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Abstract. In section 1, we define the abelian groups Ak(X) in a manner analagous
to the homology groups Hk(X) by considering cycles of subvarieties modulo ratio-
nal equivalence. In section 2, we construct, for any Cartier divisor D on X and
subvariety V ⊂ X, an intersection class D · [V ] ∈ Ak−1(|D|∩|V |) and state its basic
properties. Bezout’s theorem follows easily. In section 3, we discuss the centerpiece
problem of the paper, namely computing the number of smooth plane conics tan-
gent to five fixed smooth conics. We will see that Bezout’s theorem is inadequate
to solve the problem. In section 4, we give intersection-theoretic definitions of the
Chern Classes and Segre Classes of an algebraic vector bundle, and use them to
complete the computation begun in section 3.

Advice to Reader: Sections 1 and 2 are primarily a resume and definitions of
facts, following chapters one and two of [1]. Section 3 loosely follows pages 749-756
of [2], though we adapt the material there to Fulton’s algebraic framework. Finally,
section 4 follows chapters three and four of [1]. While proofs are given, they can
probably be skimmed without losing much. The most important parts of the paper
are section 3 and the final pages of section 4, in which concrete calculations are
made.

1. Algebraic Cycles

In this paper, all schemes will be of finite type over a fixed field k, and a variety will
simply mean a reduced, irreducible scheme over k. In general, the theory does not
require k to be algebraically closed, but when we work examples in An or Pn, we will
tacitly make this assumption. X,Y, and Z will typically denote arbitrary schemes
over k, while V and W will always denote varieties. For any variety V , we denote
its fraction field by K(V ), and if V ⊂ X, then OX,V denotes the local ring of X at
the generic point of V . For any ring R, we let R∗ denote the multiplicative group of
units in R, and we let l(R) denote the length of R as an R-module (i.e. the length
of a maximal filtration of R by ideals with simple quotients, provided this length is
finite).

Definition 1. The group of k-cycles on X, denoted ZkX, is the free abelian group
generated by k-dimensional subvarieties of X. If V ⊂ X is a k-dimensional subvariety,
[V ] will denote the corresponding element of ZkX. Also, Z∗X will denote the graded
abelian group ⊕k≥0ZkX.

As with singular homology, the groups ZkX are too large to be useful, so we will
quotient by a relation similar to homological or homotopic equivalence. Recall that
if W is a (k + 1)-dimensional variety and f ∈ K(W ), then f defines a dominant map
W → P1. The fibers of this map can be thought of as cycles in ZkW , and they move
in a continuous family inside W . Thus, it is reasonable to insist that all the fibers of
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f be considered ‘homotopically equivalent.’ To formalize this idea, we need to know
how to associate cycles to the fibers of a map.

In fact, if X is any scheme with irreducible components Xi, we can define a cycle
[X] as follows. Let Vi be the variety obtained by giving Xi the reduced-induced
structure. Then set [X] =

∑
i ni[Vi], where ni = l(OX,Xi). This length is finite

because OX,Xi is the localization of a ring at a minimal prime ideal, and is therefore
Artinian. Continuing with the idea above, we can now associate to f the cycle
[f−1(0)]− [f−1(∞)], which we denote [div(f)]. Now we define the relation of rational
equivalence by simply demanding all cycles of the form [div(f)] be equivalent to zero.

Definition 2. We say a k-cycle
∑

i[Vi] ∈ ZkX is rationally equivalent to zero if there
exists a collection (Wj , fj), with each Wj a (k + 1)-dimensional subvariety of X and
each fj ∈ K(Wj)∗, such that

∑
j [div(fj)] =

∑
i[Vi]. We denote the set of k-cycles

rationally equivalent to zero by Ratk(X).

Definition 3. We define the group of cycle classes, denoted Ak(X), as the quotient
Zk(X)/Ratk(X).

