
Introduction to mathematical arguments

(background handout for courses requiring proofs)

by Michael Hutchings

A mathematical proof is an argument which convinces other people that
something is true. Math isn’t a court of law, so a “preponderance of the
evidence” or “beyond any reasonable doubt” isn’t good enough. In principle
we try to prove things beyond any doubt at all — although in real life people
make mistakes, and total rigor can be impractical for large projects. (There
are also some subtleties in the foundations of mathematics, such as Gödel’s
theorem, but never mind.)

Anyway, there is a certain vocabulary and grammar that underlies all
mathematical proofs. The vocabulary includes logical words such as ‘or’,
‘if’, etc. These words have very precise meanings in mathematics which can
differ slightly from everyday usage. By “grammar”, I mean that there are
certain common-sense principles of logic, or proof techniques, which you can
use to start with statements which you know and deduce statements which
you didn’t know before.

These notes give a very basic introduction to the above. One could easily
write a whole book on this topic; see for example How to read and do proofs:
an introduction to mathematical thought process by D. Solow). There are
many more beautiful examples of proofs that I would like to show you; but
this might then turn into an introduction to all the math I know. So I have
tried to keep this introduction brief and I hope it will be a useful guide.

In §1 we introduce the basic vocabulary for mathematical statements.
In §2 and §3 we introduce the basic principles for proving statements. We
provide a handy chart which summarizes the meaning and basic ways to
prove any type of statement. This chart does not include uniqueness proofs
and proof by induction, which are explained in §3.3 and §4. Apendix A
reviews some terminology from set theory which we will use and gives some
more (not terribly interesting) examples of proofs.
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The following was selected and cobbled together from piles of old notes,
so it is a bit uneven; and the figures are missing, sorry. If you find any
mistakes or have any suggestions for improvement please let me know.

1 Statements and logical operations

In mathematics, we study statements, sentences that are either true or false
but not both. For example,

6 is an even integer

and

4 is an odd integer

are statements. (The first one is true, and the second is false.) We will use
letters such as ‘p’ and ‘q’ to denote statements.

1.1 Logical operations

In arithmetic, we can combine or modify numbers with operations such as
‘+’, ‘×’, etc. Likewise, in logic, we have certain operations for combining
or modifying statements; some of these operations are ‘and’, ‘or’, ‘not’, and
‘if. . . then’. In mathematics, these words have precise meanings, which are
given below. In some cases, the mathematical meanings of these words differ
slightly from, or are more precise than, common English usage.

Not. The simplest logical operation is ‘not’. If p is a statement, then ‘not
p’ is defined to be

• true, when p is false;

• false, when p is true.

The statement ‘not p’ is called the negation of p.

And. If p and q are two statements, then the statement ‘p and q’ is defined
to be

• true, when p and q are both true;

• false, when p is false or q is false or both p and q are false.
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Or. If p and q are two statements, then the statement ‘p or q’ is defined to
be

• true, when p is true or q is true or both p and q are true;

• false, when both p and q are false.

In English, sometimes “p or q” means that p is true or q is true, but not
both. However, this is never the case in mathematics. We always allow for
the possibility that both p and q are true, unless we explicitly say otherwise.

If. . . then. If p and q are statements, then the statement ‘if p then q’ is
defined to be

• true, when p and q are both true or p is false;

• false, when p is true and q is false.

We sometimes abbreviate the statement ‘if p then q’ by ‘p implies q’, or
‘p ⇒ q’. If p is false, then we say that p ⇒ q is vacuously true.

If and only if. If p and q are statements, then the statement ‘p if and only
if q’ is defined to be

• true, when p and q are both true or both false;

• false, when one of p, q is true and the other is false.

The symbol for ‘if and only if’ is ‘ ⇐⇒ ’. When p ⇐⇒ q is true, we say
that p and q are equivalent.

1.2 Quantifiers

Consider the sentence

x is even.

This is not what we have been calling a statement; we can’t say whether it
is true or false, because we don’t know what x is.

There are three basic ways to turn this sentence into a statement. The
first is to say exactly what x is:
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When x = 6, x is even.

The following are two more interesting ways of turning the sentence into a
statement:

For every integer x, x is even.

There exists an integer x such that x is even.

The phrases ‘for every’ and ‘there exists’ are called quantifiers.
As an example of the use of quantifiers, we can give precise definitions of

the terms ‘even’ and ‘odd’.

Definition. An integer x is even if there exists an integer y such that
x = 2y.

(The ‘if’ in this definition is really an ‘if and only if’. Mathematical
literature tends to misuse the word ‘if’ this way when making definitions,
and we will do this too.)

Definition. An integer x is odd if there exists an integer y such that
x = 2y + 1.

Notation for quantifiers. We will call a sentence such as ‘x is even’
that depends on the value of x a “statement about x”. We can denote the
sentence ‘x is even’ by ‘P (x)’; then P (5) is the statement ‘5 is even’, P (72)
is the statement ‘72 is even’, and so forth.

