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Let N̄ be a compact, orientable, irreducible and atoroidal 3-manifold
with boundary ∂N̄ . A simple closed curve γ ⊂ N̄ is said to be unknotted
with respect to ∂N̄ if it can be isotoped into ∂N̄ . Equivalently, γ is
contained in an embedded surface which is isotopic to the boundary.
More generally, a finite collection Γ = {γ1, . . . , γn} of simple curves
is unlinked in N̄ if there is a collection of disjoint embedded surfaces
S1, . . . , Sn which are parallel to ∂N̄ and with γi ⊂ Si for all i.

In this note we are interested in those curves which are short geodesics
with respect to a complete hyperbolic metric on the interior N of a
compression body N̄ . We prove:

Theorem 1.1. If N̄ is a compression body then there is a constant
ε which depends only on χ(N̄) such that for every complete hyper-
bolic metric on the interior N of N̄ we have: Every finite collection
of geodesics which are shorter than ε is unlinked with respect to ∂N̄ .

In [Ota95], Otal proved Theorem 1.1 in the case that the manifold
N̄ is homeomorphic to the trivial interval bundle over a closed surface.
Otal also considered in [Ota03] the case that N̄ is a general compression
body, proving that geodesics which are homotopic to short curves on
the boundary of the convex core are not knotted. In general, short
geodesic γ∗ may be miles far away from the boundary of the convex-
hull, forcing that every curve on the boundary of the convex-core and
homotopic to γ∗ is long.

We describe now the strategy of the proof of Theorem 1.1: A short
geodesic with respect to a complete hyperbolic metric on N is simple by
the Margulis lemma; moreover, if it is sufficiently short it is contained
in an enormous Margulis tube T (γ). We obtain a complete metric
on the manifold N \ γ which coincides with the hyperbolic metric on
N \T (γ) and which has sectional curvature in [−2,−1

2
]. We show that

there is a simplicial ruled surface Σ homotopic to ∂N̄ in N \ γ and
which intersects very deeply the part where we changed the metric.
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An area bound on Σ, the Margulis Lemma and the annulus theorem
imply that there is a simple curve γ′ in ∂N̄ which can be isotoped into
a regular neighborhood of γ within N̄ \γ. This proves that some power
of γ is unknotted. A little bit of nice cup-and-paste topology shows
that γ′ can in fact be chosen to be isotopic to γ. In particular γ itself
is not knotted.

The paper is organized as follows: In section 2 we discuss some well-
known facts about compression bodies, manifolds of negative curvature
and simplicial ruled surfaces. In section 3 we use the geometric argu-
ment sketched above to prove that, up to taking powers, every short
geodesic in unknoted. Afterwards, in section 4 we prove that it is ac-
tually not necessary to take powers. Finally, in section 5 we sketch
the proof of a result, Theorem 5.1, which asserts that sufficiently short
geodesics in closed hyperbolic 3-manifolds are unknotted with respect
to strongly irreducible Heegaard surfaces.

Jean-Pierre Otal deserves all my gratitude for many very stimulating
discussions. I also would like to thank Ian Agol for founding and filling
a gap in the original proof of Lemma 3.1. Finally, I would like to thank
Dave Gabai for the remark leading to the proof of Theorem 5.1.

The first draft of this paper was written during the winter of 2004,
while the author was visiting the University of Chicago. At the time the
author was a member of the mathematics institute of the Rheinische-
Friedrich-Wilhelms Universität Bonn and was being supported by the
Sonderforschungsbereich 611 and by a post-doctoral research grant of
the Deutsche Forschungs Gemeinschaft. I apologize to all these insti-
tutions for the delay with which I am expressing my gratitude.

2. Preliminaries

In this section we recall some facts about 3-dimensional topology,
negatively curved manifolds and simplicial ruled surfaces. Throughout
the paper we will only consider orientable 3-manifolds.

2.1. Some topology. A compact 3-manifold N̄ is irreducible if every
embedded sphere bounds a ball and it is atoroidal if every properly
embedded incompressible torus is boundary parallel. A meridian is an
essential simple closed curve in ∂N̄ which is homotopically trivial in N̄ .
A component S of ∂N̄ containing a meridian is said to be compress-
ible. The Dehn lemma shows that every meridian is the boundary of a
properly embedded disk. See [Hem76, Jac80] for more on the topology
of 3-manifolds.
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The manifold N̄ is a compression body if it is irreducible and atoroidal
and has a privileged boundary component ∂extN̄ , called the exterior
boundary, such that π1(∂extN̄) surjects onto π1(N̄). The union of the
remaining boundary components is said to be the interior boundary of
N̄ ; remark that the interior boundary is incompressible. A compres-
sion body with incompressible boundary is homeomorphic to a trivial
interval bundle over a closed orientable surface; such compression bod-
ies are said to be trivial. Abusing terminology, we will sometimes say
that the disjoint union of compression bodies is a compression body.

