Check your understanding

10. Let \mathbf{a} and \mathbf{b} be vectors. How is the length of $\mathbf{a}+\mathbf{b}$ related to the lengths of \mathbf{a} and \mathbf{b} ?
(a) $|\mathbf{a}+\mathbf{b}|=|\mathbf{a}|+|\mathbf{b}|$.
(b) $|\mathbf{a}+\mathbf{b}| \leq|\mathbf{a}|+|\mathbf{b}|$.
(c) Neither of the above is always true.

Answer: (b)

Explanation: The vector $\mathbf{a}+\mathbf{b}$ corresponds to a side of a triangle whose other two sides correspond to the vectors \mathbf{a} and \mathbf{b}. The inequality in (b) is the triangle inequality, asserting that the length of one side of a triangle cannot be greater than the sum of the other two sides. We will be able to prove this after introducing dot product (and more direct proofs are also possible).