If S is a set and P (x) is a statement about x, then the notation

(∀x ∈ S) P (x)

means that P (x) is true for every x in the set S. (See Appendix A for a
discussion of sets.) The notation

(∃x ∈ S) P (x)

means that there exists at least one element x of S for which P (x) is true.
We denote the set of integers by ‘Z’. Using the above notation, the

definition of ‘x is even’ given previously becomes

(∃y ∈ Z) x = 2y.
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Of course, this is still a statement about x. We can turn this into a statement
by using a quantifier to say what x is. For instance, the statement

(∀x ∈ Z) (∃y ∈ Z) x = 2y

says that all integers are even. (This is false.) The statement

(∃x ∈ Z) (∃y ∈ Z) x = 2y

says that there exists at least one even integer. (This is true.)
The sentence

(∃y ∈ Z) x = 2y + 1

means that x is odd. The statement

(∀x ∈ Z)
(
(∃y ∈ Z) x = 2y

)
or
(
(∃y ∈ Z) x = 2y + 1

)
says that every integer is even or odd.

The order of quantifiers is very important; changing the order of the
quantifiers in a statement will often change the meaning of a statement. For
example, the statement

(∀x ∈ Z) (∃y ∈ Z) x < y

is true. However the statement

(∃y ∈ Z) (∀x ∈ Z) x < y

is false.

1.3 How to negate statements.

We often need to find the negations of complicated statements. How do
you deny that something is true? The rules for doing this are given in the
right-hand column of Table 1.

For example, suppose we want to negate the statement

(∀x ∈ Z)
(
(∃y ∈ Z) x = 3y + 1

)
⇒
(
(∃y ∈ Z) x2 = 3y + 1

)
.

First, we put a ‘not’ in front of it:

not (∀x ∈ Z)
(
(∃y ∈ Z) x = 3y + 1

)
⇒
(
(∃y ∈ Z) x2 = 3y + 1

)
.
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Using the rule for negating a ‘for every’ statement, we get

(∃x ∈ Z) not

((
(∃y ∈ Z) x = 3y + 1

)
⇒
(
(∃y ∈ Z) x2 = 3y + 1

))
.

Using the rule for negating an ‘if. . . then’ statement, we get

(∃x ∈ Z)
(
(∃y ∈ Z) x = 3y + 1

)
and not (∃y ∈ Z) x2 = 3y + 1.

Using the rule for negating a ‘there exists’ statement, we get

(∃x ∈ Z)
(
(∃y ∈ Z) x = 3y + 1

)
and (∀y ∈ Z) x2 6= 3y + 1.

2 How to prove things

Let us start with a silly example. Consider the following conversation be-
tween mathematicians Alpha and Beta.

Alpha: I’ve just discovered a new mathematical truth!

Beta: Oh really? What’s that?

Alpha: For every integer x, if x is even, then x2 is even.

Beta: Hmm. . . are you sure that this is true?

Alpha: Well, isn’t it obvious?

Beta: No, not to me.

Alpha: OK, I’ll tell you what. You give me any integer x, and I’ll show you that
the sentence ‘if x is even, then x2 is even’ is true. Challenge me.

Beta (eyes narrowing to slits): All right, how about x = 17.

Alpha: That’s easy. 17 is not even, so the statement ‘if 17 is even, then 172 is
even’ is vacuously true. Give me a harder one.

Beta: OK, try x = 62.

Alpha: Since 62 is even, I guess I have to show you that 622 is even.

Beta: That’s right.

6



Alpha (counting on her fingers furiously): According to my calculations, 622 =
3844, and 3844 is clearly even. . .

Beta: Hold on. It’s not so clear to me that 3844 is even. The definition says
that 3844 is even if there exists an integer y such that 3844 = 2y. If you
want to go around saying that 3844 is even, you have to produce an integer
y that works.

Alpha: How about y = 1922.

Beta: Yes, you have a point there. So you’ve shown that the sentence ‘if x is
even, then x2 is even’ is true when x = 17 and when x = 62. But there are
billions of integers that x could be. How do you know you can do this for
every one?

Alpha: Let x be any integer.

Beta: Which integer?

Alpha: Any integer at all. It doesn’t matter which one. I’m going to show you,
using only the fact that x is an integer and nothing else, that if x is even
then x2 is even.

Beta: All right. . . go on.

Alpha: So suppose x is even.

Beta: But what if it isn’t?

Alpha: If x isn’t even, then the statement ‘if x is even, then x2 is even’ is
vacuously true. The only time I have anything to worry about is when x is
even.

Beta: OK, so what do you do when x is even?

Alpha: By the definition of ‘even’, we know that there exists at least one integer
y such that x = 2y.

Beta: Only one, actually.

Alpha: I think so. Anyway, let y be an integer such that x = 2y. Squaring both
sides of this equation, we get x2 = 4y2. Now to prove that x2 is even, I have
to exhibit an integer, twice which is x2.

Beta: Doesn’t 2y2 work?
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Alpha: Yes, it does. So we’re done.

Beta: And since you haven’t said anything about what x is, except that it’s an
integer, you know that this will work for any integer at all.

Alpha: Right.

Beta: OK, I understand now.

Alpha: So here’s another mathematical truth. For every integer x, if x is odd,
then x2 is. . .

This dialogue illustrates several important points. First, a proof is an
explanation which convinces other mathematicians that a statement is true.
A good proof also helps them understand why it is true. The dialogue also
illustrates several of the basic techniques for proving that statements are
true.

Table 1 summarizes just about everything you need to know about logic.
It lists the basic ways to prove, use, and negate every type of statement. In
boxes with multiple items, the first item listed is the one most commonly
used. Don’t worry if some of the entries in the table appear cryptic at first;
they will make sense after you have seen some examples.