Compression bodies arise naturally studying compact irreducible 3-
manifolds N̄ . Let namely S be a component of ∂N̄ and let C ′S be
the 2-complex obtained by attaching to S a maximal collection of dis-
joint non-parallel properly embedded essential disks (D, ∂D) ⊂ (N̄ , S).
Taking a regular neighborhood of C ′S and capping off every spherical
boundary component we obtain a submanifold CS of N̄ homeomorphic
to a compression body with exterior boundary S. In [Bon83], Bonahon
proved that the isotopy class of CS in N̄ depends only on the com-
ponent S ⊂ ∂N̄ . The compression body CS is said to be the relative
compression body of S in N̄ .

Let from now on N̄ be a compression body with exterior boundary
∂extN̄ and interior N . If Γ is a finite collection of disjoint simple curves
in N then let N (Γ) be one of its regular neighborhoods. If N̄ \N (Γ) is
irreducible then we will denote by CΓ the relative compression body in
N̄ \ N (Γ) corresponding to ∂extN̄ . The following lemma follows easily
from the construction of the relative compression body.

Lemma 2.1. Let N̄ be a compression body with exterior boundary
∂extN̄ and interior N . Denote by Ñ the universal cover of N .

If Γ is a collection of disjoint simple curves in N with N̄ \ N (Γ)
irreducible then the following holds:

(1) N̄ \ CΓ is a, possibly disconnected, compression body.
(2) The collection Γ is unlinked in N̄ if and only if it is unlinked in

N̄ \ CΓ.
(3) If Γ′ ⊂ Γ is such that N̄ \ N (Γ′) is irreducible then CΓ can be

isotoped such that CΓ ⊂ CΓ′.
(4) Every component U of N̄ \ CΓ is homeomorphic to a compres-

sion body. Moreover, π1(U) injects into π1(N̄) and the cover
Ñ/π1(U) of N determined by U is homeomorphic to the inte-
rior of U . More precisely, the lift of the surface ∂U to Ñ/π1(U)
is boundary parallel. �

2.2. Some geometry. We refer to [BP92] and [BGS85] for basic facts
about hyperbolic and negatively curved manifolds respectively.
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Let N be a (geodesically) complete, oriented, 3-dimensional Rie-
mannian manifold with pinched negative curvature −2 ≤ κN ≤ −1

2
.

Before going further we recall that it is due to Margulis that there is
a constant µ, depending only on the dimension and the pinching con-
stants, with the property that every component of the µ-thin part of
N , i.e. the set where the injectivity radius is less than µ, is either
homeomorphic to a solid torus or to a trivial interval bundle over a
torus. This implies that primitive geodesics shorter than µ are simple
and disjoint.

If Γ is a collection of primitive geodesics shorter than some ε < µ
then we will denote by NΓ<ε the union of those components of the ε-
thin part of N which contain a component of Γ; NΓ<ε is a collection of
disjoint solid tori.

The reason why we are going to work with manifolds of variable neg-
ative curvature is that a tube around a simple geodesic in a hyperbolic
manifold can be replaced by a cusp with variable negative curvature;
we say that γ can be drilled out. If the geodesic γ has a tubular
neighborhood with huge tube radius then γ can be drilled out with
sectional curvature close to −1. Short primitive geodesics in hyper-
bolic 3-manifolds have very large tube neighborhoods by the Margulis
lemma and thus we obtain:

Lemma 2.2. For every ε0 positive there is ε > 0 such that the following
holds: If Γ is a collection of geodesics in a hyperbolic manifold N which
are shorter than ε, then there is a complete Riemannian metric ρ on
N \ Γ with curvature pinched in [−2,−1

2
] and which coincides with the

original hyperbolic metric outside of NΓ<ε0. �

See for example [Ago02] for a proof of Lemma 2.2.
It is well-known that if the interior of a compact manifold N̄ ad-

mits a complete metric of negative curvature then N̄ is irreducible and
atoroidal. In particular we deduce from Lemma 2.2:

