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1 Complex numbers

1.1 Basic definitions

Informally, the complex numbers are obtained by starting with the real num-
bers and introducing a new number i whose square is −1. More formally:

Definition 1.1. A complex number is an expression of the form x + yi
where x and y are real numbers1. Sometimes we write x+iy instead to denote
the same complex number. The set of all complex numbers is denoted by
C. We regard R as a subset of C, where x ∈ R is identified with x+ 0i ∈ C.
Similarly, when x = 0 we denote the complex number 0 + iy simply by iy.
If z = x+ iy is a complex number, the real part of z is Re(z) := x, and the
imaginary part of z is Re(z) := y. If z1 = x1 + iy1 and z2 = x2 + iy2 are
two complex numbers, we define their sum and product by

z1 + z2 := (x1 + x2) + (y1 + y2)i,
z1z2 := (x1x2 − y1y2) + (x1y2 + y1x2)i.

That is, we multiply by using the distributive law and replacing i2 by −1.

The set C, together with the addition and multiplication operations de-
fined above, is a field (review the definition of this if necessary). One can
verify most of the field axioms by straightforward calculations (however it
is not always obvious from the above definition that these will work out!).
The only axiom which is not straightforward to verify is that every nonzero
complex number has a multiplicative inverse. To prove this, one observes
that if x + iy 6= 0, then (x + iy)(x − iy) = x2 + y2 which is a nonzero real
number, so

x− iy
x2 + y2

=
x

x2 + y2
− y

x2 + y2
i

1More formally, we could say that a complex number is an element of the set R2. We
identify the ordered pair (x, y) ∈ R2 with the expression x+ yi.
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is a (the) multiplicative inverse of x+ iy.
For an alternate proof that C is a field, you may recall a theorem from

algebra stating that if F is a field and if p ∈ F [t] is a nonconstant polynomial
which is irreducible over F , then the quotient ring F [t]/(p) is a field. Now
take F = R and p = t2 + 1. The polynomial t2 + 1 is irreducible over R since
−1 has no real square root, so by the above theorem R/(t2 +1) is a field. On
the other hand you can check that every element of R/(t2 + 1) has a unique
representative of the form x+ yt with x, y ∈ R. Replacing t by i, we obtain
C as defined previously.

We represent complex numbers geometrically as points in the x, y plane.
The x axis is called the real axis, and the y axis is called the imaginary
axis. Addition of complex numbers is now given by the familiar addition of
vectors.

To describe multiplication geometrically, we first make two additional
definitions. If z = x+ iy is a complex number, define its absolute value by

|z| :=
√
x2 + y2.

The terminology is justified because if z is real then |z| as defined above
agrees with the usual absolute value. More generally |z| is always a nonneg-
ative real number, namely the distance from the point (x, y) to the origin.
If z 6= 0, then (x/|z|, y/|z|) is a point on the unit circle, so it can be written
as (cos θ, sin θ) for some real number θ which is defined up to adding integer
multiples of 2π. This number θ is called the argument of z, and denoted
by arg z, with the understanding that it is only defined mod 2π. Putting
this together, we can write

z = r(cos θ + i sin θ)

where r = |z| and θ = arg z. The numbers (r, θ) are just the usual polar
coordinates of the point (x, y).

Now if z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2), then we
calculate that

z1z2 = r1r2 ((cos θ1 cos θ2 − sin θ1 sin θ2) + (sin θ1 cos θ2 + cos θ1 sin θ2)i)
= r1r2 (cos(θ1 + θ2) + i sin(θ1 + θ2))

(1.1)

Here we have used the angle addition formulas from trigonometry; a little
later, using the exponential function, we will see an alternate proof of (1.1)
which does not use (and instead implies) the angle addition formulas. In any
case, the conclusion is that to multiply two nonzero complex numbers, you
multiply their absolute values and add their arguments. Note in particular
that

|z1z2| = |z1||z2|.
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(This also can be deduced without using trigonometry from (1.2) and (1.3)
below).

We have one more definition to make. To motivate it, recall that the
idea of the definition of C is to define i to be a square root of −1. One could
then ask: “Which square root? Doesn’t −1 have two square roots?” The
point is that there is a symmetry which exchanges i with −i. Namely, if
z = x+ iy ∈ C, define the complex conjugate of z by

z = x− iy.

Note that z is real if and only if z = z. It is easy to check that complex
conjugation respects the field operations, i.e.

z1 + z2 = z1 + z2,

z1z2 = z1 z2.
(1.2)

In fancier language, complex conjugation is an automorphism of the field
extension C ⊃ R.

Note the useful identity
|z|2 = zz. (1.3)

In particular, our previous calculation of the multiplicative inverse of z can
now be written as

1
z

=
z

|z|2
.

Also, the real and imaginary parts of a complex number can be recovered
using complex conjugation via the formulas

Re(z) =
z + z

2
,

Im(z) =
z − z

2i
.