In our first example, we will illustrate how to prove ‘for every’ statements
and ‘if. . . then’ statements, and how to use ‘there exists’ statements. These
ideas have already been introduced in the dialogue.

Example. Write a proof that for every integer x, if x is odd, then x + 1 is
even.

This is a ‘for every’ statement, so the first thing we do is write

Let x be any integer.

We have to show, using only the fact that x is an integer, that if x is odd
then x + 1 is even. So we write

Suppose x is odd.

We must somehow use this assumption to deduce that x + 1 is even. Recall
that the statement ‘x is odd’ means that there exists an integer y such that
x = 2y + 1. Also, we can give this integer y any name we like; so to avoid
confusion below, we are going to call it ‘w’. So to use the assumption that x
is odd, we write
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Statement Ways to Prove it Ways to Use it How to Negate it
• Prove that p is true. • p is true.

p • Assume p is false, and • If p is false, you have not p
derive a contradiction. a contradiction.

p and q • Prove p, and • p is true. (not p) or (not q)
then prove q. • q is true.

• Assume p is false, and • If p ⇒ r and q ⇒ r
deduce that q is true. then r is true.

p or q • Assume q is false, and • If p is false, then (not p) and (not q)
deduce that p is true. q is true.

• Prove that p is true. • If q is false, then
• Prove that q is true. p is true.
• Assume p is true, and • If p is true, then

p ⇒ q deduce that q is true. q is true. p and (not q)
• Assume q is false, and • If q is false, then

deduce that p is false. p is false.
• Prove p ⇒ q, and

p ⇐⇒ q then prove q ⇒ p. • Statements p and q (p and (not q)) or
• Prove p and q. are interchangeable. ((not p) and q)
• Prove (not p) and (not q).
• Find an x in S for • Say “let x be an ele-

(∃x ∈ S) P (x) which P (x) is true. ment of S such that (∀x ∈ S) not P (x)
P (x) is true.”

• Say “let x be any ele- • If x ∈ S, then P (x)
(∀x ∈ S) P (x) ment of S.” Prove is true. (∃x ∈ S) not P (x)

that P (x) is true. • If P (x) is false, then
x /∈ S.

Table 1: Logic in a nutshell.
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Let w be an integer such that x = 2w + 1.

Now we want to prove that x + 1 is even, i.e., that there exists an integer y
such that x + 1 = 2y. Here’s how we do it:

Adding 1 to both sides of this equation, we get x + 1 = 2w + 2.
Let y = w + 1; then y is an integer and x + 1 = 2y, so x + 1 is
even.

We have completed our proof, so we can write

Q.E.D.

which stands for something in Latin which means “that which was to be
shown”. A common typographical convention is to draw a box instead:

2

In the next example, we will illustrate the use of ‘and’ statements.

Example. Write a proof that for every integer x and for every integer y, if
x is odd and y is odd then xy is odd.

(Note that the first ‘and’ in this statement is not a logical ‘and’; it is just
there to smooth things out when we translate the symbols

(∀x ∈ Z) (∀y ∈ Z)

into English.)
First, following the standard procedure for proving statements that begin

with ‘for every’, we write

Let x and y be any integers.

We need to prove that if x is odd and y is odd then xy is odd. Following the
standard procedure for proving ‘if. . . then’ statements, we write

Suppose x is odd and y is odd.

This is an ‘and’ statement. We can use it to conclude that x is odd. We
can then use the statement that x is odd to give us an integer w such that
x = 2w + 1. In our proof, we write

Since x is odd, choose an integer w such that x = 2w + 1.
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We can also use our ‘and’ statement to conclude that y is odd. We write

Since y is odd, choose an integer v such that y = 2v + 1.

Now we need to show that xy is odd. We can do this as follows:

Then xy = 4vw + 2v + 2w + 1. Let z = 2vw + v + w; then
xy = 2z + 1, so xy is odd. 2

Next, we will illustrate how to prove and use ‘if and only if’ statements.
The proof of a statement of the form p ⇐⇒ q usually looks like this:

(⇒) [proof that p ⇒ q]

(⇐) [proof that q ⇒ p]

2

Example. Write a proof that for every integer x, x is even if and only if
x + 1 is odd.

Let x be any integer. We must show x is even if and only if x+1
is odd.

(⇒) Suppose x is even. Choose an integer y such that x = 2y.
Then y is also an integer such that x + 1 = 2y + 1, so x + 1 is
odd.

(⇐) Suppose x+1 is odd. Choose an integer y such that x+1 =
2y + 1. Then y is also an integer such that x = 2y, so x is even.
2

Now we can conclude that for any integer x, the statements ‘x is even’
and ‘x + 1 is odd’ are interchangeable; this means that we can take any
true statement and replace some occurrences of the phrase ‘x is even’ with
the phrase ‘x + 1 is odd’ to get another true statement. For example, math-
ematicians Alpha and Beta proved in the dialogue that

For every integer x, if x is even then x2 is even

So the following is also a true statement:

For every integer x, if x + 1 is odd then x2 is even.
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Remark. All the statements we are proving here about even and odd num-
bers can be proved more simply using some basic facts about mod 2 arith-
metic. However our aim here is to illustrate the fundamental rules of math-
ematical proofs by giving unusually detailed proofs of some facts which you
probably already know.