Lemma 2.3. There is ε positive such that whenever N̄ is a compact
3-manifold, N is a complete hyperbolic manifold homeomorphic to the
interior of N̄ and Γ ⊂ N is a finite collection of geodesics shorter than
ε, then the compact manifold N̄ \N (Γ) is irreducible and atoroidal. �

2.3. Simplicial ruled surfaces. Let N be a complete manifold with
curvature pinched by−2 and −1

2
and ∆ ⊂ R2 a triangle which is foliated

by segments with an endpoint at a vertex v of ∆ and the other endpoint
at the the edge of ∆ opposite to v. An immersion f : ∆→ N is said to
be a ruled triangle if every edge of ∆ and every leaf of the foliation is
mapped to a geodesic segment. Sometimes we will also allow that the
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map f is only defined on ∆ − v. In this case we have the additional
condition on f to be proper and that f maps the edges adjacent to v
to asymptotic geodesic rays in N . Remark that the pull back of the
Riemannian metric of N via f is a smooth metric on ∆ with upper
curvature bound −1

2
.

Let S̄ be a closed surface, V ⊂ S̄ a finite collection of points and
S = S̄ \ V . A proper continuous map φ : S → N is a pre-simplicial
ruled surface if the following conditions hold:

• The boundary of every small disk in S centered at a point in V
is mapped by φ to an essential curve in N .
• There is a triangulation T of S̄ which contains V in the set of

vertices such that φ|∆ is a simplicial ruled triangle for every face
∆ of T .

Remark that it follows from the definition that every pre-simplicial
ruled surface maps small loops around the set V of punctures to par-
abolic elements in π1(N). Moreover, the Riemannian metric of N in-
duces a metric on S which is smooth with curvature bounded from
above by −1

2
on every face of T . In particular, this metric has well-

defined cone-angles at every point. A pre-simplicial hyperbolic surface
is a simplicial ruled surface if the cone angles are at least 2π at every
point.

If φ : S → N is a simplicial hyperbolic surface, then the distance
induced on the universal cover of S is complete and CAT (−1

2
). In

particular, it follows from the Gauß-Bonnet theorem [Bon86, Can93]
that vol(S) ≤ 4π|χ(S)|.

Later we will only consider a particular type of simplicial ruled sur-
faces φ : S → N . We will namely assume that the triangulation T has
only one vertex v in S \ V and that there is a privileged edge I of T
which is mapped by φ to a closed geodesic η∗ [Can93]. Such simplicial
simplicial hyperbolic surfaces are said to be good and to realize the
geodesic η∗.

Lemma 2.4. [Bon86, Can93] Let S̄ be a closed surface and V ⊂ S̄ a
finite collection of points. Set S = S̄ \ V and let η ⊂ S be an essential
simple closed curve.

If f : S → N is a π1-injective map which maps small loops around
the punctures of S to parabolic elements in π1(N) and such that f(η) is
homotopic to a geodesic η∗ in N , then there is a good simplicial ruled
surface φ : S → N homotopic to f which realizes η∗.

An important draw back of simplicial ruled surfaces is that they do
not have curvature bounded from below. In particular, the Margulis
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lemma does not apply. However, such a Margulis Lemma exists if
we consider only π1-injective simplicial ruled surfaces. More precisely,
for every complete Riemannian 3-manifold M with pinched negative
curvature −2 ≤ κM ≤ −1

2
and for every π1-injective simplicial ruled

surface φ : S → M the following holds: two essential loops γ and
γ′ in S based at a point x and with length less than µ generate an
abelian subgroup of π1(S). Recall that µ is the Margulis constant for
3-manifolds with curvature pinched in −2 ≤ κ ≤ −1

2
.

In particular we obtain that the µ-thin part of every simplicial ruled
surface is a union of disjoint embedded annuli; the unbounded compo-
nents are said to be cusps and the union of the cusps is said to be the
cuspidal part. Moreover, from the point of view of coarse geometry,
a lower bound of the curvature can often be replaced by a Margulis
Lemma. In particular the Gauß-Bonnet theorem, the Margulis Lemma
and basic convexity properties of distance functions on metric spaces
with negative curvature imply:

Lemma 2.5. For all A there are positive constants µ′ ≤ µ, L and εL
such that for every complete Riemannian 3-manifold M with pinched
negative curvature −2 ≤ κN ≤ −1

2
and for every π1-injective simplicial

ruled surface φ : S → N with |χ(S)| ≤ A we have:

(1) A geodesic in S which is homotopic to a simple closed curve in
S, does not enter the µ′-cuspidal part of S.

