or, multiplying by w1,

w2 = w1

N∏
i=1

uiriu
−1
i .

Thus, to rewrite w1 to w2, it suffices to show that the empty string can be rewritten to
∏N
i=1 uiriu

−1
i .

Say ri = xiy
−1
i . Since S contains the rules e → aa−1 for each generator, we can rewrite e →

uiyiy
−1
i u−1

i by repeated application of these rules. Thus, e can be rewritten to
∏N
i=1 uiyiy

−1
i u−1

i .
Now, since xi → yi is in S for each i, we can rewrite this to

N∏
i=1

uixiy
−1
i u−1

i =
N∏
i=1

uiriu
−1
i .

as desired.
Conversely suppose that w1 can be rewritten to w2 in S. Say the sequence of intermediate words

in the rewriting process are w1 = u1, u2, . . . , uN = w2, where each ui differs from ui−1 from an
application of a rewrite rule x → y in S. We have that xy−1 =GS

e. Thus x =GS
y, which means

that ui =GS
ui+1. Thus by induction, w1 =GS

w2.
Now let us show that EffCirc embeds into GS . Since EffCircGens ⊆ A, we have a map Φ :

EffCircGens∗ → GS . In order for Φ to descend to a group homomorphism ϕ : EffCirc → GS , it
suffices to check that every w ∈ EffCircGens∗ with w equal to e in EffCirc has Φ(w) = e. Suppose
we have such a w. Then since GLTSs are complete, w can be rewritten to the empty string e by
S. Thus, by the above, w =G e as desired.

Now let’s show that ϕ is an injection. This amounts to showing that the only element mapping
to e is e. Suppose ϕ(w) =G e. Then by the above, there is a sequence of rewrites in S taking w to
e. Soundness of S then states that w is the identity element of EffCirc. Thus EffCirc is a subgroup
of GS as desired.

The claim about proof complexity follows from the above argument relating sequences of rewrites
with expression as a product of relations. �

Claim 23. There exists a GLTS S such that EffCirc is quasi-isometrically embedded in GS and
PCS(n) = 2O(n2).

Proof. The coNP algorithm in Claim 31 for WPEffCirc can be turned into a DTIME
(
2O(n)

)
algorithm,

and hence trivially an NTIME
(
2O(n)

)
algorithm. Proposition 25 then gives the desired GLTS. �

We now recall some standard definitions in geometric group theory. (See [24] for more details.)
Let X be a geodesic metric space.

Definition 33. For points x, y ∈ X, [xy] denotes a geodesic from x to y.

Definition 34. A triangle xyz in X is defined to be the union of geodesics [xy], [yz], and [zx].

Definition 35. A triangle xyz is r-thick if there is a point on the side [xy] such that the minimal
distance to a point on [yz] ∪ [zx] is at least 2r.

Definition 36. X is hyperbolic if there is some r for which no triangle is r-thick.

18

branching program uniformization, rewriting lower bounds, and geometric group theory

Definition 37. Let G = 〈A | R〉 be a finitely presented group. Let R∗ be the set of all cyclic
permutations of elements of R and their inverses.

Figure 3. A van Kampen diagram.

A van Kampen diagram for G is a finite, planar cell complex D equipped with a base point p
such that

(1) D is simply connected.
(2) Every 1-cell of D is oriented and labelled by some a ∈ A.
(3) For every 2-cell c of D and every vertex v on c, the word obtained by starting at v and

reading the labels of the boundary of c in either of the two orders (and reading a as a−1 if
an edge is negatively oriented) is a word in R∗.

For any van Kampen diagram D, we obtain a word ∂D (the boundary of D) by reading the
boundary edges clockwise starting at p and, as above, reading reading a as a−1 if an edge is
negatively oriented.

The diagram D is a combinatorial certificate of the fact that ∂D =G e. A van Kampen diagram
is illustrated in Figure 3. The key fact we will use about van Kampen diagrams is that for any
word w ∈ A∗ with w =G e, there is a van Kampen diagram D containing areaG(w) 2-cells and such
that ∂D = w. See [22] for more details.

We now prove the key lemma that we needed to establish Theorem 24.
Lemma 26. Let G = 〈A | R〉 be a finitely presented group and H a quasi-isometrically embedded
subgroup generated by B ⊆ A. Suppose there is some constant K such that

max
w∈LoopsH(n)

areaG(w) ≤ Kn.

Then H is hyperbolic.
Proof. We essentially follow the proof of [2], departing from it to get around the fact that we have
made weaker assumptions. In what follows, we abuse notation and refer to the Cayley graph of G
or of H with respect to the given generating sets simply as G or as H.
H is quasi-isometrically embedded in G, so take δ > 0 for which |g|G ≥ δ |g|H for all g ∈ H. Also

let ρ be the longest length of a relator in R. Suppose for a contradiction that H is not hyperbolic.
Then for every r, H contains a triangle which is r-thick in H. In G, the triangle will be at least
δr-thick, but since we can take r arbitrarily large, we may assume that we have a triangle in H
which is r-thick in G.

