
Euler’s formula

The purpose of this handout is to give a geometric explanation of Euler’s
formula, which states that if θ is a real number, then

eiθ = cos θ + i sin θ. (1)

We assume basic knowledge of calculus and of complex numbers.
We first review the definition of the exponential function and some of its

more basic properties. If z is a complex number, define

ez :=
∞∑

n=0

zn

n!
= 1 + z +

z2

2
+

z3

6
+ · · · . (2)

It follows from the ratio test that for every complex number z, this series
is absolutely convergent. The reason is that the ratio between the absolute
values of consecutive terms is

|zn+1/(n + 1)!|
|zn/n!|

=
|z|

n + 1
,

and for any given z, this ratio is less than 1 whenever n is large enough that
n + 1 > |z|.

We have
e0 = 1, (3)

because when z = 0, all the terms in (2) with positive powers of z vanish.
If z is a differentiable function of a real variable t, then

d

dt
ez(t) = z′(t)ez(t). (4)

The reason is that because the series (2) is absolutely convergent, a theorem
about power series allows us to differentiate it term by term to find that

d

dt
ez(t) =

∞∑
n=0

d

dt

z(t)n

n!
=

∞∑
n=1

nz(t)n−1z′(t)

n!

= z′(t)
∞∑

n=1

z(t)n−1

(n − 1)!
= z′(t)

∞∑
m=0

z(t)m

m!
= z′(t)ez(t).
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The next basic property of the exponential function is the “law of expo-
nents”, which states that for any complex numbers z and w,

ez+w = ezew. (5)

One can prove this directly from the power series (2) and the binomial the-
orem. A more elegant proof can be given using differential equations as
follows. For each real number t, define

f(t) := ez+tw.

Then by (4), the function f satisfies the ordinary differential equation

d

dt
f(t) = wf(t), f(0) = ez. (6)

On the other hand, if we redefine f(t) by the formula

f(t) := ezetw,

then by (4) again, this f also satisfies the ordinary differential equation (6).
By the general theory of ODE’s, the solution to (6) is unique. Thus the two
solutions we have presented to (6) must be the same, that is

ez+tw = ezetw

for all t. Plugging in t = 1, we obtain the law of exponents (5).
Another basic property is that if z denotes the complex conjugate of z,

then
ez = ez. (7)

The reason is that to compute ez, we can conjugate all the terms in the power
series (2), and this gives the power series for ez.

We now have all the ingredients in place to prove Euler’s formula. For θ
real, define

f(θ) := eiθ.

The function f defines a curve in the complex plane parametrized by θ. By
the various properties above, the absolute value of f(θ) is the square root of

|f(θ)|2 = f(θ)f(θ) = eiθe−iθ = e0 = 1.
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Thus the curve stays on the unit circle. By (4), the velocity vector of this
parametrized curve is

d

dθ
f(θ) = if(θ). (8)

The velocity vector has length∣∣∣∣ d

dθ
f(θ)

∣∣∣∣ = |if(θ)| = |f(θ)| = 1.

Thus the parametrized curve moves at unit speed. Finally, equation (8) im-
plies that the velocity vector df(θ)/dθ points ninety degrees to the left of the
vector f(θ). It follows that the parametrized curve moves counterclockwise
around the unit circle. Since f(0) = 1, we conclude that the point eiθ in the
complex plane is obtained by starting at 1 + 0i = (1, 0), and moving counter-
clockwise around the unit circle for distance θ. This point is, by definition,
(cos θ, sin θ) = cos θ + i sin θ. This proves Euler’s formula (1).

Here are two quick corollaries of Euler’s formula. First of all, if we plug
it into (8), we obtain

d

dθ
(cos θ + i sin θ) = i(cos θ + i sin θ).

Taking the real and imaginary parts of this equation, we recover the familiar
facts

d

dθ
cos θ = − sin θ,

d

dθ
sin θ = cos θ.

Second, Euler’s formula for α, β, and α + β, together with the formula

ei(α+β) = eiαeiβ

(which follows from the law of exponents), gives

cos(α + β) + i sin(α + β) = (cos α + i sin α)(cos β + i sin β).

Multiplying out the right hand side, and taking real and imaginary parts of
the resulting equation, gives the angle addition formulas

cos(α + β) = cos α cos β − sin α sin β,

sin(α + β) = cos α sin β + sin α cos β.
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