1.2 Solving polynomial equations

The original motivation for introducing complex numbers was to find solu-
tions to polynomial equations. Indeed, we have:

Theorem 1.2. (“Fundamental theorem of algebra”) If a0, a1, . . . , an are
complex numbers with n > 0 and an 6= 0, then the equation

anz
n + an−1z

n−1 + · · ·+ a0 = 0

has at least one solution z ∈ C.
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We will prove this theorem later. Note that in fact there are exactly n
solutions (some of which may be repeated). The reason is that if z1 is a
solution, and if we write p(z) = anz

n + · · · + a0 ∈ C[z], then we can divide
the polynomial p by z − z1 to obtain

p(z) = (z − z1)q(z) + r (1.4)

where q(z) is a polynomial of degree n−1 and r is a constant. To be precise,
equation (1.4) is an equality of polynomials, so it holds for all z ∈ C. In
particular, plugging in z = z1 we find that r = 0. Now let z2 be a zero of q
and continue by induction to find that

p(z) = an(z − z1) · · · (z − zn)

where z1, . . . , zn are complex numbers, some of which may be repeated. Then
p(z) = 0 if and only if z is one of the numbers z1, . . . , zn.

Of course it may be difficult to find the solutions z1, . . . , zn (or even im-
possible if one only allows certain standard operations). But let us consider
some simple examples where we can work this out.

To start, suppose we want to find the square root of a nonzero complex
number a, i.e. solve the equation

z2 = a.

Writing z = x+ iy and a = u+ iv, we need to solve the equations

x2 − y2 = u,

2xy = v.

If v = 0 then this is easy to solve; either x = 0 or y = 0 depending on
the sign of u. If v 6= 0, one can solve this by using the second equation
to eliminate y from the first equation. There are then four solutions for x,
but only two of them are real. We omit further details; the important point
here is that (when a 6= 0) you always get two solutions z, one of which is
minus the other. Unlike with nonnegative real numbers, where given x ≥ 0
we define

√
x to be the nonnegative square root of x, for general complex

numbers there is no preferred square root . More precisely, while one could
of course pick some convention for selecting a square root of each complex
number, there is no way to do so continuously. That is:

Proposition 1.3. There does not exist a continuous function f : C → C
such that f(z)2 = z for all z ∈ C.

Here “continuous” means with respect to the standard metric on R2, see
the next section. We will prove this proposition shortly. First let us consider
one more example.
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Let n be a positive integer and consider the equation

zn = 1.

To solve this, by taking absolute values we find that |z| = 1, so we can write

z = cos θ + i sin θ.

Then the equation to solve is

cos(nθ) + i sin(nθ) = 1.

Equating the real parts of both sides, we find that cos(nθ) = 1, so nθ is a
multiple of 2π. The solutions to this are

θ = 0,
2π
n
,
4π
n
, . . . ,

2(n− 1)π
n

.

The resulting numbers z are evenly spaced around the unit circle; they are
called nth roots of unity. For example, when n = 3, we find that the three
cube roots of unity are

1,
−1
2
±
√

3
2
i.

One can also obtain these by factoring z3 − 1 = (z − 1)(z2 + z + 1); one can
then find the two nontrivial cube roots by solving z2 + z + 1 = 0 using the
quadratic formula.

A similar argument shows that any nonzero complex number z has n
different nth roots, which are evenly spaced around the circle of radius |z|1/n
centered at the origin.

Now let us prove Proposition 1.3. Suppose there exists a continuous
function f : C → C such that f(z)2 = z for all z ∈ C. This is actually
already impossible if we restrict attention to the unit circle. To see this,
given θ ∈ [0, 2π), note that we can write

f(cos θ + i sin θ) = cos(ψ(θ)) + i sin(ψ(θ)) (1.5)

for a unique ψ(θ) ∈ {θ/2, θ/2 + π}. Since f is continuous, it follows that ψ :
[0, 2π)→ [0, 2π) is continuous. Then θ 7→ ψ(θ)−θ/2 is a continuous function
which takes values in {0, π} and hence must be constant. This constant must
equal ψ(0), so we have ψ(θ) = ψ(0) + θ/2. Thus limθ→2π ψ(θ) = ψ(0) + π.
By (1.5) we get

lim
θ→2π

f(cos θ + i sin θ) = −f(1).

Since f is continuous, we obtain f(1) = −f(1), which is impossible since
f(1) 6= 0.

It turns out that there is a way to change the setup so that a continuous
square root function exists, by “thinking outside of the box”. We will discuss
this later when we talk about Riemann surfaces.
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1.3 C as a metric space

Recall that if (x1, y1) and (x2, y2) are two points in R2, the Euclidean distance
between them is defined by

d((x1, y1), (x2, y2)) :=
√

(x1 − x2)2 + (y1 − y2)2.

If we denote (xk, yk) by zk, then we can write this more concisely as

d(z1, z2) = |z1 − z2|.

This distance function makes C into a metric space (review what this means
if necessary). In particular, we have the triangle inequality

|z1 − z3| ≤ |z1 − z2|+ |z2 − z3|.

To prove this, writing z = z1 − z2 and w = z2 − z3 reduces to the inequality

|z + w| ≤ |z|+ |w|. (1.6)

To prove (1.6), observe that

|z + w|2 = |z|2 + |w|2 + 2 Re(zw), (1.7)

so the inequality (1.6) is equivalent to

Re(zw) ≤ |z||w|. (1.8)

To prove this last inequality, we observe that

Re(zw) ≤ |zw| = |z||w| = |z||w|.

Note that equality holds in this last step if and only if zw is real and non-
negative. Thus equality holds in the triangle inequality (1.6) if and only if
one of z, w is a positive real multiple of the other . (Recall that the trian-
gle inequality (1.6) holds more generally in any inner product space; in the
proof, Re(zw) in (1.7) and (1.8) is replaced by the inner product of z and
w, and (1.8) is replaced by the Cauchy-Schwarz inequality.)

Since C is a metric space, some basic definitions from real analysis carry
over directly to this setting. Let us state these precisely.

