Math 1A Practice Final

You are allowed 1 sheet of notes. Calculators are not allowed. Each question is worth 3 marks, which will only be given for a clear and correct answer in simplified form. There are questions on both sides of the paper.

The questions on this practice final are all exercises in Stewart; the exercise number is given at the end of the question so you can check your answer.

1. Draw the graph of \(y = \sqrt{x} + 3 \). (1.3.17)
2. Prove that \(\lim_{x \to 0} x^2 = 0 \) using the \(\epsilon, \delta \) definition of limit. (2.4.25)
3. Prove that \(e^x = 2 - x \) has at least one real root. (2.5.51)
4. Differentiate \(e^x / x^2 \). (3.2.5)
5. Find the derivative of \(\tan(\cos(x)) \). (3.5.29)
6. Find \(dy/dx \) if \(x^2 y + xy^2 = 3 \). (3.6.9)
7. Find the absolute maximum and absolute minimum values of \(x/(x^2 + 1) \) on \([0,2]\). (4.1.53)
8. Prove that \(2 \sin^{-1}(x) = \cos^{-1}(1 - 2x^2) \) for \(0 \leq x \leq 1 \). (4.2.32)
9. Find \(\lim_{x \to 1^+} \ln(x) \tan(\pi x/2) \). (4.4.43)
10. Find the dimensions of the rectangle of largest area that can be inscribed in an equilateral triangle of side \(L \) if one side of the rectangle lies on the base of the triangle. (4.7.21)
11. Find the point on the line \(y = 4x + 7 \) that is closest to the origin. (4.7.15)
12. Use Newton’s method to find \(30^{1/3} \) to two decimal places. (4.9.11)
13. Find the most general anti-derivative of \(5x^{1/4} - 7x^{3/4} \). (4.10.5)
14. Find \(f \) given that \(f''(x) = 2 - 12x, f(0) = 9, f(2) = 15 \). (4.10.37)
15. Estimate the area under the graph of \(f(x) = 1 + x^2 \) from \(x = -1 \) to \(x = 2 \) using three rectangles and right endpoints. (5.1.5a)
16. Find an expression for the area under the graph of \(f(x) = x \cos(x), 0 \leq x \leq \pi/2 \) as a limit. (5.1.19)
17. Evaluate the integral \(\int_0^\pi (1 + \sqrt{9 - x^2}) \) by interpreting it as an area. (5.2.37)
18. Prove that \(\int_0^{\pi/4} \sin^3(x)dx \leq \int_0^{\pi/4} \sin^2(x)dx \). (5.2.51)
19. Find the derivative of \(g(x) = \int_0^x \sqrt{1+2t} dt \). (5.3.7)
20. Find the derivative of \(y = \int_0^{\pi/2} \sqrt{1+\sin(t)} dt \). (5.3.51)
21. Evaluate the integral \(\int_0^1 (6x^2 - 4x + 5)dx \). (5.4.17)
22. Evaluate the integral \(\int_0^{\pi/4} ((1 + \cos^2(\theta)) / \cos^2(\theta)) d\theta \). (5.4.33)
23. Evaluate the indefinite integral \(\int \frac{1}{\sqrt{1+x^2+2x}} dx \). (5.5.11)
24. Evaluate the indefinite integral \(\int \cot(x) dx \). (5.5.35)
25. Evaluate the definite integral \(\int_0^1 (x - 1)^2 dx \). (5.5.49)
26. Show that \(1/2 + 1/3 + \cdots + 1/n < \ln(n) \). (5.6.3)
27. Find the area enclosed by the curves \(x = 2y^2, x + y = 1 \). (6.1.17)
28. Find the volume of the region obtained by rotating \(y = x^2, 0 \leq x \leq 2, y = 4, x = 0 \) about the \(y \)-axis. (6.2.5)
29. Use the method of cylindrical shells to find the volume of a sphere of radius \(r \). (6.3.43)
30. Find the average value of \((x - 3)^2 \) on \([2, 5]\). (6.5.9a)