(2) For every point x ∈ S there is a non-homotopically trivial loop
γx based at x which is shorter than L. If moreover x is not
contained in the µ′-cuspidal part of S and S is not a thrice
punctured sphere then the loop γx can be chosen to be simple
and not homotopic into a cusp of S.

(3) If η and η′ are two loops in N based at a point x with lN(η) ≤ L
and lN(η′) ≤ εL then η and η′ generate an abelian subgroup of
π1(N). �

Before moving on observe that simplicial ruled surfaces can be con-
structed in many other situations: the key fact needed is that the
universal cover of the manifold in question is for example CAT(-1).
Compare with [Som06].

3. The geometric part of the proof

Let N̄ be a compression body with exterior boundary ∂extN̄ and
interior N . We start fixing some constants:
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Constants: Let µ′, L and εL be the constants provided
by Lemma 2.5 for A = |χ(∂N̄)|. Let then ε < εL is the
constant provided by Lemma 2.2 for ε0 = εL.

The main result of this section is the following Lemma:

Lemma 3.1. Let ρ0 be a complete hyperbolic metric in N and Γ a
collection of geodesics in (N, ρ0) shorter than ε. Then there is a properly
embedded annulus (A, ∂1A, ∂2A) in (N̄ \N (Γ), ∂N̄ , ∂N (Γ)). Moreover,
∂2A is not the meridian of the corresponding component of N (Γ).

To begin with, observe that the claim is trivial if N̄ is a solid torus.
We assume from now on that this is not the case.

Recall that CΓ is the relative compression body corresponding to the
surface ∂extN̄ in N̄ \ N (Γ). By Lemma 2.1, the claim of Lemma 3.1
holds if and only if it holds in the cover of N determined by CΓ; this
cover is again homeomorphic to the interior of a compression body. In
other words, we may assume without loss of generality that ∂N̄ \N (Γ)
has incompressible boundary.

Let ρ be the complete metric with curvature pinched in [−2,−1
2
] on

N \ Γ provided by Lemma 2.2. We will denote by NΓ the Riemannian
manifold (N \ Γ, ρ) and by NΓ<εL

Γ the union of the components of the
εL-thin part of NΓ which corresponds to the rank-two cusps of NΓ

corresponding to Γ. We will refer to these cusps and the associated
subgroups of π1(NΓ) as the new cusps and new rank-two parabolic
groups. Recall that by construction the metrics ρ and ρ0 coincide on
NΓ \NΓ<εL

Γ .
After these preliminary remarks, we can start with the proof of

Lemma 3.1.

Proof of Lemma 3.1. Assume to begin with that N̄ is not a trivial com-
pression body; equivalently ∂extN̄ is compressible.

By the remark above, we may assume without loss of generality that
∂extN̄ is incompressible in N̄ \ N (Γ). There may be however properly
embedded essential disks which intersect Γ exactly once. Choose a
maximal collection D of disjoint, non-parallel properly embedded disks
D1, . . . , Dk with |Di ∩ Γ| = 1 for all i and let S be a component of
∂extN̄ \ ∂D. A simple parity argument shows that the closure S̄ of
S, with respect to the interior distance of S, has an even number of
boundary components. In particular, S cannot be a trice punctured
sphere. Observe also that if I is an arc in S̄ joining two different com-
ponents of ∂S̄ then one of the components of a regular neighborhood of
I ∪ ∂S̄ is not boundary parallel in S̄ and bounds a properly embedded
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essential disk (D, ∂D) ⊂ (N̄ , S). Summing up, the following holds for
the subsurface S of ∂extN̄ :

(1) S contains an essential, non-boundary parallel, simple closed
curve which is homotopically trivial in N̄ .

(2) S is incompressible in N̄ \ Γ and hence in NΓ.
(3) Every boundary parallel curve in S can be freely homotoped

within N \ Γ into N (Γ). In particular, every boundary parallel
curve in S represents a parabolic element in π1(NΓ).

Moreover, by the maximallity of the collection D we have:

(4) If an essential simple closed curve γ ⊂ S is homotopic in N̄ \
N (Γ) to a curve γ′ ⊂ ∂N (Γ), then γ′ is not the meridian of the
corresponding component of N (Γ).

