
2. Let A be an $m \times n$ real matrix, and let $R(A) \subset \mathbb{R}^n$ denote the span of the rows of A. Show that $\text{Ker}(A) = R(A)^\perp$.

3. Let $A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{pmatrix} : \mathbb{R}^4 \to \mathbb{R}^4$. Find bases for $\text{Ker}(A)$, $\text{Ker}(A)^\perp$, $\text{Im}(A)$, and $\text{Im}(A)^\perp$.

4. Let $V = \{ x \in \mathbb{R}^4 \mid x_1 = x_2 \text{ and } x_3 = x_4 \}$. Find a basis for V, and find the orthogonal projection (with respect to the standard inner product on \mathbb{R}^4) of $(1, 2, 3, 4)$ onto V.

5. Let v_1, \ldots, v_n be nonzero vectors in an inner product space. Show that if $v_i \perp v_j$ for all $i \neq j$, then v_1, \ldots, v_n are independent.

6. A subset S of a vector space V is called an affine subspace if there exists a subspace $W \subset V$ and a vector $v \in V$ such that $x \in S \iff x - v \in W$. (That is, S is “parallel” to the subspace W, but might not contain 0.)

 (a) Let A be an $m \times n$ real matrix and $b \in \mathbb{R}^m$. Show that the set of solutions x to the equation $Ax = b$ is an affine subspace of \mathbb{R}^n, if it is nonempty.

 (b) Show that a nonempty subset $S \subset V$ is an affine subspace if and only if the following condition holds: if $x, y \in S$ and λ is a scalar, then $\lambda x + (1 - \lambda)y \in S$. (What does this condition mean geometrically?)

7. Let V, W be subspaces of \mathbb{R}^n of dimension k, l respectively. Show that if $k + l \geq n$, then $\dim(V \cap W) \geq n - k - l$.

8. (Extra credit) Let v_1, \ldots, v_k be independent vectors in \mathbb{R}^n, and let w_1, \ldots, w_{n-k} be independent vectors in \mathbb{R}^m. Does there necessarily exist an $m \times n$ matrix whose kernel is spanned by the v_i's and whose image is spanned by the w_j's? If so, how do you find it? Try an example.