1. (a) Taking the complex conjugate of both sides of the equation

\[A(v + iw) = (a + bi)(v + iw), \]

we obtain \(\overline{A}(v - iw) = (a - bi)(v - iw). \) (Recall that if \(z \) and \(w \) are complex numbers, then \(z + w = \overline{z} + \overline{w} \) and \(z\overline{w} = \overline{zw} \), as is easily checked. It follows from the definition of matrix multiplication that these rules also hold when \(z \) and \(w \) are matrices and vectors.) Since \(A \) is real, \(\overline{A} = A \), so we have

\[A(v - iw) = (a - bi)(v - iw). \]

This means that \(v - iw \) is an eigenvector of \(A \) with eigenvalue \(a - bi \). (Since \(v + iw \neq 0 \), the vector \(v - iw \) is also nonzero.)

(b) Suppose \(v, w \) are dependent. Since \(v + iw \) is an eigenvector, \(v \) and \(w \) are not both zero. Suppose first that \(v \neq 0 \). Then \(w = \theta v \) for some real number \(\theta \). So \((1 + i\theta)v \) is an eigenvector of \(A \) with eigenvalue \(a + bi \). Dividing by \(1 + i\theta \), we find that \(v \) is an eigenvector of \(A \) with eigenvalue \(a + bi \). But this is impossible because \(A \) and \(v \) are real. (If \(Av = (a + bi)v \), then the left side of the equation is real, but the right side is not real, since \(v \neq 0 \) and \(b \neq 0 \).) If \(w \neq 0 \), we get a similar contradiction.

(c) We begin with two observations:

i. \(f \) and \(g \) are solutions to the differential equation. (Try it and see.) Hence any linear combination of \(f \) and \(g \) is a solution, since the differential equation is linear and homogeneous.

ii. \(f(0) \) and \(g(0) \) span \(\mathbb{R}^2 \), by part (b).

Now if \(x \) is any solution, write \(x(0) = af(0) + bg(0) \). Then the function \(af + bg \) is a solution to the differential equation with the same initial condition (value at \(t = 0 \)) as \(x \). By the uniqueness theorem from analysis, \(x(t) = af(t) + bg(t) \) for all \(t \).

2. We have

\[\det(A - \lambda I) = (-1)^n(\lambda - \lambda_1) \cdots (\lambda - \lambda_n). \]

(1)
Let’s evaluate \(\det(A - \lambda I) \) using the sum over permutations formula. First, there is the product of the diagonal entries:

\[
(A_{11} - \lambda)(A_{22} - \lambda) \cdots (A_{nn} - \lambda).
\]

Then there are \((n! - 1)\) other terms. In each of these other terms, at most \(n - 2\) diagonal entries appear, and hence no \(\lambda^{n-1}\) terms appear. Reason: if a permutation \(\sigma : \{1, \ldots, n\} \to \{1, \ldots, n\}\) has \(\sigma(i) = i\) for \(n - 1\) numbers \(i\), then \(\sigma\) must be the identity permutation, because if \(\sigma(i) = i\) for all \(i\) except \(i = i_0\), then \(i_0\) is not in the image of \(\sigma\), contradicting the fact that all permutations are surjective. So the coefficient of \(\lambda^{n-1}\) in \(\det(A - \lambda I)\) is the coefficient of \(\lambda^{n-1}\) in the product of the diagonal entries (2), namely

\[
(-1)^{n-1}(A_{11} + A_{22} + \cdots + A_{nn}) = (-1)^{n-1} \text{tr}(A).
\]

Now the coefficient of \(\lambda^{n-1}\) in \((-1)^n(\lambda - \lambda_1) \cdots (\lambda - \lambda_n)\) is

\[
(-1)^{n+1}(\lambda_1 + \cdots + \lambda_n).
\]

So by (1), we have \(\text{tr}(A) = \lambda_1 + \cdots + \lambda_n\).

3. Let \(m\) denote the maximum number of linearly independent eigenvectors of \(A\) one can find. I claim that

\[
\sum_{\lambda \in \mathbb{C}} \dim(V_\lambda) = m.
\]

This claim will imply what we want, since by definition \(A\) is diagonalizable if and only if one can find \(n\) linearly independent eigenvectors. It is obvious that \(\sum_{\lambda \in \mathbb{C}} \dim(V_\lambda) \geq m\), because if we have a bunch of linearly independent eigenvectors, then each of them must live in some \(V_\lambda\), but each \(V_\lambda\) can contain no more than \(\dim(V_\lambda)\) of them.

To prove that

\[
\sum_{\lambda \in \mathbb{C}} \dim(V_\lambda) \leq m,
\]

let \(\lambda_1, \ldots, \lambda_k\) denote the different eigenvalues of \(A\) (throw away repeats), and write \(V_i = V_{\lambda_i}\). Let \(d_i = \dim(V_i)\), and for each \(i\), let
$v_{i,1}, \ldots, v_{i,d_i}$ be a basis for V_i. I claim that the vectors $v_{i,j}$ are linearly independent. Since these vectors are all eigenvectors of A, this will prove (3). To prove independence, suppose

$$\sum_{i=1}^{k} \sum_{j=1}^{d_j} a_{ij} v_{ij} = 0. \quad (4)$$

(We want to show that $a_{ij} = 0$ for all i,j.) For $i = 1, \ldots, k$, define

$$v_i = \sum_{j=1}^{d_j} a_{ij} v_{ij}.$$

Then v_i is an eigenvector of A with eigenvalue λ_i, and equation (4) says that $v_1 + \cdots + v_k = 0$. We know that eigenvectors with different eigenvalues are independent, so $v_i = 0$ for each i. But for a fixed i, the vectors v_{ij} are independent, because we chose them to be a basis for V_i. So $a_{ij} = 0$ for all i,j. This completes the proof.

4. (a) Since A^*A maps \mathbb{R}^m to itself, to show that A^*A is invertible, it is enough to show that A^*A is injective. Suppose $x \in \mathbb{R}^m$ and $A^*Ax = 0$. (We need to show that $x = 0$.) Taking the inner product with x, we obtain

$$0 = \langle A^*Ax, x \rangle = \langle Ax, Ax \rangle = |Ax|^2.$$

It follows that $Ax = 0$. But we assumed that the columns of the matrix A are independent, so A is injective. Hence $x = 0$.

(b) Let $v \in \mathbb{R}^n$; we need to show that $Pv = A(A^*A)^{-1}A^*v$. Since $Pv \in \text{Im}(A)$, we can write $Pv = Ax$ for some $x \in \mathbb{R}^m$. Now $v - Pv$ is orthogonal to any vector in $\text{Im}(A)$, that is to any vector of the form Ay with $y \in \mathbb{R}^m$. So

$$\langle v - Ax, Ay \rangle = 0$$

for all $y \in \mathbb{R}^m$. Equivalently,

$$\langle A^*v - A^*Ax, y \rangle = 0$$

for all $y \in \mathbb{R}^m$. It follows that $A^*v - A^*Ax = 0$. Since A^*A is invertible, we can apply $(A^*A)^{-1}$ to this equation to obtain

$$x = (A^*A)^{-1}A^*v.$$

Since $Pv = Ax$, this proves what we wanted.