19

branching program uniformization, rewriting lower bounds, and geometric group theory

Suppose ε > ρ and take r > 6ε. Let xyz be a triangle in H which is r-thick, with w ∈ [xy] a
point which is distance at least 2r from the other two sides. As in [2], by pinching off degeneracies,
we may also assume that xyz is non-degenerate (i.e., the sides intersect only at the vertices and no
two vertices lie on the same geodesic).

Cutting off the corners of xyz such that the truncated sides are all distance at least 4ε from each
other and the cut-off segments (which we take to be geodesics in G) are of length exactly ε.

The resulting figure F falls into one of three cases:
(1) A non-degenerate hexagon with three sides of length 4ε
(2) A non-degenerate quadrilateral with two sides of length 4ε.
(3) A degenerate hexagon.

x y

z

z′′z′

x′′

x′ y′′

y′

w

x y

z

z′

x′′

x′ y′′w

x y

z

z′′z′

x′′

x′ y′′

y′

w

1)

2)

3)

Figure 4. The figure F

The three cases are illustrated in Figure 4. Let α, β, γ be the lengths of the three truncated sides
of xyz (the black sides in Figure 4).

We need a lemma, whose proof we defer.

Lemma 38. There is some constant C depending only on ε such that

areaG(F) > δ(α+ β + γ)ε/ρ2 − C + r/ρ.

20

branching program uniformization, rewriting lower bounds, and geometric group theory

We would like to contradict this lower bound by placing a smaller upper bound on areaG(F). To
do so, we need to make use of our isoperimetric inequality for curves in H. The trouble is that the
red sides of F in Figure 4 may be not be curves in H, but only in G. So, we will compare the area of

z′′z′

x′′

x′ y′′

y′

w

Figure 5. Distances in H may be larger than in G.

F to a figure F ′ whose boundary is a path in H. The red arcs as indicated in Figure 4 are geodesics
in G. Let F ′ be the figure obtained by replacing these arcs with the corresponding geodesics in H,
which may in general be longer by a factor of at most 1/δ. The situation is illustrated for case (1)
in Figure 5, with the geodesics in H appearing in blue and those in G appearing in red.

Adding up all the side lengths and accounting for the at most 1/δ lengthening when changing a
geodesic in G to a geodesic in H, the perimeter of F ′ is at most

(α+ β + γ) + 12ε/δ.
Thus, since the perimeter of F ′ is now a loop in H rather than G, we can use our isoperimetric
inequality to conclude that

areaG(F ′) ≤ (α+ β + γ)K + 12Kε/δ

z′′z′

x′′

x′ y′′

y′

w

Figure 6. A decomposition of F into 4 loops.

Now we must relate areaG(F ′) to areaG(F). Consider the decomposition of F illustrated in
Figure 6 into F ′ and three loops each of length at most 2ε/δ. The area of each loop is thus bounded

21

branching program uniformization, rewriting lower bounds, and geometric group theory

by dehnG(2ε/δ). Then since we can compose together fillings for each of these loops to get a filling
for F , we have

areaG(F) ≤ areaG(F ′) + 3dehnG(2ε/δ)
≤ (α+ β + γ)K + 12Kε/δ + 3dehnG(2ε/δ).

Combining this with our lower bound yields

δ(α+ β + γ)ε/ρ2 − C + r/ρ < (α+ β + γ)K + 12Kε/δ + 3dehnG(2ε/δ).

Now, taking ε = Kρ2/δ, the α+ β + γ terms cancel, leaving us with

r/ρ < 12Kε/δ + 3dehnG(2ε/δ) + C.

Since ε is fixed, the right hand side is constant, so taking r large enough yields a contradiction. �

It remains to prove Lemma 38, which we do now.

Lemma 38. There is some constant C depending only on ε such that

areaG(F) > δ(α+ β + γ)ε/ρ2 − C + r/ρ.

Proof. We prove the lemma in case (1). The proof in the other cases is essentially the same. See
Lemma 2.7 of [2] for more details. Label the points on F as in Figure 4. Let D be a van Kampen
diagram with boundary ∂F . For θ a path in G, let `(θ) denote the number of edges in θ.

If T is a subcomplex of D, define star(T) to be the set of all cells in D which intersect T . If θ is
one of the black curves in F ([x′′z′], [z′′y′], or [x′y′′]), let stark(θ) be the subcomplex of D obtained
by iterating star k times times starting with θ and let N(θ) = starbε/ρc+1.