• If a ∈ C and r > 0, define

B(a, r) := {z ∈ C | |z − a| < r},

the open disk of radius r centered at a. A subset U ⊂ C is open if
for every a ∈ U , there exists r > 0 such that B(a, r) ⊂ U . Of course,
B(a, r) itself is open.

6



• If (z1, z2, . . .) is a sequence of complex numbers and L ∈ C, we say that
limn→∞ zn = L if for all ε > 0 there exists an integer N such that if
n > N then |zn − L| < ε.

• Let A ⊂ C. The closure of A, denoted by A, is the set of z ∈
C such that there exists a sequence (z1, z2, . . .) of points in A with
limn→∞ zn = z. Note that A ⊂ A. For example, the closure of B(a, r)
is the closed disk

B(a, r) = {z ∈ C | |z − a| ≤ r}.

• The set A is closed if A = A. Note that A is closed if and only if C\A
is open (prove it).

• Let U ⊂ C and f : U → C. If a ∈ U and L ∈ C, we say that
“limz→a f(z) = L” if for all ε > 0, there exists δ > 0 such that if
0 < |z − a| < δ and z ∈ U then |f(z) − L| < ε. The function f is
continuous if limz→a f(z) = f(a) for all a ∈ U .

1.4 The Riemann sphere

There is one slight difference between the way limits work in real and complex
analysis. Recall that in real analysis, if f : R → R and L ∈ R, one says
that “limx→+∞ f(x) = L” if for all ε > 0 there exists M ∈ R such that
|f(x)−L| < ε whenever x > M . Likewise one says that “limx→−∞ f(x) = L
if for all ε > 0 there exists M ∈ R such that |f(x)−L| < ε whenever x < M .

In complex analysis there is no such distinction between “positive infin-
ity” and “negative infinity”. Rather, if f : C → C and L ∈ C, one simply
defines “limz→∞ f(z) = L” to mean that for all ε > 0, there exists M ∈ R
such that |f(z)−L| < ε whenever |z| > M . This definition also makes sense
if f is only defined on a subset U ⊂ C, provided that U is unbounded (i.e.
the absolute values of elements of U can be arbitrarily large).

In real analysis, it is sometimes convenient to define an “extended real
line” consisting of R together with two additional points, called “+∞” and
“−∞”, so that when x “approaches” ±∞ in the definition of limit, there is
actually something to approach.

Likewise, we can define an “extend complex plane” Ĉ by adding to C a
single point “∞”, i.e.

Ĉ := C t {∞}.

The extended complex plane is also called the “Riemann sphere”. The rea-
son is that we can naturally identify it with a sphere via “stereographic
projection” as follows.
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Consider the unit sphere

S2 := {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.

(Here z denotes a real coordinate in R3, not a complex number as usual.)
Let n = (0, 0, 1) denote the north pole of S2. We now define a map

φ : S2 \ {n} → R2

as follows. If p = (x, y, z) ∈ S2 \ {n}, let ` denote the line in R3 through
n and p. Define φ(p) to be the intersection of this line with the x, y plane,
which we identify with R2 in the obvious way. (This intersection exists since
the line ` is not horizontal.) One can check that

φ(x, y, z) =
(

x

1− z
,

y

1− z

)
.

Also φ : S2 \ {n} → R2 is a bijection (prove this). Note that if p = (x, y, z)
is close to n, so that z is close to 1, then |φ(p)| is very large. Indeed one can
check from the above formula that

|φ(p)|2 =
2

1− z
− 1. (1.9)

We now extend φ to a bijection

φ̂ : S2 → Ĉ

by defining φ̂(p) = φ(p) for p ∈ S2 \ {n} and φ̂(n) := ∞. The bijection φ̂
has the following nice property: Let f : C → C. Then composing with φ̂
determines a function g : S2 \ {n} → C. And we have limz→∞ f(z) = L
if and only if limp→n g(p) = L, where the latter limit is defined using the
Euclidean distance on S2.

A cool, but not completely trivial fact, is that if C is a circle in S2 (i.e.
the intersection of S2 with a plane that is not tangent to it), then φ̂(C) is
either a circle in C (if n /∈ C) or the union of a line in C with ∞ (if n ∈ C).
Conversely, every line or circle in C is obtained in this way. We will talk
more later about maps that respect lines and circles.

2 Complex functions

2.1 Recollections from real analysis

Let U be an open subset of R and let f : U → R. Recall that if a ∈ U , then
the derivative of f at a, denoted by f ′(a), is defined by

f ′(a) = lim
x→a

f(x)− f(a)
x− a

,
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provided that this limit exists; otherwise f ′(a) is undefined. If f ′(a) is defined
then f is continuous at a, because

lim
x→a

(f(x)− f(a)) = lim
x→a

(x− a)
f(x)− f(a)

x− a

= lim
x→a

(x− a) lim
x→a

f(x)− f(a)
x− a

= 0 · f ′(a)
= 0.

If n is a nonnegative integer, then the nth derivative of f at a, denoted by
f (n)(a), is defined inductively by f (0)(a) = f(a) and f (n)(a) = (f (n−1))′(a)
for n > 0.

Now consider the following conditions on our function f : U → R:

• f is differentiable if f ′(a) is defined for all a ∈ U .

• f is continuously differentiable or C1 if f is differentiable and the
function f ′ is continuous.

• f is infinitely differentiable or C∞ if the nth derivative f (n) is de-
fined on all of U for all positive integers n.

