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The purpose of this note is to explain the Legendre transform as I presented it in
class, to reduce confusion. This is standard material presented in slightly different
ways in numerous textbooks, including the books by Arnold, Cannas da Silva,
Geiges, and McDuff-Salamon (Introduction to Symplectic Topology) recommended
for the class.

1 Geodesic flow as a Hamiltonian flow

In this section we state a basic result about geodesics which we would like to un-
derstand, and which the Legendre transform will generalize. We begin by reviewing
the definition of geodesic.

Let Q be a smooth n-dimensional manifold, and let g be a Riemannian metric
on Q. A smooth path γ : [a, b] → Q is a geodesic if it is a critical point of the
energy functional

E(γ) =

∫ b

a

1

2
∥γ′(t)∥2dt

on the space of paths [a, b] → Q with the same endpoints. Concretely, for γ to be
a critical point means that if

Γ : (−ε, ε)× [a, b] −→ Q

is a smooth map with Γ(0, ·) = γ and Γ(s, a) = γ(a) and Γ(s, b) = γ(b) for all
s ∈ (−ε, ε), then

d

dt

∣∣∣∣
s=0

E(Γ(s, ·)) = 0.

Any constant-speed length-minimizing path between two points in Q is a geodesic.
Conversely, any geodesic has constant speed, and, although we will not prove this
here, is length-minizing if restricted to a sufficiently small segment.

The above definition of geodesic is equivalent to a second order ODE for γ (we
will prove a more general statement below). In particular, there is a vector field
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Xg on TQ such that a path γ̃ : [a, b] → TQ is a flow line of Xg if and only if
γ̃(t) = (γ(t), γ′(t)) where γ : [a, b] → Q is a geodesic.

We would now like to understand geodesics symplectically. Let λ denote the
canonical 1-form on the cotangent bundle T ∗Q, and consider the symplectic form
on T ∗Q defined by ω = −dλ. The metric g induces an isomorphism of vector
bundles ϕ : TQ

≃→ T ∗Q, and thereby an inner product on T ∗Q. Let Y ⊂ T ∗Q
denote the unit cotangent bundle:

Y = {(q, p) | q ∈ Q, p ∈ T ∗
q Q, ∥p∥2 = 1}.

This is a level set of the Hamiltonian H : T ∗Q → R defined by

H(q, p) =
1

2
∥p∥2.

Let XH denote the associated Hamiltonian vector field on T ∗Q defined by

ω(XH , ·) = dH.

Since Y is a level set of H, it follows that XH is tangent to Y . We would like to
prove:

Proposition 1.1. The Hamiltonian vector field XH on Y agrees with the geodesic
flow Xg on the unit tangent bundle under ϕ.

In particular, a unit speed geodesic in Q is equivalent to a trajectory of the
Hamiltonian vector field XH on Y .

2 Lagrangian mechanics on a manifold

We will prove Proposition 1.1 as a special case of the relation between Lagrangian
mechanics and Hamiltonian mechanics.

The Lagrangian formulation of mechanics is as follows. Let Q be a smooth
manifold. One can think of a point in Q as representing the position of a particle
or a mechanical system. We begin with a “Lagrangian” function

L : TQ −→ R.

(There is also a time-dependent version in which L is a function on R × TQ, but
we will stick with the time-independent case for simplicity.) Given a Lagrangian L,
for a smooth path γ : [a, b] → R, we define the energy

E(γ) =

∫ b

a
L(γ(t), γ′(t))dt.
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One then postulates that the laws of motion are that the path γ represents the time
evolution of a particle or system if and only if γ is a critical point of the energy on
the space of paths [a, b] → Q with the same endpoints.

This statement of the laws of motion is not very transparent, so we now translate
it into an ordinary differential equation. Consider a path γ : [a, b] → R, and assume
(after shrinking the domain if necessary) that it maps to a single coordinate chart
on Q with coordinates q1, . . . , qn. We have induced coordinates q1, . . . , qn, V1, . . . , Vn

on the tangent bundle of the coordinate chart, where we write a tangent vector as∑n
i=1 Vi

∂
∂qi

.