Exercises.

1. Prove the following statements:

(a) For every integer x, if x is even, then for every integer y, xy is even.

(b) For every integer x and for every integer y, if x is odd and y is odd
then x + y is even.

(c) For every integer x, if x is odd then x3 is odd.

What is the negation of each of these statements?

2. Prove that for every integer x, x + 4 is odd if and only if x + 7 is even.

3. Figure out whether the statement we negated in §1.3 is true or false, and
prove it (or its negation).

4. Prove that for every integer x, if x is odd then there exists an integer y such
that x2 = 8y + 1.

3 More proof techniques

3.1 Proof by cases

We will consider next how to make use of ‘or’ statements. The first entry in
the box in the table is what we call “proof by cases”. This is best explained
by an example.

Example. For every integer x, the integer x(x + 1) is even.

Proof. Let x be any integer. Then x is even or x is odd. (Some people might
consider this too obvious to require a proof, but a proof can be given using
the Division Theorem, see §4.2, which here tells us that every integer can be
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divided by 2 with a remainder of 0 or 1.) We will prove that in both of these
cases, x(x + 1) is even.

Case 1: suppose x is even. Choose an integer k such that x = 2k. Then
x(x+1) = 2k(2k+1). Let y = k(2k+1); then y is an integer and x(x+1) = 2y,
so x(x + 1) is even.

Case 2: suppose x is odd. Choose an integer k such that x = 2k + 1.
Then x(x+1) = (2k+1)(2k+2). Let y = (2k+1)(k+1); then x(x+1) = 2y,
so x(x + 1) is even. 2

3.2 Proof by contradiction

Notice that near the top of the chart, we mention that one can prove a
statement by assuming that it is false and deducing a contradiction. This is
a useful and fun technique called “proof by contradiction”.

Here is how it works. Suppose that we want to prove that the statement
P is true. We begin by assuming that P is false. We then try to deduce a
contradiction, i.e. some statement Q which we know is false. If we succeed,
then our assumption that P is false must be wrong! So P is true, and our
proof is finshed.

We will give two examples involving rational numbers. Recall that a real
number x is rational if there exist integers p and q with q 6= 0 such that
x = p/q. If x is not rational it is called irrational.

Example. Prove that if x is rational and y is irrational, then x + y is
irrational. (More precisely we should perhaps include quantifiers and say
“for all rational numbers x and all irrational numbers y, the sum x + y is
irrational”, but you know what I mean.)

Let us assume the negation of what we are trying to prove: namely that
there exist a rational number x and an irrational number y such that x + y
is rational. We observe that

y = (x + y)− x.

Now x+y and x are rational by assumption, and the difference of two rational
numbers is rational (since p/q− p′/q′ = (pq′− qp′)/(qq′)). Thus y is rational.
But that contradicts our assumptions. So our assumptions cannot be right!
So if x is rational and y is irrational then x + y is irrational. 2
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Example. Prove that
√

2 is irrational.

Suppose
√

2 is rational, i.e.
√

2 = a/b for some integers a and b with b 6= 0.
We can assume that b is positive, since otherwise we can simply change the
signs of both a and b. (Then a is positive too, although we will not need this.)
Let us choose integers a and b with

√
2 = a/b, such that b is positive and

as small as possible. (We can do this by the Well-Ordering Principle, which
says that every nonempty set of positive integers has a smallest element; see
§4.2.)

Squaring both sides of the equation
√

2 = a/b and multiplying both sides
by b2, we obtain a2 = 2b2. Since a2 is even, it follows that a is even. Thus
a = 2k for some integer k, so a2 = 4k2, and hence b2 = 2k2. Since b2 is
even, it follows that b is even. Since a and b are both even, a/2 and b/2 are
integers with b/2 > 0, and

√
2 = (a/2)/(b/2), because (a/2)/(b/2) = a/b.

But we said before that b is as small as possible, so this is a contradiction.
Therefore

√
2 cannot be rational. 2

This particular type of proof by contradiction is known as infinite de-
scent, which is used to prove various theorems in classical number theory. If
there exist positive integers a and b such that a/b =

√
2, then the above proof

shows that we can find smaller positive integers a and b with the same prop-
erty, and repeating this process, we will get an infinite descending sequence
of positive integers, which is impossible.

Recall that in the above proof, we said

We can assume that b is positive, since otherwise we can simply
change the signs of both a and b.

Another way to write this would be

Without loss of generality, b > 0.

“Without loss of generality” means that there are two or more cases (in this
proof the cases when b > 0 and b < 0), but considering just one particular
case is enough to prove the theorem, because the proof for the other case or
cases works the same way.

3.3 Uniqueness proofs

Suppose we want to prove that the object x satisfying a certain property, if
it exists, is unique. There is a standard strategy for doing this. We let x
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and y be two objects both satisfying the given property, and we then try to
deduce that x = y.

A classic example of a uniqueness proof comes from group theory. Recall
that a group is a set G together with a rule for multiplying any two elements
of G to obtain another element of G. The definition of a group requires that
this multiplication is associative (though not necessarily commutative), and
that there is an identity element e ∈ G such that

(∀x ∈ G) ex = xe = x. (1)

(Also any element x has an inverse x−1 such that xx−1 = x−1x = e.)