• f is real analytic if for all a ∈ U there exists r > 0 with B(a, r) ⊂ U
and a sequence of real numbers (a0, a1, . . .) such that for all x ∈ B(a, r)
we have

f(x) =
∞∑
n=0

an(x− a)n (2.1)

with the right hand side absolutely convergent.

Note that each of the conditions “differentiable”, “continuously differ-
entiable”, “infinitely differentiable”, and “real analytic” is stronger than
the previous one. It is immediate that “continuously differentiable” implies
differentiable. Also “infinitely differentiable” implies “continuously differ-
entiable” because if the second derivative is defined then the first deriva-
tive must be continuous. Finally, “real analytic” implies “infinitely differ-
entiable” because one can differentiate a power series term by term, i.e. if
(2.1) holds on B(a, r) with the right hand side absolutely convergent, then
for all x ∈ B(a, r) we also have

f ′(x) =
∞∑
n=0

(n+ 1)an+1x
n (2.2)

with the right hand side absolutely convergent. (We will prove this later in
the complex analysis setting, and the same proof works here.)
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Moreover, each of the above four conditions is strictly stronger than the
previous one. For example, there exists a function which is differentiable but
not continuously differentiable: define f : R→ R by

f(x) :=
{
x2 sin(1/x), x 6= 0,

0, x = 0.

Then f is differentiable. The only nontrivial part to check is that f is
differentiable at 0; here we have

f ′(0) = lim
x→0

x sin(1/x) = 0

by the squeeze theorem. However f ′ is not continuous at 0 because for x 6= 0
we have

f ′(x) = 2x sin(1/x)− cos(1/x).

It is easy to find a function which is continuously differentiable but not
infinitely differentiable.

Finally, a standard example of a function which is infinitely differentiable
but not real analytic is

f(x) :=
{
e−1/x, x > 0,

0, x ≤ 0.

To prove that this is infinitely differentiable, the only nontrivial part is to
check that f (n)(0) is defined (and of course equal to 0) for all n > 0. To
prove this, use induction and suppose we know that f (n)(0) = 0. Note that
f (n)(x) equals e−1/x times some rational function of x when x > 0; it does
not matter exactly what rational function this is. Then x−1f (n)(x) is also
e−1/x times some rational function of x, and one can use l’Hospital’s rule to
prove that the limit of this is 0 as x→ 0+ (i.e. e−1/x goes to 0 much faster
than any power of x−1 as x → 0+), so f (n+1)(0) = 0. (Functions like f are
very important in analysis for the construction of “cutoff functions”.)

Now why is f not real analytic? Suppose f is real analytic. Then f has a
power series expansion around 0, i.e. there exist r > 0 and (a0, a1, . . .) such
that

f(x) =
∞∑
n=0

anx
n

whenever |x| < r. Now the coefficients a0, a1, . . . cannot all equal zero, or
else f(x) would equal zero for all x ∈ (−r, r), a contradiction. So let n be
the smallest nonnegative integer such that an 6= 0. It then follows from (2.2)
that

f (n)(0) = n!an.

This contradicts our previous observation that f (n)(0) = 0.
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Incidentally a similar argument shows that if U is a connected open set,
if f : U → R is any real analytic function, and if f vanishes on some open
subset of U , then f vanishes on all of U . This is called “unique continua-
tion”, because it implies that if f and g are two real analytic functions on
a connected open set U , and if they agree on some open subset of U , then
they are equal on all of U . That is, when a real analytic function can be
extended to larger domain, the extension is unique. The complex analysis
version of this will be important later.

2.2 Complex differentiation

Now suppose U is an open subset of C and f : C → C. What is the
appropriate notion of the derivative of f at a point a ∈ U?

First of all, the multivariable real analysis approach is to regard f as a
map from a subset of R2 to R2.

Definition 2.1. We say that f is differentiable (over R) at a = (s, t) if there
exists a 2× 2 matrix A such that

lim
(x,y)→(s,t)

f(x, y)− f(s, t)−A(x− s, y − t)
|(x− s, y − t)|

= 0.

The matrix A is called the Jacobian of f at a and denoted by dfa.

If f is differentiable at a, then the partial derivatives of the components
of f are defined at a, and these are the components of the Jacobian. That
is, if we write f = (u, v) then

dfa =
(
ux uy
vx vy

) ∣∣∣∣
(x,y)=a

where ux denotes ∂u/∂x and so forth. This follows directly from the defini-
tions. For example, any polynomial in the coordinates x, y is differentiable
on all of R2.

A less obvious fact is that if u and v have continuous partial derivatives
near a, then f is differentiable at a. (This is less obvious, and might not
hold if the partial derivatives are defined but not continuous, because the
partial derivatives just describe how u and v change as one moves in the x
direction or the y direction, while the definition of differentiability describes
how u and v change as one moves in all directions.)

In any case, the above definition of differentiability is not what we want
for complex analysis. Instead we want the following:

Definition 2.2. The (complex) derivative of f at a is defined by

f ′(a) = lim
z→a

f(z)− f(a)
z − a

∈ C
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provided that this limit exists, in which case f is (complex) differentiable,
or holomorphic, at a; otherwise f ′(a) is undefined. We inductively define
f (n)(a) as before.