We claim:

Claim. The surface S contains an essential simple closed curve η
which is homotopic in NΓ to a geodesic η∗ with η∗ ∩NΓ<εL

Γ 6= ∅.
Proof of the claim. By (1), the surface S contains an essential simple
closed curve η which is compressible in N̄ . If η is not homotopic inNΓ to
a geodesic η∗, then η is either homotopically trivial in N̄ \N (Γ), which
is impossible by (2), or η represents a parabolic element in π1(NΓ).
Moreover, this parabolic element must belong to one of the new rank-
two parabolic groups again because η is homotopically trivial in N̄ . In
other words, η is homotopic within N̄ \ N (Γ) to a curve η′ in ∂N (Γ).
By (4), the curve η′ represents a non-trivial multiple of one of the
components of Γ. However, this is not possible since all the components
of Γ are essential in π1(N̄). This proves that η is homotopic in NΓ to
a geodesic η∗.

Since η is homotopically trivial in N̄ , the same is true for η∗ and
hence η∗ cannot be a geodesic in (N, ρ0). In particular, η∗ must enter
the region where the metrics ρ and ρ0 do not coincide. This means
that η∗ ∩NΓ<εL

Γ 6= ∅. This concludes the proof of the claim. �

By (2) and (3), Lemma 2.4 applies. Hence, there is a simplicial
hyperbolic surface φ : S → NΓ realizing η∗. In particular, there is
x ∈ η ⊂ S with φ(x) ∈ NΓ<εL

Γ . By Lemma 2.5, we find a simple loop
γx based at x ∈ η with length, with respect to φ, less than L and
which is not boundary parallel S. Observe that by (2), the loop γx is
homotopically essential in NΓ.

By construction, there is a loop γ′ ⊂ NΓ<εL
Γ based at φ(x), shorter

than εL and representing an essential element in one of the new rank-
two parabolic groups in π1(NΓ). It follows from the last claim of
Lemma 2.5 that the loops γ′ and φ(γx) generate an abelian subgroup
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of π1(NΓ, φ(x)). Hence, γx belongs also to one of the new rank-two
parabolic groups. It follows that the loop γx ⊂ S is freely homotopic
in N̄ \ N (Γ) into ∂N (Γ).

We obtains now from the annulus theorem a properly embedded
annulus (A, ∂1A, ∂2A) in (N̄ \ N (Γ), S, ∂N (Γ)) with ∂1A = γx. It
follows from (4) that ∂2A is not the meridian of the corresponding
component of N (Γ). This concludes the proof of Lemma 3.1 in the
case that N̄ is not a trivial interval bundle.

If N̄ is a trivial interval bundle a similar, in fact simpler, discussion
applies. The same argument applies once we find a curve η in ∂N̄ such
that the corresponding geodesic η∗ in NΓ enters NΓ<εL

Γ . Let (Z, ∂Z) be
a properly embedded essential annulus in (N̄ , ∂N̄) which intersects the
collection Γ essentially and whose soul is homotopic to a geodesic z∗ in
N . Then at least one of the two boundary components of Z cannot be
homotoped to z∗ in the complement of Γ; let η be this component of
∂Z. �

4. The topological part of the proof

After the preparatory work in the last section we prove Theorem 1.1

Theorem 1.1. If N̄ is a compression body then there is a constant
ε which depends only on χ(N̄) such that for every complete hyper-
bolic metric on the interior N of N̄ we have: Every finite collection
of geodesics which are shorter than ε is unlinked with respect to ∂N̄ .

If N̄ has abelian fundamental group then Theorem 1.1 is trivial. We
assume from now on that this is not the case.

Continuing with the same notation as in the previous section, let ρ
be a complete hyperbolic metric on N and let Γ be a finite collection of
closed primitive geodesics in (N, ρ) which are shorter than the constant
ε in the statement of Lemma 3.1.

If Γ′ is a subcollection of Γ and γ is a component of Γ′ then we will
say that γ in unlinked with Γ′ if it can be isotoped into ∂N̄ within
N̄ \ (Γ′ \ γ). Theorem 1.1 follows by induction if we show that every
finite subcollection Γ′ ⊂ Γ contains an unlinked curve. This is what we
intend to do.

