Check your understanding

21. If a space curve $\mathbf{r}(t)$ satisfies the equation

$$
\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)=0
$$

for all t, what does this mean geometrically?
(a) The curve is a constant.
(b) The curve moves along a line.
(c) The curve moves directly toward or away from the origin.
(d) None of the above.

Answer: (b)
Explanation: If $\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)=0$, then the derivative of $\mathbf{r}^{\prime}(t)$ is parallel to $\mathbf{r}^{\prime}(t)$, so the velocity vector $\mathbf{r}^{\prime}(t)$ does not change direction.