With this definition, the derivative of a constant is 0; the derivative of
the identity map f(z) = z is 1; and the usual rules for differentiating a sum
or product hold (with the same proofs from real analysis). For example, if
f(z) = anz

n + · · ·+ a1z + a0 is a polynomial, then f is differentiable on all
of C with f ′(z) = nanz

n−1 + · · ·+ a1.
However a polynomial in the coordinates x, y will usually not be complex

differentiable. Complex conjugation and absolute value are also not complex
differentiable. The condition of complex differentiability in Definition 2.2 is
much stronger than the condition of real differentiability in Definition 2.1.
Let us clarify this.

Proposition 2.3. f is complex differentiable at a point if and only if, at
this point, f = u + iv is differentiable over R and the partial derivatives of
u and v satisfy the Cauchy-Riemann equations

ux = vy, uy = −vx. (2.3)

At such a point,

f ′ = ux + ivx =
uy + ivy

i
. (2.4)

Proof. (⇒) Suppose f is complex differentiable at a. Then by definition,

lim
z→a

f(z)− f(a)− f ′(a)(z − a)
z − a

= 0.

It follows that

lim
z→a

f(z)− f(a)− f ′(a)(z − a)
|z − a|

= 0,

because we have not changed the absolute value of the function whose limit
we are taking. Then by definition, f is differentiable over R at a, and its
Jacobian at a is multiplication by f ′(a), regarded as a 2× 2 matrix. Now if
we write f ′(a) = α+ βi, then multiplication by this complex number acting

on C corresponds to the matrix
(
α −β
β α

)
acting on R2. Equations (2.3)

and (2.4) follow from this.
(⇐) The proof of this is similar.

We can also write the Cauchy-Riemann equations (2.3) a bit more suc-
cintly as

∂f

∂y
= i

∂f

∂x
. (2.5)
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When these equations are satisfied, we can write (2.4) more simply as

f ′ =
∂f

∂x
=

1
i

∂f

∂y
. (2.6)

From now on, unless otherwise stated, we always consider differentiation
in the complex sense of Definition 2.2. To see how restrictive this is, note
for example:

Proposition 2.4. Let U ⊂ C be a connected open set and suppose f : U → R
is (complex) differentiable. Then f is constant.

Proof. Since f is real, it follows from the Cauchy-Riemann equations (2.3) or
(2.5) that ∂f/∂x = ∂f/∂y ≡ 0. One can then use line integrals to conclude
that f is constant (see also Corollary 2.8).

The chain rule for real functions carries over to the complex case:

Proposition 2.5. Let f and g be complex functions defined on open subsets
U, V ⊂ C, let a ∈ U , and suppose f(a) ∈ V . If f ′(a) and g′(f(a)) are
defined, then g ◦ f is differentiable at a and

(g ◦ f)′(a) = g′(f(a))f ′(a).

Proof. The proof from the real case carries over directly, but let us do this
anyway as a review.

First note that since f is continuous at a, it follows that g ◦ f is defined
in a neighborhood of a, so that it makes sense to consider (g ◦ f)′(a). Now
the statement that f is differentiable at a with derivative f ′(a) is equivalent
to the statement that if a+ h ∈ U then

f(a+ h) = f(a) + f ′(a)h+ ϕ(h)

where limh→0 ϕ(h)/h = 0. Likewise, since g is differentiable at f(a), if
f(a) + j ∈ V then

g(f(a) + j) = g(f(a)) + g′(f(a))j + ψ(j)

where limj→0 ψ(j)/j = 0. Now if a + h is in the domain of g ◦ f , let j =
f ′(a)h+ ϕ(h). Then by the above two equations, we have

g(f(a+h)) = g(f(a))+g′(f(a))f ′(a)h+
[
g′(f(a))ϕ(h) + ψ(f ′(a)h+ ϕ(h))

]
.

It follows from basic properties of limits (review these if necessary) that the
limit as h→ 0 of 1/h times the expression in square brackets is 0. Thus we
have

(g ◦ f)(a+ h) = (g ◦ f)(a) + g′(f(a))f ′(a)h+ ξ(h)

where limh→0 ξ(h)/h = 0. This is exactly what it means for g ◦ f to be
differentiable at a with derivative g′(f(a))f ′(a).
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There is also another chain rule, for the derivative of a complex derivative
function along a path. To prepare for the statement, if [a, b] is an interval in R
and f : [a, b]→ C is a complex-valued function, then we define its derivative
(when defined) exactly as with real-valued functions f : [a, b]→ R, i.e.

d

dt
f(t) = lim

h→0

f(t+ h)− f(t)
h

∈ C

where the limit is now over real numbers h (and if t = a or t = b we only
take the right or left limit). Equivalently, if f(t) = u(t) + iv(t), then

df

dt
=
du

dt
+ i

dv

dt
.

Proposition 2.6. Let f : U → C be a (complex) differentiable function, and
let γ : [a, b]→ C be a (real) differentiable path. Then

d

dt
(f(γ(t))) = f ′(γ(t))

dγ(t)
dt

.

Proof. Write γ(t) = u(t) + iv(t). By the usual chain rule from multivariable
calculus (using complex-valued functions instead of real-valued functions,
which makes no difference, e.g. because you can apply the real chain rule
separately to the real and imaginary parts of f),

d

dt
(f(γ(t))) = u′(t)

∂f

∂x
(γ(t)) + v′(t)

∂f

∂y
(γ(t))

= (u′(t) + iv′(t))
∂f

∂x
(γ(t))

=
dγ(t)
dt

f ′(γ(t)).

Here in the second and third lines we have used equations (2.5) and (2.6)
respectively.