We start fixing a subcollection Γ′ of Γ. In order to save notation,
we assume that Γ′ = Γ. Recall that CΓ is the relative compression
body of ∂N̄ in N̄ \ N (Γ). Lemma 2.1 implies that a component γ of
Γ is unlinked with Γ within N̄ if and only if it is within N̄ \ CΓ. In
particular, we may assume as in the proof of Lemma 3.1, that ∂N̄ is
incompressible in N̄ \ N (Γ).
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Lemma 3.1 implies that there is a properly embedded annulus (A, ∂1A, ∂2A)
in (N̄ \ N (Γ), ∂N̄ , ∂N (Γ)). Let γ be the component in Γ with ∂2A ⊂
∂N (γ). Also by Lemma 3.1 we may assume that ∂2A does not represent
a trivial element [∂2A] in π1(N (γ)). If the element [∂2A] is indivisible,
then ∂2A is a longitude of N (γ). This implies that γ and ∂2A are iso-
topic within N (γ). Since ∂2A and ∂1A are isotopic in N̄ \ N (Γ) this
implies that γ is unlinked with Γ. Before going further, remark that
a simple curve on a surface is indivisible; in particular Theorem 1.1 is
proved in the case that N̄ is a trivial interval bundle.

In the case that N̄ has compressible boundary some more work has to
be done. Assume that [∂2A] is divisible and set Γ′ = Γ\γ. We identify
N (γ) with the normal bundle of γ and project ∂2A along the fibers. We
obtain a properly embedded 2-complex (X, ∂X) in (N̄ \N (Γ′), ∂N̄) and
such that X \ (X ∩ N (γ)) = A. Let N (X) be a regular neighborhood
of X in N̄ and observe that the intersection of the boundary ∂N (X) of
N (X) with the interior of N̄ is an open annulus whose closure we denote
by AX . The annulus AX is incompressible and it is ∂-incompressible
because N̄ is not a solid torus and ∂N̄ is incompressible in N̄ \ N (Γ).

We apply now Lemma 3.1 to the collection Γ′ and find a new annulus
(A′, ∂1A

′, ∂2A
′) in (N̄ \ N (Γ′), ∂N̄ , ∂N (Γ′)). Since the annulus AX is

incompressible and ∂-incompressible we observe that the annulus A′

can be chosen to be disjoint of AX , and, a fortiori, disjoint of N (X).
If the curve ∂2A

′ determines a primitive element in the fundamental
group of the corresponding component N (γ′) of N (Γ′) then we deduce
that γ′ is unlinked with Γ and we are done. If this is not the case then
we can repeat the process above again and again and again... At the
end of the day we reduce to the following case: Γ = {γ1, . . . , γk} and
there are properly embedded disjoint annuli (Ai, ∂1Ai, ∂2Ai) in (N̄ \
N (Γ), ∂N̄ , ∂N (Γ)) for i = 1, . . . , k such that the curve ∂2Ai ⊂ ∂N (γi)
represents a divisible element in π1(N (γi)). For each γi we construct a
2-complex Xi as above and choose a meridian m ⊂ ∂N̄ which intersects
∂X1∪· · ·∪∂Xk in a minimal number of points. Applying Dehn’s lemma
we get a properly embedded disk D with boundary m. Up to isotopy
we may assume that the intersection of Xi with D is a collection of
properly embedded graphs with one vertex each. This implies that
there is an embedded segment I ⊂ m whose interior is disjoint of
X1, . . . , Xk and whose endpoints lie both in ∂Xi ∩m for some i. Then,
one of the curves m′ which is obtained from ∂Xi by surgery along I is
simple, essential and, by construction, disjoint of ∂X1 ∪ · · · ∪ ∂Xk and
compressible in N̄ . This contradicts the assumption that N̄ \ N (Γ) is
incompressible and concludes the proof of Theorem 1.1. �



SHORT GEODESICS ARE NOT KNOTTED 11

5. An extension of Theorem 1.1

So far, we have been interested in compact 3-manifolds with bound-
ary. However, it makes also perfect sense to ask if curves are knotted
with respect to embedded surfaces in closed manifolds. In this setting
we have:

Theorem 5.1. For every g there is a constant ε such that the following
holds: If N is a closed hyperbolic 3-manifold, S ⊂ N is a genus g
strongly irreducible Heegaard surface and Γ ⊂ N is the collection of
those primitive geodesics in N which are shorter than ε, then Γ is
unlinked with respect to S.

See [Sch02] for basic facts and definitions about Heegaard splittings
of 3-manifolds.

We will limit ourselves to sketch the proof of Theorem 5.1. This may
be surprising but there is a, from the point of view of the author, very
good reason for this decision. Our original proof of Theorem 5.1, the
one we are going to sketch, follows the lines of the proof of Theorem 1.1.
However, after perhaps one or two moderately interesting observations,
one is forced to choose constant upon constant and the proof becomes
an impenetrable morass of unpleasant details. This morass is what has
kept this paper for four years in the limbo. And it would continue in
the limbo if William Breslin and Joel Hass wouldn’t have developed a
different, and in some sense much more natural, approach to Theorem
5.1. Once this is said, we start the discussion of Theorem 5.1.