Example. Prove that the identity element e ∈ G satisfying (1) is unique.

Let e1, e2 be elements of G satisfying e1x = xe1 = x and e2x = xe2 = x
for all x ∈ G. We will show that e1 = e2. The trick is to multiply e1 and
e2 together in order to obtain an “identity crisis”. Since e1 is an identity
element, we have e1e2 = e2. But since e2 is an identity element, we have
e1e2 = e1. Thus e1 = e2. 2

Exercise. Prove that the inverse of a given element x ∈ G is unique.

4 Proof by induction

Mathematical induction is a useful technique for proving statements about
natural numbers.

4.1 The principle of mathematical induction

Let P (n) be a statement about the positive integer n. For example, perhaps

P (n) = “n is a multiple of 5.”

or
P (n) = “If n is even, then n2 is divisible by 4.”

Suppose we want to show that P (n) is true for every positive integer n. How
can we do this? One way is to prove the following two statements:
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(a) P (1) is true.

(b) For every n ∈ Z+, if P (n) is true, then P (n + 1) is true.

Why is this sufficient? Well, suppose we have proved (a) and (b) above.
Then we know that P (1) is true. Since P (1) ⇒ P (2), we know that P (2) is
true. Since P (2) ⇒ P (3), we know that P (3) is true. Since P (3) ⇒ P (4),
we know that P (4) is true. We can continue this indefinitely, so we see that
P (n) is true for every positive integer n.

By analogy, suppose we have a chain of dominoes standing on end. If we
push over the first domino, and if each domino knocks over the next domino
as it falls, then eventually every domino will fall. This reasoning is called
the principle of mathematical induction. In fact this principle can be
regarded as one of the axioms defining the natural numbers. Let us state it
precisely.

Principle of Mathematical Induction (PMI). Let P (n) be a statement
about the positive integer n. If the following are true:

1. P (1),

2. (∀n ∈ Z+) P (n) ⇒ P (n + 1),

then (∀n ∈ Z+) P (n).

A proof by induction consists of two parts. In the first part, called
the base case, we show that P (1) is true. In the second part, called the
inductive step, we assume that n is a positive integer such that P (n) is true,
(although we don’t know what n is), and we deduce that P (n + 1) is true.
The assumption that P (n) is true is called the inductive hypothesis. (This
may look like circular reasoning, but it is not! Think about the dominoes
again.)

Example. For every positive integer n,

1 + 2 + · · ·+ n =
n(n + 1)

2
.

Proof. We will use induction on n.
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Base case: When n = 1, we have1 + · · · + n = 1, and n(n + 1)/2 =
1 · 2/2 = 1.

Inductive step: Suppose that for a given n ∈ Z+,

1 + 2 + · · ·+ n =
n(n + 1)

2
. (inductive hypothesis)

Our goal is to show that

1 + 2 + · · ·+ n + (n + 1) =
[n + 1]([n + 1] + 1)

2
,

i.e.,

1 + 2 + · · ·+ n + (n + 1) =
(n + 1)(n + 2)

2
.

Adding (n + 1) to both sides of the inductive hypothesis, we get

1 + 2 + · · ·+ n + (n + 1) =
n(n + 1)

2
+ (n + 1)

=
n(n + 1)

2
+

2(n + 1)

2

=
(n + 2)(n + 1)

2
.

2

Recall that if a and b are real numbers and ab = 0, then a = 0 or b = 0.
Using induction, we can extend this to the following:

Example. If a1, a2, . . . , an are real numbers and a1a2 · · · an = 0, then ai = 0
for some i with 1 ≤ i ≤ n.

Proof. We will use induction on n.

Base case: For n = 1, this is trivial.

Inductive step: Suppose the statement is true for n. We wish to show
that the statement is true for n+1. Suppose a1, . . . , an, an+1 are real numbers
such that a1a2 · · · anan+1 = 0. Since (a1 · · · an)an+1 = 0, it follows that
a1 · · · an = 0 or an+1 = 0.
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If a1 · · · an = 0, then by inductive hypothesis, ai = 0 for some i with
1 ≤ i ≤ n, and we are done. If an+1 = 0, we are also done. 2

In mathematical writing, simple induction proofs like this are often omit-
ted. For example, one might write “since the product of two nonzero real
numbers is nonzero, it follows by induction that the product of n nonzero
real numbers is nonzero”. However induction is an essential tool for breaking
down more complicated arguments into simple steps.

There are many (equivalent) variants of the principle of induction. For
example, one can start at 0 instead of 1, to prove that some statement is true
for all nonnegative integers. One can also prove a statement about several
positive integers by doing induction on one variable at a time. Another
important variant is the following:

Strong induction. Let P (n) be a statement about the positive integer n.
Suppose that for every positive integer n,

(*) If P (n′) is true for all positive integers n′ < n, then P (n) is true.

Then P (n) is true for all positive integers n.

Note that no base case is needed. To see this, suppose we have proved
(*) for all positive integers n. Putting n = 1 into (*), we deduce that P (1)
is true, since the statement “P (n′) is true for all positive integers n′ < 1” is
vacuously true. Putting n = 2 into (*) we deduce that P (2) is true. Thus
P (1) and P (2) are true, so putting n = 3 into (*) we deduce that P (3) is
true. And so on.