Lemma 2.1. A path γ : [a, b] → R as above is a critical point of the energy func-
tional on the space of paths [a, b] → Q with the same endpoints if and only if

∂L

∂qi
(γ(t), γ′(t)) =

d

dt

∂L

∂Vi
(γ(t), γ′(t)) (2.1)

for i = 1, . . . , n.

Proof. Let Γ : (−ε, ε)× [a, b] → Q be a variation of the path γ with fixed endpoints
as considered previously. For t ∈ [a, b], define

δ(t) =
∂

∂s

∣∣∣∣
(0,t)

Γ(s, t) ∈ Tγ(t)Q.

In our local coordinates, write γ(t) = (q1(t), . . . , qn(t)), and let δi(t) denote the Vi

coordinate of δ(t). We now compute

d

ds

∣∣∣∣
s=0

E(Γ(s, ·)) = d

ds

∣∣∣∣
s=0

∫ b

a
L

(
Γ(s, t),

∂

∂t
Γ(s, t)

)
dt

=

∫ b

a

∂

∂s

∣∣∣∣
(0,t)

L

(
Γ(s, t),

∂

∂t
Γ(s, t)

)
dt

=

∫ b

a

n∑
i=1

(
∂L

∂qi
(γ(t), γ′(t))δi(t) +

∂L

∂Vi
(γ(t), γ′(t))

dδi(t)

dt

)
dt

=

∫ b

a

n∑
i=1

(
∂L

∂qi
(γ(t), γ′(t))− d

dt

∂L

∂Vi
(γ(t), γ′(t))

)
δi(t) dt.

Here in the last line we have used integration by parts and the assumption that
our variation of paths has fixed endpoints. Now γ is a critical point of the energy
if and only if the above expression vanishes for any functions δi(t) vanishing at the
endpoints, which means that the equations (2.1) hold.

So to summarize, the equations of motion are that (2.1) holds and that

dqi(t)

dt
= Vi(t). (2.2)
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The equations (2.1) are called the Euler-Lagrange equations.
This still is not a very satisfactory statement of the equations of motion, because

to get an ODE we want equations for dVi(t)/dt. However under suitable convexity
assumptions on the Lagrangian which we will state below, the numbers ∂L/∂Vi

determine the numbers Vi, so that the Euler-Lagrange equations (2.1) do in fact
determine dVi(t)/dt.

For example, consider the motion of a unit mass particle on Q = Rn where the
potential energy is U : Rn → R. We define the Lagrangian

L(q, V ) =
1

2
∥v∥2 − U(q),

i.e. the kinetic energy minus the potential energy. The Euler-Lagrange equations
(2.1) in this example are

dVi

dt
= −∂U

∂qi
.

3 The Legendre transform

We now explain the relation between the Lagrangian and Hamiltonian formulations
of mechanics.

Recall that if q1, . . . , qn are local coordinates on a neighborhood Q, and if
q1, . . . , qn, p1, . . . , pn are the induced coordinates on the cotangent bundle of this
neighborhood, then the symplectic form ω that we are using is given by

ω =

n∑
i=1

dqi dpi.

If H : T ∗Q → R is a Hamiltonian, then the associated Hamiltonian vector field is

XH =
n∑

i=1

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

)
.

Thus a trajectory of XH locally satisfies the equations

dqi
dt

=
∂H

∂pi
, (3.1)

dpi
dt

= −∂H

∂qi
. (3.2)

Now let L : TQ → R be a Lagrangian. The fiberwise derivative of L defines a
map

ϕ : TQ −→ T ∗Q. (3.3)
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To be precise, if q ∈ Q and V ∈ TqQ, then we define a cotangent vector ϕ(q, V ) ∈
T ∗
q Q as follows: If W ∈ TqQ, then

ϕ(q, V )(W ) =
d

dt

∣∣∣∣
t=0

L(q, V + tW ).