Sketch of the proof of Theorem 5.1. The starting point is a theorem of
Pitts and Rubinstein (see [Rub05]) asserting that N contains a minimal
surface F such that one of the following holds:

(1) S is isotopic to F and hence N \F consists of two handlebodies
of genus g, or

(2) F is one sided and S is isotopic to the surface obtained by taking
the boundary of a regular neighborhood of F and attaching
a vertical handle. In this case S \ F is homeomorphic to a
handlebody of genus g − 1.

In both cases, the proof of Theorem 5.1 remains almost the same. For
the sake of simplicity we will consider only case (1). In other words,
we assume that the Heegaard surface S is minimal.

The first source of technical difficulties in the proof of Theorem 5.1
is that the surface S can intersect the collection Γ. Our first goal is to
by-pass this problem.
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Claim 1. There is a constant ε1 depending only on g such that
the following holds. The surface S is isotopic to a surface S ′ with
S ′ ∩ N<ε1 = ∅ by an isotopy which is supported in N<µ. Moreover,
if γ ⊂ N is a geodesic with S ∩ Nγ<ε1 6= ∅, then S ′ ∩ Nγ<µ

2 is an
annulus contained in ∂Nγ<µ

2 and whose soul is homotopically essential
in Nγ<µ

2 .

Recall that µ is the 3-dimensional Margulis constant.

Proof of claim 1. Up to replacing µ by an infinitesimally smaller con-
stant we may assume that S intersects ∂Nγ<µ

2 transversally. In partic-
ular, S ∩ ∂Nγ<µ

2 is a multicurve.
Let H1, H2 be the components of N \ S. If we are lucky, then

Hi ∩ ∂Nγ<µ
2 is incompressible in Hi. If this is the case, a theorem

of Scharlemann [Sch98] asserts that the subsurface S ∩Nγ<µ
2 consists

of a collection of boundary parallel annuli in Nγ<µ
2 together with at

most a component obtained by attaching two of these annuli by an
unknotted handle. The claim follows directly from this description.

However, in general we are not lucky and there is a component Y of
Hi ∩ ∂Nγ<µ

2 such that π1(Y )→ π1(Hi) is not injective. Our goal is to
prove that we can avoid this problem by isotopying S within Nγ<µ.

To begin with we claim that every component Y of Hi ∩ ∂Nγ<µ
2 is

incompressible in Hi \ Nγ<µ
2 . If this fails to be true there is then a

properly embedded essential disk in D in Hi \Nγ<µ
2 with boundary in

Y . By the solution of the Plateau problem, ∂D bounds also a minimal
disk D′ in Hi. The convexity of Nγ<µ

2 implies that D′ is embedded and
contained in Nγ<µ

2 . Since Hi is irreducible, this implies that the two
disks D and D′ bound a ball. Since the surface S cannot be contained
in a ball, this contradicts the assumption that D was essential.

It remains to understand how a component Y of Hi ∩ ∂Nγ<µ
2 can

be compressible in Hi ∩ Nγ<µ
2 . To begin with observe that since S

is a genus g minimal surface in the hyperbolic 3-manifold N , S has
at most area 4π(g − 1) by the Gauß-Bonnet theorem. In particular,
the monotonicity formula proves that there is a constant d such that
every component X of S ∩Nγ<µ

2 whose fundamental group has trivial
image in π1(N) has at most diameter d. There is therefore a constant
ε1 depending only on g such that none of this components intersects
Nγ<ε1 .

The claim follows directly if S ∩ Nγ<ε1 = ∅; assume that this is
not the case. By the preceding discussion this implies that there is
a component of S ∩ Nγ<µ

2 which intersects every properly embedded
essential disk in Nγ<µ

2 . In particular, if (D, ∂D) is a properly embedded
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disk in (Hi ∩Nγ<µ
2 , Hi ∩ ∂Nγ<µ