Claim 39. There is some C1 depending only on ε such that the number of 2-cells in N(θ) is at
least δ`(θ)ε/ρ2 − C1.

γ
0

γ
2

γ
1

Figure 7. The curves γk.

Proof. Let γk denote the curve running along the bottom of D \ stark(θ), as illustrated in Figure 7.
Formally, letting D1 denote the 1-skeleton of D, γk is stark(θ) ∩D1 intersected with the closure of
int(D) \ stark(θ), where int(D) is the interior of D.

For each k, there is a path αk from p to q which travels a path Lk up the left side of F , traverses
γk, then a path Rk down the right side of F . Since the paths Lk and Rk touch at most k 2-cells,
they each have length at most kρ.

22

branching program uniformization, rewriting lower bounds, and geometric group theory

The distance from p to q is at least δ`(θ) (as θ is a geodesic in H). Thus, since αk is a path from
p to q, we have

δ`(θ) ≤ `(αk)
= `(γk) + `(Lk) + `(Rk)
≤ `(γk) + 2kρ.

And so, `(γk) ≥ δ`(θ)− 2kρ. Thus, since each edge of γk lies on a 2-cell in stark(θ) \ stark−1(θ) and
each such 2-cell has at most ρ edges, the total number of 2-cells in stark+1(θ) \ stark(θ) is at least

(δ`(θ)− 2kρ)/ρ
Thus, the number of two cells in N(θ) is at least

1
ρ

bε/ρc∑
k=0

δ`(θ)− 2kρ ≥ δ`(θ)ε/ρ2 − 2ε2/ρ2

and the claim follows with C1 = 2ε2/ρ2. �

Let us now show that N(θ1) and N(θ2) are disjoint if θ1 6= θ2, where θ ∈ { [x′y′′], [x′′z′], [z′′y′] }.
Every point in N(θi) is distance at most (bε/ρc + 1)ρ < 2ε from θi. Thus, if there were a point
common to θ1 and θ2, the distance between θ1 and θ2 would be less than 4ε. However, F was
constructed specifically so that θ1 was distance at least 4ε from θ2. Thus the two sides are disjoint,
so their contributions to the area of F are distinct.

Let p be a point on the boundary of N([x′y′′]) distance at most ε from w and q a point on
the boundary of N([x′′z′]). Let γ1 be a geodesic in D from w to p, γ2 a path in D from p to q
not entering N(θ) for any θ, and γ3 a path of length at most ε from q to [x′′z′]. Let γ be the
concatenation of these three paths. Since w is distance at least r from [x′′z′], we have

r ≤ `(γ)
= `(γ1) + `(γ2) + `(γ3)
≤ `(γ2) + 2ε.

Thus, `(γ2) ≥ r − 2ε, which means there at least (r − 2ε− 2)/ρ 2-cells in D outside of any N(θ).
Adding up these 2-cells with those contributed by the N(θ) yields at least

δ(α+ β + γ) + r/ρ− 3C1 − (2ε+ 2)/ρ
2-cells in D. This concludes the proof, taking C = 3C1 + (2ε+ 2)/ρ. �

23

branching program uniformization, rewriting lower bounds, and geometric group theory

References
[1] Van Kampen Diagrams and Pictures, pages 163–177. Birkhäuser Basel, Basel, 2007.
[2] J.M. Alonso, T. Brady, D. Cooper., V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro, and H. Short. Notes on word

hyperbolic groups. http://math.hunter.cuny.edu/olgak/hyperbolic%20groups/MSRInotes2004.pdf, 1990.
[3] Lászlo Babai, Péter Hainal, Endre Szemerédi, and Gy˙A lower bound for read-once-only branching programs.

Journal of Computer and System Sciences, 35(2):153 – 162, 1987.
[4] D A Barrington. Bounded-width polynomial-size branching programs recognize exactly those languages in nc1.

In Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC ’86, pages 1–5, New
York, NY, USA, 1986. ACM.

[5] J.-C. Birget, A. Yu Ol’shanskii, E. Rips, and M. V. Sapir. Isoperimetric functions of groups and computational
complexity of the word problem. Annals of Mathematics, 156(2):467–518, 2002.

[6] Jean-Camille Birget. Reductions and functors from problems to word problems. Theoretical Computer Science,
237(1):81 – 104, 2000.

[7] Jean-Camille Birget. Circuits, the groups of richard thompson, and conp-completeness. International Journal of
Algebra and Computation, 16(01):35–90, 2006.

[8] B. H. Bowditch. A short proof that a subquadratic isoperimetric inequality implies a linear one. Michigan Math.
J., 42(1):103–107, 1995.

