## Check your understanding

30. If $f_{x}\left(x_{0}, y_{0}\right)$ and $f_{y}\left(x_{0}, y_{0}\right)$ exist, but $f$ is not differentiable at ( $x_{0}, y_{0}$ ), will linear approximation give a good approximation to $f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)$ when $\Delta x$ and $\Delta y$ are small?
(a) Yes.
(b) Yes when $\Delta x=0$ or $\Delta y=0$, but maybe not when $\Delta x$ and $\Delta y$ are both nonzero.
(c) Maybe not at all.

Answer: (b).