2 ) then D is boundary parallel in Nγ<µ
2

and hence ∂D bounds a disk D′ ⊂ ∂Nγ<µ
2 . The disks D and D′ bound

a ball B and we can isotope the surface S to a surface S1 within Nγ<µ

in such a way that S1 ∩ Nγ<µ
2 = S ∩ (Nγ<µ

2 \ B). Observe that the
surface S1 has still the property that S1 ∩ ∂Nγ<µ

2 is incompressible in
(N \Nγ<µ

2 ) \ S1 and that a component of S1 ∩Nγ<µ
2 intersects every

essential disk in N
µ
2 . In particular, if ∂Nγ<µ

2 \ S1 is compressible in
Nγ<µ

2 \ S we can repeat this process and get a new surface S2, and
then S3 and so on. This process has to end because at every step we
are reducing the number of components of Si ∩ ∂Nγ<µ

2 .
At the end of the day we obtain a surface S̄ isotopic to S by an

isotopy supported by Nγ<µ, such that S ∩Nγ<ε1 ⊂ S̄ ∩Nγ<µ
2 and such

that ∂Nγ<µ
2 \S̄ is incompressible in N \S̄. In particular, Scharlemann’s

theorem [Sch98] applies to the surface S̄ ∩Nγ<µ
2 . As above, it follows

directly that S̄ is now isotopic within Nγ<µ to a surface S ′ with the
desired properties. �

Assuming that the constant ε in Theorem 5.1 is chosen to be smaller
than the constant ε1 provided by claim 1 we have now that S ′ ∩Γ = ∅;
here S ′ is the surface also provided by claim 1. The surface S ′ divides
the manifold N into two handlebodies H1 and H2. In order to prove
Theorem 5.1 it suffices to prove that Γ ∩ Hi is unknotted in Hi with
respect to ∂Hi for i = 1, 2. In the light of the proof of Theorem 1.1, it
suffices in fact to prove the following claim:

Claim 2. For every subcollection Γ′ ⊂ Γ∩H1 there is a properly em-
bedded annulus (A, ∂1A, ∂2A) in (H1 \N (Γ′), ∂H1, ∂N (Γ′)). Moreover,
∂2A is not the meridian of the corresponding component of N (Γ′).

Proof. If the subcollection Γ′ contains a component γ with S∩Nγ<ε1 6=
∅, then the existence of the desired annulus follows directly from the
last statement in claim 1. Assume from now on that this is not the
case. Then we can isotope S ′ back to the minimal surface S within
N \NΓ′<ε1 . In other words, we can assume that S ′ = S.

In order to prove the claim we intend to use the same strategy as in
the proof of Lemma 3.1. For the sake of concreteness we assume:

Assumption. Every properly embedded essential disk
in H1 intersects the collection Γ′ at least twice.

Fix once and for ever an essential curve η ⊂ ∂H1 which is homotopi-
cally trivial withinH1 and choose a constant ε2 much much smaller than
the constant ε1. Assuming that ε < ε2, we obtain from Lemma 2.2 a
metrically complete metric ρ on H1\Γ′ which coincides with the original

metric outside of HΓ′<ε2
1 . The manifold V = (H1 \ Γ′, ρ) has minimal
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boundary and, in the interior, its sectional curvature is pinched by −2
and −1

2
. A theorem of Alexander, Berg and Bishop [ABB93] implies

then that the universal cover of V is a metrically complete CAT(-1)-
space. In particular, the same arguments as in the proof of Lemma 3.1
apply and show that η is homotopic in V to a geodesics η∗ which has
to enter the part of the manifold where we changed the metric.

Since the universal cover of V is a CAT(-1)-space, the same argu-
ments used to prove Lemma 2.4 yield that there is a simplicial ruled
surface φ : ∂V → V which realizes η. We want now to conclude the
proof of the claim using the same words as in the proof of Lemma 3.1.
There is however a last technical difficulty. Namely that in the proof
of Lemma 3.1 we used Lemma 2.5, which follows from the Margulis
lemma. Unfortunately, in our current situation the Margulis lemma
does not apply because of the presence of the boundary. However, we
are only interested in applying Lemma 2.5 to points and loops con-
tained in a fixed size neighborhood of the part of V where we changed
the metric. If we choose the constant ε2 to be really much much more
smaller than ε1, this part of the manifold is miles far away from the
boundary ∂V of V . It is now not difficult to prove the appropriate
version of Lemma 2.5 and conclude the proof of the claim as in the
final part of the proof of Lemma 3.1.

Before moving on, observe that we can use the same arguments as
in the first part of the proof of Lemma 3.1 to avoid the assumption
above. This concludes the proof of claim 2. �

Using claim 2 and repeating word by word the arguments given in
section 4 we obtain that Γ∩H1 is unlinked in H1. Similarly, we obtain
that Γ ∩H2 is unlinked in H2. Theorem 5.1 follows. �
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