For example, if g is a Riemannian metric on Q and L(q, V ) = 1
2∥V ∥2, then ϕ :

TQ → T ∗Q is the isomorphism of vector bundles induced by g as before. For a
more general Lagrangian, ϕ still maps fibers to fibers, but in general not linearly.

To continue, we now assume that the Lagrangian L has the property that:

(*) The fiberwise derivative map (3.3) is a diffeomorphism.

This holds for example if for each q ∈ Q, if V1, . . . , Vn are linear coordinates on the
tangent space TqQ, then the matrix(

∂2L

∂Vi∂Vj

)
i,j=1,...,n

is positive definite, and

lim
∥V ∥→∞

L(q, V )

∥V ∥
= +∞.

Given a Lagrangian L satisfying (*), we define its Legendre transform to be
the function

H : T ∗Q −→ R

defined as follows. If q ∈ Q and p ∈ T ∗
q Q, then

H(q, p) = p(ϕ−1(p))− L(q, ϕ−1(p)). (3.4)

In a coordinate chart on Q with coordinates q1, . . . , qn, if V1, . . . , Vn are the in-
duced coordinates for tangent vectors in the chart, and p1, . . . , pn are the induced
coordinates for cotangent vectors in the chart, then we have

H(q1, . . . , qn, p1, . . . , pn) =

n∑
i=1

piVi − L(q1, . . . , qn, V1, . . . , Vn), (3.5)

where we are using the assumption (*) to regard V1, . . . , Vn as functions of q1, . . . , qn
and p1, . . . , pn.

Theorem 3.1. Assume that the Lagrangian L : TQ → R satisfies (*), and define
H : T ∗Q → R by (3.4). Then a path γ̃ : [a, b] → TQ satisfies the Lagrangian
equations of motion (2.1) and (2.2) if and only if the path ϕ ◦ γ̃ : [a, b] → T ∗Q
satisfies the Hamiltonian equations of motion (3.1) and (3.2).
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Remark 3.2. Before proving the theorem, and to clarify its statement, we need to
clear up a notational confusion. Namely, ∂/∂qi has different meanings in equations
(2.1) and (3.2)! Recall that a partial derivative with respect to a coordinate is
only defined relative to all of the other coordinates. Our convention is that ∂L/∂qi
denotes the change in L as we vary qi while fixing qj for j ̸= i and V1, . . . , Vn,
while ∂H/∂qi denotes the change in H as we vary qi while fixing qj for j ̸= i and
p1, . . . , pn.

Example 3.3. If g is a Riemannian metric on Q and L(q, V ) = 1
2∥V ∥2, then

H(q, p) = 1
2∥p∥

2, and Theorem 3.1 recovers Proposition 1.1.

Proof of Theorem 3.1. In local coordinates as in (3.5), the fiberwise derivative map
ϕ defines pi as a function of q1, . . . , qn, V1, . . . , Vn by the equation

pi =
∂L

∂Vi
. (3.6)

We now relate the partial derivatives of H and L. To reduce confusion as in Re-
mark 3.2, it is easier to first take the total derivative of both sides of (3.5). This
gives

n∑
i=1

(
∂H

∂qi
dqi +

∂H

∂pi
dpi

)
=

n∑
i=1

(
pidVi + Vidpi −

∂L

∂qi
dqi −

∂L

∂Vi
dVi

)

=
n∑

i=1

(
Vidpi −

∂L

∂qi
dqi

)
where in the second line we have used (3.6). Thus we have

∂H

∂qi
= −∂L

∂qi
, (3.7)

∂H

∂pi
= Vi. (3.8)

By equations (3.6) and (3.7), the Euler-Lagrange equation (2.1) is equivalent to the
Hamiltonian equation (3.2). By equation (3.8), the other equation in the Lagrangian
equations of motion, namely (2.2), is equivalent to the other Hamiltonian equation
(3.1).
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