To give an example of proof by strong induction, recall that an integer
p > 1 is prime if it has no integer divisors other than 1 and p.

Theorem. Any integer n > 1 can be expressed as a product of prime
numbers.

Proof. We use strong induction on n (starting at 2 instead of 1). Let n > 1
be an integer and suppose that every integer n′ with 2 ≤ n′ < n is a product
of primes. We need to show that n is a product of primes. If n is prime then
n is the product of one prime number (itself) and we are done. If n is not
prime then n is divisible by an integer a with 1 < a < n, so n = ab where a
and b are integers with 1 < a, b < n. By inductive hypothesis, a and b are
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both products of primes, and since n = ab, it follows that n is a product of
primes. 2

4.2 The Well-Ordering Principle

If S is a set of integers, then a least element of S is an element x ∈ S such
that x ≤ y for all y ∈ S. The following may seem obvious.

Well-Ordering Principle (WOP). Any nonempty set of positive inte-
gers has a least element.

However, it is not true for negative integers, rational numbers, or real
numbers. For example, {x ∈ R | x > 0} has no least element.

The well-ordering principle is equivalent to the principle of mathematical
induction. To see this, we will first prove that the principle of induction
implies the well-ordering principle. In other words, we will prove WOP by
induction.

PMI⇒WOP. Suppose PMI is true. We will prove WOP. Let S be a set
of positive integers with no least element. We will show that S is empty. To
do this, we will prove by induction on n that for every positive integer n, S
does not contain any numbers less than n.

Base case: S cannot contain any numbers smaller than 1, since S is
a set of positive integers.

Inductive step: Suppose S does not contain any numbers smaller than
n. We wish to show that S does not contain any numbers smaller than n+1.
It is enough to show that n /∈ S. If n ∈ S, then n is a least element of S,
since S contains no numbers less than n. But we assumed that S has no
least element, so this is a contradiction. 2

WOP⇒PMI. Suppose WOP is true. We will prove PMI. Let P (n) be
a statement about the positive integer n. Suppose that P (1) is true, and
suppose for all n, P (n) ⇒ P (n + 1). We must show that for all n, P (n) is
true. Suppose to the contrary that P (n) is false for some n. Let

S := {n ∈ Z+ | P (n) is false}.
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By assumption this set is nonempty, so it contains a least element n0. Now
n0 6= 1, because we know that P (1) is true. So n0 > 1. Then n0 − 1 is a
positive integer, and since it is smaller than n0, it is not in the set S. Thus
P (n0 − 1) is true. But P (n0 − 1) implies P (n0), so P (n0) is true. Thus
n0 /∈ S, a contradiction. 2

There are some variants of the well-ordering principle which are easily seen
to be equivalent to it. For example any nonempty set of integers (possibly
negative) with a lower bound has a least element, and any nonempty set of
integers with an upper bound has a largest element. (A lower bound on
S is a number L such that x ≥ L for all x ∈ S. An upper bound on S is
a number U such that x ≤ U for all x ∈ S. A largest element of S is an
element x ∈ S such that x ≥ y for all y ∈ S.)

A useful application of the well-ordering principle is the following:

Division theorem. If a and b are integers with b > 0, then there exist
unique integers q and r such that a = qb + r and 0 ≤ r < b.

(The integer q is the “quotient” when a is divided by b, and r is the
remainder. In elementary school you learned an algorithm for finding q
and r. But let’s now prove that they exist and are unique.)

Proof. The idea is that we want q to be the largest integer such that a ≥ qb.
So let

S := {q ∈ Z | a− qb ≥ 0}.

This set is nonempty; for example −|a| ∈ S since b > 0. It also has an upper
bound, since a − qb ≥ 0 implies q ≤ |a|. So by the well ordering principle,
S contains a largest element q. Let r = a− qb. Then r ≥ 0 by definition of
S. Also r < b, or else we would have a− (q + 1)b = r − b ≥ 0, so q + 1 ∈ S,
contradicting the fact that q is the largest element of S. So q and r exist.

Uniqueness is pretty easy to see; if q is any smaller then the remainder
will be too big. But let us prove uniqueness using our standard strategy.
Suppose a = qb + r = q′b + r′ with 0 ≤ r, r′ < b. Subtracting we obtain
(q−q′)b = r′−r. We must have q−q′ = 0, because there is no way to obtain
a nonzero multiple of b by subtracting two elements of the set {0, 1, . . . , b−1},
because the largest difference between any two elements of this set is b − 1.
Since q − q′ = 0, it follows that r − r′ = 0 also. This proves uniqueness. 2

Exercises.
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1. Fix a real number x 6= 1. Show that for every positive integer n,

1 + x + x2 + . . . + xn =
xn+1 − 1

x− 1
.

2. Guess a formula for

1
1 · 2

+
1

2 · 3
+ · · ·+ 1

n(n + 1)

and prove it by induction. Hint: Compute the above expression for some
small values of n.

3. Show that a 2n×2n checkerboard with one square removed can be tiled with
L-triominoes. (An L-triomino is a shape consisting of three squares joined
in an ‘L’-shape.)

4. Show that the smallest element of a nonempty set of positive integers is
unique.

A Sets

In this appendix we review some (but not all) basic concepts of set theory,
and we give some simple examples of mathematical proofs.