Remark 2.7. The two versions of the chain rule in Propositions 2.5 and
2.6 are special cases of the real chain rule in multiple variables: If f : Rn →
Rm and g : Rm → Rl are differentiable, then g ◦ f is differentiable and
d(g ◦ f)a = dgf(a) ◦ dfa, i.e. the Jacobian of the composition is the product
of the Jacobians. This is proved the same ways as Proposition 2.5. To
deduce Proposition 2.5 or 2.6, one just has to interpret the corresponding
matrix multiplication as multiplication of complex numbers in the complex
differentiable case.

We can deduce from Proposition 2.6 the following important fact:

Corollary 2.8. Suppose U ⊂ C is open and connected (review the definition)
and f : U → C is differentiable and satisfies f ′ ≡ 0. Then f is constant.
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Proof. Since f ′ ≡ 0, it follows from the Cauchy-Riemann equations that
∂f/∂x ≡ ∂f/∂y ≡ 0. One can then use line integrals (which we will review
later) to deduce that f is constant.

To give another proof without using line integrals, let z, w,∈ U . Since
U is open and connected, there is a differentiable path γ : [a, b] → U with
γ(a) = z and γ(b) = w (review why). By Proposition 2.6, the function
f ◦ γ : [a, b] → C has derivative 0 on all of [a, b]. We know from the mean
value theorem that a real-valued function on an interval with derivative 0 is
constant. Applying this theorem separately to the real and imaginary parts
of f ◦γ shows that f ◦γ is constant. Hence f(γ(a)) = f(γ(b)), or equivalently
f(z) = f(w). Since z, w ∈ U were arbitrary, this proves that f is constant
on U .

Note that if U is not connected, then one can only conclude that f is
constant on each connected component of U .

2.3 Complex analytic functions

Let a ∈ C. A power series centered at a is a function of the form

f(z) =
∞∑
n=0

an(z − a)n (2.7)

where a0, a1, . . . ∈ C are constants. We regard this as a function of z whose
domain is the set of z such that the series (2.7) converges absolutely. (Re-
call the definitions of absolute convergence, conditional convergence, and
divergence.)

Lemma 2.9. Let r = lim inf |an|−1/n.

(a) If |z − a| < r then the series (2.7) is absolutely convergent.

(b) If |z − a| > r then the series (2.7) is divergent.

Proof. (a) The idea is to compare with a geometric series. If |z − a| < r,
choose s with |z − a| < s < r. Then for n sufficiently large, |an|−1/n > s, so
|an| < s−n, so |an(z−a)n| < |(z−a)/s|n. Since |(z−a)/s| < 1, the geometric
series

∑∞
n=0 |(z−a)/s|n is absolutely convergent. Since all but finitely many

terms of (2.7) are less than the terms of an absolutely convergent series, it
follows that (2.7) is absolutely convergent.

(b) If |z − a| > r, then there are infinitely many nonnegative integers n
such that |an|−1/n < |z − a|, so |an| > |z − a|−n, so |an(z − a)n| > 1. Since
the series (2.7) contains infinitely many terms with absolute value greater
than one, it cannot be absolutely convergent.

15



The number r is called the radius of convergence of the series (2.7).
If |z − a| = r, the series may or may not converge. (Examples...)

Definition 2.10. Let U be an open set in C and let f : U → C. The
function f is (complex) analytic if for every a ∈ U , there exist r > 0 and
a0, a1, . . . ∈ C such that the power series expansion (2.7) is valid (with the
right side absolutely convergent) whenever |z − a| < r.

Exercise 2.11. If f is defined by (2.7) on B(a, r), where r is less than or
equal to the radius of convergence, then f is analytic on B(a, r) (i.e. f can
be expanded as a power series around every point in B(a, r), not just a).

Proposition 2.12. If f : U → C is analytic, then f is infinitely differ-
entiable. Moreover, the coefficients of the power series expansion (2.7) are
given by

an =
f (n)(a)
n!

.

Proof. This follows from the following lemma and induction.

Lemma 2.13. Define f : B(a, r)→ C by the power series (2.7) and assume
that the radius of convergence is at least r > 0. Then f is differentiable on
B(a, r), and its derivative is given by differentiating term by term:

f ′(z) =
∞∑
n=0

(n+ 1)an+1(z − a)n. (2.8)

The series in (2.8) also has radius of convergence at least r.

One approach to proving (2.8), which appears in many complex analysis
textbooks, is to write

f ′(z) = lim
h→0

h−1
∞∑
n=0

an((z + h)n − zn),

expand the expression whose limit we are taking using the binomial theorem,
and (using absolute convergence to justify reordering the sums) write the
result as the right hand side of (2.8) plus h times something, which via some
estimates can be shown to converge to 0. This is a good exercise and does
not take too long. However it is not very satisfying because it leaves us
without any general understanding of when one can differentiate an infinite
sum of functions term by term. So here is a more systematic approach, using
some basic facts about line integrals which we will review later.

Lemma 2.14. Let fk : B(a, r) → C be functions for k = 0, 1, . . . such that
fk converges uniformly on closed balls to f : B(a, r)→ C, and f ′k converges
uniformly on closed balls to g : B(a, r) → C. Then f is differentiable and
f ′ = g.
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Proof. Since f ′k is the derivative of a function for each k, it follows that g
is also the derivative of a function, call it h. (This is because there is a
criterion in terms of line integrals for when a function is a derivative, and
this criterion is preserved under uniform limits of functions.) By adding a
constant we may assume that h(a) = f(a). To complete the proof we just
need to check that h(z) = f(z) for all z ∈ B(a, r).