Remark. In our definition of cycles and rational equivalence, we only made refer-
ence to reduced subvarieties of X. Thus, we can canonically identify Ak(X) with
Ak(Xred). When defining intersection products, we will often make implicit use of
this observation by failing to specify the scheme structure on the argument of Ak(·).
Example 1. Let X be the parabola in A2 defined by y − x2. We will compute the
divisor [div(f)] when f = y. We have f−1(0) = SpecOX/(f), and the only irreducible
component of f−1(0) is the origin O. We claim lOX,O/(f)(OX,O/(f)) = 2. To see this
note that f = x2 in OX,O and that the maximal ideal mO ⊂ OX,O is generated by
x. Thus, OX,O/(f) = OX,O/m2

O. This ring has length two since OX,O ⊃ mO ⊃ m2
O

is a maximal filtration, or, equivalently, since it is a k-vector space of dimension two
with basis {1, x}. Thus, [div(f)] = 2O. Since f was tangent to the parabola at O,
the coefficient of O can be interpreted as the order of vanishing of f along O.

Example 2. (a) If X is any n-dimensional variety, it is immediate from the defi-
nition that AnX = ZnX = Z, generated by [X], and AkX = 0 for k > n. In
particular, this determines A∗X when X is a point.

(b) If X = An, then any hypersurface V ⊂ X is defined by the vanishing of a
single regular function f ∈ k[x1, . . . , xn], so V = div(f). We conclude that
An−1X = 0.

(c) If X = Pn, any rational function on X has the form f/g, where f, g ∈
k[x0, . . . , xn] are homogenous polynomials . Since any hypersurface V ⊂ X
is defined by the vanishing of a single homogenous polynomial, we have
[V ] ∼ d[H], where H ⊂ X is a hyperplane, and d is the degree of V . Fur-
thermore, m[H] ∼ 0 implies m[H] = [div(f/g)] for some f, g ∈ k[x0, . . . , xn].
This implies deg(g) = 0, which implies m = 0. We conclude An−1(Pn) = Z,
generated by the cycle class of a hyperplane.

These elementary observations determine the cycle class groups for An and Pn

when n ≤ 2, but break down for larger n. For example, if one tries to compute
A1(A3) following the idea of example (b), the existence of curves which are not
global complete intersections (i.e. whose ideal is not defined by two equations) poses
problems. Thus, as with the singular homology groups of topology, we must develop
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some formal properties before anything is computable. As this development would
take us too far afield, we will simply take the following results as given.

AkAn =

{
Z if k = n

0 otherwise,

with AnX generated by [X].

AkPn = Z for k = 0, . . . , n,

with AkPn generated by the cycle class of a k-dimensional linear subspace [Lk] for
each k.

Algebraic cycles and cycle classes push-forward and pull-back under proper and
flat morphisms respectively. For definitions and properties of proper and flat mor-
phisms, the reader may check II.4 and III.9 in [3]. Unfortunately, the definitions
presented there are somewhat technical, and for our purposes the reader may rely on
the following intuitions. Proper morphisms are, as in topology, maps taking compact
sets to compact sets. Flat morphisms are maps whose fibers do not vary too wildly,
rather like fibrations in topology. For example, the fibers of a flat morphism to an
irreducible base scheme all have the same dimension. In fact, we will always assume
that all the fibers of a flat morphism have the same dimension, regardless of the
base scheme (this extra condition is usually expressed by saying a morphism is flat
of relative dimension n for some n).

With this understanding, the reader may believe that closed immersions are proper
and open inclusions are flat. In these cases, the proper push-forward and flat pull-
back of cycles, as defined below, are just the obvious inclusion and restriction of
subvarieties. The only other cases in which we shall need to use the push-forward
and pull-back are with the projection from a vector bundle or Pn-bundle to its base
space (which is both flat and proper), and the projection of a blow-up to its base
scheme (which is proper).

If f : X → Y is a proper morphism, then for any subvariety V ⊂ X, the image W =
f(V ) is a subvariety of Y . If dimW = dimV then the induced extension of function
fields K(V )/K(W ) is finite. We define a proper push-forward homomorphism f∗ :
ZkX → ZkY by setting

f∗[V ] =

{
[K(V ) : K(W )][W ] if dimW = dimV

0 if dimW < dimV

and extending linearly. An algebraic lemma, which we will not prove here, shows
that if α ∈ ZkX is rationally equivalent to zero, then f∗(α) is rationally equivalent
to zero. Thus, the push-forward map also induces a well-defined homomorphism
f∗ : AkX → AkY . In general, we denote both the push-forward of cycles and of cycle
classes by f∗ but the intended meaning should be clear from context.