A.1 Sets

Intuitively, a set is a collection of objects. Some commonly used sets are:

R = the set of real numbers,

Q = the set of rational numbers,

Z = the set of integers,

N = the set of natural numbers (nonnegative integers),

Z+ = the set of positive integers.

One can describe a set by listing, in curly braces, all the objects that the
set contains. For example, the statement

S = {1, 2, 3}
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defines S to be the set containing the numbers 1, 2, and 3. Sometimes we use
an ellipsis (. . . ) to save ink, especially for sets with infinitely many elements;
for example,

N = {0, 1, 2, 3, . . .}.
The objects that a set contains are called the elements, or members,

of that set. So 1 is an element of N, while −4 is not. The notation ‘x ∈ A’
means that x is an element of the set A. The notation ‘x /∈ A’ means that x
is not an element of A. For example, 5 ∈ N and π ∈ R, while 3/2 /∈ Z and√

2 /∈ Q. (A proof of the last assertion is given in §3.2.)
The elements of a set can be other sets; for example, {1, {2}} is the set

whose elements are 1 and {2}. So 1 ∈ {1, {2}} and {2} ∈ {1, {2}}, but
2 /∈ {1, {2}}. The empty set, denoted ∅, is a special set which doesn’t have
any elements; in other words, ∅ = {}. One can think of the empty set as a
box with nothing inside.

Another way to describe a set is to give a criterion for deciding whether
or not an object is an element of the set. For example, the set of natural
numbers could be defined as follows:

(∀x) x ∈ N ⇐⇒ x ∈ Z and x ≥ 0.

If P (x) is a statement about x, we use the notation {x | P (x)} to indicate
the set of all x for which P (x) is true. For example,

N = {x | x ∈ Z and x ≥ 0}.

Another notation for this is

{x ∈ Z | x ≥ 0}.

This reads, “the set of integers x such that x ≥ 0.” Some more examples:

Q = {x ∈ R | (∃a, b ∈ Z) b 6= 0 and x = a/b},
∅ = {x ∈ Z | x2 = 3},

{1, 2, 3} = {x ∈ N | x > 0 and x < 4}
the set of even integers = {x ∈ Z | (∃y ∈ Z) x = 2y}.

If A and B are sets, and if every element of A is also an element of B, we
say that A is a subset of B, and we write A ⊂ B. In symbols,

A ⊂ B ⇐⇒ (∀x) x ∈ A ⇒ x ∈ B
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For example, Z is a subset of R, but R is not a subset of Z. Every set is
a subset of itself. Also, the empty set is a subset of every set; for any set A,
the statement

(∀x) x ∈ ∅ ⇒ x ∈ A

is vacuously true, since the statement “x ∈ ∅” is always false. On the other
hand, the empty set is the only set that is a subset of the empty set.

Two sets are equal if and only if they have the same elements; in terms
of subsets,

A = B ⇐⇒ A ⊂ B and B ⊂ A

For example,
{1, 2, 3} = {2, 3, 1},

but
{1, {2}} 6= {1, 2}.

A.2 Unions and intersections

The union of two sets A and B, denoted by A ∪ B, is the set of all objects
that are in A or B (or both):

A ∪B := {x | x ∈ A or x ∈ B}.

The intersection of A and B is the set of all objects that are in both A and
B:

A ∩B := {x | x ∈ A and x ∈ B}.

For example,

{1, 2, 3} ∪ {2, 3, 4} = {1, 2, 3, 4},
{1, 2, 3} ∩ {2, 3, 4} = {2, 3}.

Venn diagrams provide a nice way to visualize these and other set-
theoretic concepts. In Figure ??(a), the inside of the circle on the left repre-
sents the contents of A, while the inside of the circle on the right represents
B. The shaded region is A∪B. In Figure ??(b), the shaded region is A∩B.
How would you demonstrate the meaning of “A ⊂ B” with a Venn diagram?

The following are some basic properties of the union and intersection
operations. We will leave the proofs of most of these facts as exercises.
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Commutative properties.

A ∪B = B ∪ A A ∩B = B ∩ A

Associative properties.

A ∪ (B ∪ C) = (A ∪B) ∪ C

A ∩ (B ∩ C) = (A ∩B) ∩ C

Distributive properties.

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∪ C) = (A ∪B) ∪ (A ∪ C)

A ∩ (B ∩ C) = (A ∩B) ∩ (A ∩ C)

Other facts.
A ∪ A = A = A ∩ A

A ∪ ∅ = A

A ∩ ∅ = ∅

A ∩B ⊂ A ⊂ A ∪B

A ∩B ⊂ B ⊂ A ∪B

A proof that two sets are equal usually consists of two parts: in the
first part, labeled ‘(⊂)’, we show that the first set is a subset of the second;
in the second part of the proof, labeled ‘(⊃)’, we show that the second set is
a subset of the first.
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Example. Prove that A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

(⊂) Suppose x ∈ A∪(B∩C). We wish to show that x ∈ (A∪B)∩(A∪C).
By definition of union, x ∈ A or x ∈ B ∩ C.

Case 1: Suppose x ∈ A. Then x ∈ A or x ∈ B, so x ∈ A ∪ B. Likewise,
x ∈ A ∪ C. Thus x ∈ A ∪B and x ∈ A ∪ C, so x ∈ (A ∪B) ∩ (A ∪ C).