To so, let z ∈ B(a, r) be given. It is enough to show that |f(z)−h(z)| < ε
for all ε > 0. Given ε > 0, choose k sufficiently large so that |fk(z)−f(z)| <
ε/2 and |f ′k(w) − g(w)| < ε/2r for all w on the line segment from a to w.
Then it follows (using line integrals again) that |fk(z)− h(z)| < ε/2. So by
the triangle inequality, |f(z)− h(z)| < ε as desired.

(A similar argument in real analysis shows that the space of C1 functions
on a closed interval is a complete metric space. In our complex setting, we
will see later that one can actually drop the assumption that f ′k converges
uniformly and still conclude that f is differentiable. This certainly does not
work in real analysis.)

Proof of Lemma 2.13. First observe that because limn→∞ |n + 1|1/n = 1
(why?), the series in (2.8) has the same radius of convergence as the se-
ries in (2.7). In particular, the series (2.8) converges absolutely on B(a, r).
Now consider the kth partial sum

fk(z) =
k∑

n=0

an(z − a)n.

Then the sequence of functions fk converges uniformly to f on any closed ball
in B(a, r). (Review this.) And by what was just said, f ′k converges uniformly
on closed balls to the right hand side of (2.8). Now invoke Lemma 2.14.

This completes the proof that a complex analytic function is differen-
tiable, in fact infinitely differentiable. Now the miracle of complex analysis
is that conversely, if a function is complex differentiable, then it is complex
analytic:

Theorem 2.15. Let U be an open subset of C and suppose f : U → C is
differentiable. Then f is analytic. Moreover, for any a ∈ U , if B(a, r) ⊂ U ,
then the power series expansion of f around a is valid on B(a, r).

Contrast this with real analysis, where a differentiable function need not
even have a continuous derivative! We will prove Theorem 2.15 later using
complex integration.
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2.4 The exponential function, sine and cosine

Recall that for x real one has ex =
∑∞

n=0
xn

n! . We would like to extend the
definition to allow taking the exponential of a complex number. It is natural
to simply use the same power series and for z ∈ C define

ez =
∞∑
n=0

zn

n!
. (2.9)

This is sometimes also denoted by exp(z). This power series has radius of
convergence ∞ (why?), so by Exercise 2.11 it defines an analytic function
on all of C. Of course it agrees with the usual exponential function when
restricted to the real line.

It follows immediately from (2.9) that

e0 = 1. (2.10)

Also, Lemma 2.13 implies that

(ez)′ = ez. (2.11)

In fact, the general theory of ODE’s implies that the function ez satisfying
(2.10) and (2.11) is unique2, so one could take this as an alternate definition
of ez. (To give a more elementary proof of the uniqueness, if f and g are two
functions satisfying f ′ = f and g′ = g, and f(0) = g(0) = 1, then applying
Corollary 2.8 to h(z) = f(z)g(−z) shows that f(z)g(−z) is a constant, so
f(z)g(−z) = 1 for all z. The same argument shows that g(z)g(−z) = 1, so
f(z) = g(z).)

As in the real case, we have the law of exponents

ez+w = ezew. (2.12)

One way to prove this is to expand the left hand side using the binomial
theorem, and rearrange the sum to obtain the right hand side (using absolute
convergence to justify reordering the sums). But one can also prove this
without doing that calculation as follows. Fix w ∈ C and define f : C → C
by f(z) = ez+w. Also define g : C→ C by g(z) = ezew. Observe that

f(0) = ew, f ′(z) = f(z),

where the second equation uses the chain rule (Proposition 2.5). On the
other hand we also have

g(0) = ew, g′(z) = g(z).
2The relevant theorem about ODE’s asserts that if f : Rn → Rn is continuous (we are

interested in the case n = 2), and if p ∈ Rn, then there exists ε > 0 and a differentiable
path γ : (−ε, ε)→ Rn such that γ′(t) = f(γ(t)) and γ(0) = p. Moreover, for any ε > 0, if
a path γ as above exists then it is unique.
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Since f and g both satisfy this differential equation, they must be equal,
for the same reason that the exponential function is the unique function
satisfying (2.10) and (2.11).

If z = x+ iy with x, y real, then by (2.12) we have

ez = exeiy.

So to understand ez, we just need to understand eiy. This is given by the
famous formula

eiθ = cos θ + i sin θ (2.13)

for θ real.
To prove (2.13), we first need a rigorous definition of sin and cos. The

geometric idea that we would like to capture is that if one starts at the point
(1, 0) in the plane and transverses the unit circle counterclockwise at unit
speed for time t, then the coordinates of the point where one ends up are
(cos t, sin t). To turn this idea into equations we can work with, note that if
one is traversing the unit circle counterclockwise at unit speed, and if one
is at the point (x, y), then the velocity vector is obtained by rotating the
vector (x, y) a quarter turn to the left, that is the velocity vector is (−y, x).
(Explain.) Thus the functions cos t and sin t should satisfy the system of
ordinary differential equations

d

dt

(
cos t
sin t

)
=
(
− sin t
cos t

)
,

(
cos 0
sin 0

)
=
(

1
0

)
. (2.14)

Proposition 2.16. There exist unique functions sin, cos : R→ R satisfying
(2.14). These also satisfy (2.13).

Proof. To prove existence, note that by the chain rule (Proposition 2.6), we
have

d

dθ
eiθ = ieiθ.