[9] Tim Boykett, Jarkko Kari, and Ville Salo. Strongly Universal Reversible Gate Sets, pages 239–254. Springer
International Publishing, Cham, 2016.

[10] M. Dehn. Über unendliche diskontinuierliche gruppen. (mit 5 figuren im text). Mathematische Annalen, 71:116–
144, 1912.

[11] Ryan Williams Dylan McKay. Small circuits for circuit evaluation problem. Theoretical Computer Science Stack
Exchange. URL:http://cstheory.stackexchange.com/q/37898 (version: 2017-04-04).

[12] Benson Farb. Automatic groups: A guided tour. L’Enseignement Math., 38:291–313, 1992.
[13] A. Garg, L. Gurvits, R. Oliveira, and A. Wigderson. A deterministic polynomial time algorithm for non-

commutative rational identity testing. In 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS), pages 109–117, Oct 2016.

[14] Oliver Goodman and Michael Shapiro. On a generalization of dehn’s algorithm. International Journal of Algebra
and Computation, 18(07):1137–1177, 2008.

[15] Michael Gromov. Groups of polynomial growth and expanding maps (with an appendix by jacques tits). Publi-
cations MathÃľmatiques de l’IHÃĽS, 53:53–78, 1981.

[16] Derek F. Holt and Sarah Rees. Solving the word problem in real time. J. London Math. Soc, 2:623–639, 1999.
[17] Kazuo Iwama and Shigeru Yamashita. Transformation rules for cnot-based quantum circuits and their applica-

tions. New Generation Computing, 21(4):297–317, 2003.
[18] Stephen P. Jordan. Strong equivalence of reversible circuits is conp-complete. Quantum Info. Comput., 14(15-

16):1302–1307, November 2014.
[19] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers. Springer Publishing Company, Incorpo-

rated, 2012.
[20] S. O. Juriaans, I. B. S. Passi, and Dipendra Prasad. Hyperbolic unit groups. Proceedings of the American

Mathematical Society, 133(2):415–423, 2005.
[21] Heh-Tyan Liaw and Chen-Shang Lin. On the obdd-representation of general boolean functions. IEEE Transac-

tions on Computers, 41(6):661–664, Jun 1992.
[22] Roger C. Lyndon and Paul E. Schupp. Combinatorial Group Theory. Springer, 2001.
[23] Vipul Naik. Virtually nilpotent group - groupprops. https://groupprops.subwiki.org/wiki/Virtually_

nilpotent_group. Accessed: 2017-04-01.
[24] Piotr W. Nowak and Guoliang Yu. Large Scale Geometry. European Mathematical Society, 2012.
[25] A.Yu. Ol’shanskii and Mark V. Sapir. Groups with undecidable word problem and almost quadratic dehn func-

tion. Journal of Topology, 5(4):785–886, 2012.
[26] David Hill Robinson. Parallel Algorithms for Group Word Problems. PhD thesis, La Jolla, CA, USA, 1993. UMI

Order No. GAX93-17153.
[27] Yehuda Shalom and Terence Tao. A finitary version of gromov’s polynomial growth theorem. Geometric and

Functional Analysis, 20(6):1502–1547, 2010.
[28] Tommaso Toffoli. Reversible computing. In Proceedings of the 7th Colloquium on Automata, Languages and

Programming, pages 632–644, London, UK, UK, 1980. Springer-Verlag.

24

http://math.hunter.cuny.edu/olgak/hyperbolic%20groups/MSRInotes2004.pdf
https://groupprops.subwiki.org/wiki/Virtually_nilpotent_group
https://groupprops.subwiki.org/wiki/Virtually_nilpotent_group

branching program uniformization, rewriting lower bounds, and geometric group theory

[29] Umesh Vazirani. Cs 191 lecture notes: Reversible computation. http://www-inst.eecs.berkeley.edu/˜cs191/
sp12/notes/reversible.pdf, 2012.

[30] Xiangdong Xie. Growth of relatively hyperbolic groups. Proceedings of the American Mathematical Society,
135(3):695–704, 2007.

25

http://www-inst.eecs.berkeley.edu/~cs191/sp12/notes/reversible.pdf
http://www-inst.eecs.berkeley.edu/~cs191/sp12/notes/reversible.pdf

	1. Introduction and our results
	1.1. Growth and branching programs
	1.2. Rewriting systems on reversible circuits

	2. Preliminaries
	2.1. Branching programs
	2.2. Group theoretic preliminaries
	2.3. The word problem

	3. Groups with word problem solved by efficient roOBPs
	4. Reversible circuits
	4.1. Groups of circuits
	4.2. Local transformation systems

	5. Discussion
	Appendix A. Branching programs for word problems
	Appendix B. Reversible circuits
	References