Case 2: Suppose x ∈ B ∩ C. Then x ∈ B and x ∈ C. Since x ∈ B,
it follows that x ∈ A ∪ B. Since x ∈ C, it follows that x ∈ A ∪ C. Thus
x ∈ (A ∪B) ∩ (A ∪ C).

(⊃) Suppose x ∈ (A ∪ B) ∩ (A ∪ C). Then x ∈ A ∪ B and x ∈ A ∪ C.
We wish to show that x ∈ A ∪ (B ∩ C), i.e., x ∈ A or x ∈ B ∩ C. Suppose
x /∈ A. It is enough to show that x ∈ B ∩ C. Since x ∈ A ∪B and x /∈ A, it
follows that x ∈ B. Likewise, since x ∈ A ∪ C, x ∈ C. Thus x ∈ B ∩ C. 2

In this example we have written down a lot of the details, but not every
single one. For example, at the bottom of the proof, we write

Since x ∈ A∪B and x /∈ A, it follows that x ∈ B. Likewise, since
x ∈ A ∪ C, x ∈ C. Thus x ∈ B ∩ C.

If we wanted to include every single detail, we would write

Since x ∈ A ∪ B, x ∈ A or x ∈ B. Since x /∈ A, it follows that
x ∈ B. Since x ∈ A ∪ C, x ∈ A or x ∈ C. Since x /∈ A, it follows
that x ∈ C. Thus x ∈ A and x ∈ C, so x ∈ B ∩ C.

However, we prefer to be concise and omit obvious steps, provided that the
reader can easily follow the argument. Usually a proof is centered around a
few simple ideas, and excessive writing will tend to obscure them.

We would like to mention one more thing about the union and intersection
operations. These are binary operations, which means that they can only
operate on two sets at once. If we want to take the union of three sets A, B,
and C, there are two different ways we might do this: either

A ∪ (B ∪ C)

or
(A ∪B) ∪ C.

But the associative property says that these two expressions are equal. So
when we write

A ∪B ∪ C,
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we mean either of the two expressions above. Also, the commutative property
implies that we can change the order in which A, B, and C appear. Likewise
for intersection.

Similarly, if n is any positive integer and A1, A2, . . . , An are sets, then
there is no ambiguity in the expressions

A1 ∪ A2 ∪ . . . ∪ An

and
A1 ∩ A2 ∩ . . . ∩ An.

The union of A1, A2, . . . , An is the set of all things which are in at least one
of these n sets; the intersection of A1, A2, . . . , An is the set of all things which
are in all n sets.

A.3 Set difference

The difference between two sets A and B, denoted by A−B, is defined as
follows:

A−B := {x | x ∈ A and x /∈ B}.

Figure ?? gives a Venn diagram illustrating this operation. For example,
Z\N is the set of negative integers. Some literature uses the notation ‘A\B’
instead of A−B.

The following are some basic properties of the set difference operation
which you should remember.

De Morgan’s laws.

A− (B ∪ C) = (A−B) ∩ (A− C)

A− (B ∩ C) = (A−B) ∪ (A− C)

Other facts.
A−B ⊂ A B ∩ (A−B) = ∅

A−B = ∅ ⇐⇒ A ⊂ B

A−B = A ⇐⇒ A ∩B = ∅
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Example. Prove that A− (B ∪ C) = (A−B) ∩ (A− C).

(⊂) Suppose x ∈ A − (B ∪ C). Then x ∈ A, and x /∈ B ∪ C. Since it
is not true that x ∈ B or x ∈ C, we know that x /∈ B and x /∈ C. Since
x ∈ A and x /∈ B, we have x ∈ (A − B). Likewise, x ∈ (A − C). Thus
x ∈ (A−B) ∩ (A− C).

(⊃) Suppose x ∈ (A−B) ∩ (A− C). Then x ∈ A, x /∈ B, and x /∈ C. It
is not true that x ∈ B or x ∈ C, so x /∈ (B ∪ C). Thus x ∈ A− (B ∪ C). 2

There are many more set-theoretic identities which we have not listed.
However, instead of memorizing a huge list of identities, it is better to figure
out and prove identities as they are needed. In mathematical writing, one
usually omits proofs of simple set identities. (But don’t do that for the
exercises in this chapter.)

Exercises.

1. List separately the elements and the subsets of {{1, {2}}, {3}}. (There are
2 elements and 4 subsets.)

2. Explain why if A ⊂ B and B ⊂ C, then A ⊂ C.

3. If a set has exactly n elements, how many subsets does it have? Why?

4. We have repeatedly used the words, ‘the empty set’. Is this justified? If A
and B are both sets that contain no elements, then is A necessarily equal to
B?

5. Which of the following statements are true, and which are false? Why?

(a) {{∅}} ∪ ∅ = {∅, {∅}}
(b) {{∅}} ∪ {∅} = {∅, {∅}}
(c) {∅, {∅}} ∩ {{∅}, {{∅}}} = {∅}
(d) {∅, {∅}} ∩ {{∅}, {{∅}}} = {{∅}}

6. Prove the all the properties of union, intersection, and set difference that we
stated without proof in the text.

7. Show that A∩(B−C) = (A∩B)−(A∩C). Is it always true that A∪(B−C) =
(A ∪B)− (A ∪ C)?

8. Find some more set theoretic identities and prove them.
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