It follows from this that if we define cos θ and sin θ to be the real and
imaginary parts of eiθ, then they satisfy (2.14) (and of course (2.13) also).

To prove uniqueness of the solution to (2.14), one can either invoke the
uniqueness theorem for solutions to ODE’s, or argue similarly to our proof
of the uniqueness of the exponential function.

Equation (2.13) has two useful corollaries. First, from (2.9) and (2.13)
we obtain the familiar power series expansions

cos θ = 1− θ2

2!
+
θ4

4!
− · · · ,

sin θ = θ − θ3

3!
+
θ5

5!
− · · · .

(2.15)
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Second, if α and β are any real numbers then by the law of exponents (2.12)
we have

ei(α+β) = eiαeiβ.

If we expand both sides using (2.13) and take the real and imaginary parts
of both sides, then we obtain the angle addition formulas

cos(α+ β) = cosα cosβ − sinα sinβ,
sin(α+ β) = cosα sinβ + sinα cosβ.

(2.16)

In fact, one can take (2.15) as a definition of sin θ and cos θ also for complex
θ (although if θ is not real then sin θ and cos θ are usually not real either).
Equivalently,

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
.

With this definition, a short calculation shows that the angle addition for-
mulas (2.16) also hold when α and β are complex.

2.5 Logarithms

One would like to define a function log which is the inverse of ez. Note that
the domain of log cannot include 0 because the exponential function never
vanishes (because eze−z = 1). However the exponential function surjects
onto C \ {0}. This is because any complex number z can be written as
r(cos θ + i sin θ) with r > 0 and θ real, and then

z = elog r+iθ

where log r for r a positive real number is understood to be the usual natural
logarithm. However since θ is only defined modulo 2π, there are infinitely
many complex numbers w such that ew = z, which differ by integer multiples
of 2π. If we want to define log z, we need to pick one such w. Unfortunately,
there is no way to do so continuously for all nonzero z. The proof is similar
to that of Proposition 1.3 and we leave it as an exercise.

However we can define a continuous log function if we remove enough
points from the domain. In particular the principal branch of the loga-
rithm is a well-defined function

log : C \ {x ∈ R | x ≤ 0} −→ C.

To define this, given z which is not a nonnegative real number, we can
uniquely write z = r(cos θ + i sin θ) with r > 0 and θ ∈ (−π, π), and we
define log z = log r + iθ. This function is differentiable and satisfies

(log z)′ =
1
z
. (2.17)
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To see why, observe that the restriction of the exponential function defines
a bijection

exp : {z ∈ C | Im(z) ∈ (−π, π)} '−→ C \ {x ∈ R | x ≤ 0}.

The principal branch of the logarithm is the inverse of this bijection. Now
the inverse function theorem implies that if U and V are open subsets of C
and if f : U → V is a holomorphic bijection with f ′ never vanishing3, then
f−1 : V → U is differentiable, and then by the chain rule we must have
(f−1)′(f(z)) = 1/f ′(z). This implies (2.17).

2.6 Harmonic functions

Let U be an open subset of C, and let f : U → C be holomorphic. Write
f(z) = u(z) + iv(z). We will prove later that f is infinitely differentiable,
so that all of the nth partial derivatives of u and v are defined for all n.
Accepting this for now, it follows from the Cauchy-Riemann equations (2.3)
that

∂2u

∂x2
+
∂2u

∂y2
= 0,

∂2v

∂x2
+
∂2v

∂y2
= 0.

That is, ∆u = ∆v = 0, where ∆ = ∂2

∂x2 + ∂2

∂y2
. A twice continuously differ-

entiable function f satisfying ∆f = 0 is called harmonic. We will discuss
the geometric meaning of this condition later, after reviewing line integrals.
For now, if u and v are harmonic functions such that u+ iv is holomorphic,
we say that v is a conjugate harmonic function of u.

Proposition 2.17. Let U ⊂ C be an open disc and let u : U → R be a
harmonic function. Then u has a conjugate harmonic function v, which is
unique up to an additive constant.

Proof. Without loss of generality the disc U is centered at the origin. We
need to find v solving the equations vy = ux and vx = −uy. We solve these
equations by integration. The first equation holds if and only if

v(x, y) = v(x, 0) +
∫ y

0
ux(x, t)dt.

The second equation holds when y = 0 if and only if

v(x, 0) = v(0, 0)−
∫ x

0
uy(t, 0)dt.

3This last condition is actually redundant; we will see later that if f : U → V is a
holomorphic bijection then f ′ can never vanish. This is another fact which has no analogue
in real analysis, for example consider the bijection f : R→ R defined by f(x) = x3
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So we have no choice but to define

v(x, y) = v(0, 0)−
∫ x

0
uy(t, 0)dt+

∫ y

0
ux(x, t)dt,

which is unique up to the choice of the additive constant v(0, 0). To complete
the proof, we have to check that this definition of v satisfies vx = −uy for
all (x, y) ∈ U , not just when y = 0. To do so, we can apply the fundamental
theorem of calculus to the first integral, and differentiate under the integral
sign (we will justify this a bit later) in the second integral, to get

vx(x, y) = −uy(x, 0) +
∫ y

0
uxx(x, t)dt

= −uy(x, 0)−
∫ y

0
uyy(x, t)dt

= −uy(x, 0)− (uy(x, y)− uy(x, 0))
= −uy(x, y).

(Where did we use the assumption that U is a disk? For which other U will
this work? We will see a more systematic approach to this later.)
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