Suppose f : X → Y is flat of relative dimension n. We define a flat pull-back
homomorphism f∗ : ZkY → Zk+nX by setting f∗[V ] = [f−1(V )] and extending
linearly. A simple calculation shows that, with this definition, f∗[Z] = [f−1(Z)] for
any closed subscheme Z ⊂ Y . An algebraic lemma, whose proof is omitted, shows
that if α ∈ ZkX is rationally equivalent to zero, then f∗(α) ∈ Zk+nX is rationally
equivalent to zero. Thus, there is an induced homomorphism f∗ : AkX → Ak+nY .
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As with proper push-forward, we will let context determine whether we are pulling
back cycles or cycle classes.

Flat and proper morphisms are preserved under base extension, so the following
lemma makes sense.

Lemma 1. Let
X ′

g′
//

f ′
²²

X

f

²²
Y ′ g // Y

be a Cartesian diagram, with g flat and f proper. Then for all α ∈ Z∗X, f ′∗g′∗α =
g∗f∗α as cycles in Z∗Y ′.

2. Intersection Products

Our goal in this section is to define a good notion of intersecting a cycle class with
a Cartier divisor D. First, we must recall several basic definitions and facts about
divisors (all this may be found in II.6 of [3]). A Cartier divisor on X consists of
a collection {(Ui, fi)}, where the Ui form an open cover of X, and the fi are non-
zero rational functions on X satisfying the condition that fi/fj is a unit on Ui ∩ Uj .
With this description, two collections {(Ui, fi)} and {(Vj , gj)} define the same Cartier
divisor if there exists a common refinement of the two open covers, say Wk, such that
fi|Wk

= uijkgj |Wk
for all i, j, with the uijk ∈ OX(Wk). Note that there is a natural

group structure on the set of Cartier divisors, induced by multiplication of rational
functions on each open set of the cover (given two divisors, one may assume they are
defined by the same open cover after taking a common refinement). We say that a
Cartier divisor is principal if it is defined by (X, f) for a single rational function on
X. From now on, a divisor will always mean a Cartier divisor.

To any divisor, we can associate a cycle [D] =
∑

i ni[Vi], where the integers ni

are computed as follows: For each codimension one subvariety [Vi] ∈ X, choose
some Uj meeting Vi, and write fj = gj/hj with both gj and hj regular functions on
Uj . Then set ni = l(OX,Vi/(gj)) − l(OX,Vi/(hj)). This is independent of the choice
Uj precisely because fi/fj is a unit on Ui ∩ Uj . Note that this map is actually a
group homomorphism, and that it takes principal divisors to cycles that are rationally
equivalent to zero. The map from Cartier divisors to cycles is, in general, neither
surjective or injective, but it is actually a bijection in a large number of cases. For
example, this holds whenever X is a nonsingular variety over C.

A divisor is effective if each ni ≥ 0 in [D]. This is equivalent to saying D can be
represented as {(Ui, fi)} with each fi regular (not merely rational) on Ui, so that D
is actually realized as a closed subscheme of X. Note that when D is effective, our
definition of [D] coincides with the cycle associated to the closed subscheme realized
by D. For any k-cycle α, we will denote its support by |α| (the closed algebraic set
consisting of the union of all the [Vi] appearing with non-zero coefficient in α). For
any divisor D, we will just write |D| in place |[D]|.

We should emphasize that not all codimension-one closed subschemes of a scheme
X are effective divisors (although this will be true on a nonsingular variety in light of
our previous remark). To be a divisor, it must be locally defined by the vanishing of a
single regular function. In defining intersection products for divisors rather than for
arbitrary subschemes, we are completely by-passing all the pathologies that have given
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intersection theory such a chequered history (these arise when intersecting schemes
which are not locally defined by the correct - i.e. codimension-many - number of
equations). Later, we will see an example of codimension-one subvariety which is not
a divisor, and this example will at least suggest why intersecting arbitrary subschemes
is problematic.

Recall that to any divisor {(Ui, fi)} on X, there is an associated line bundle OX(D)
defined by gluing together trivializations over the various Ui, using the fi/fj as the
transition functions on Ui ∩ Uj . In fact, on a variety V , all line bundles come from
some divisor via this construction. We say two divisors are linearly equivalent if
their difference is principal, and it is not hard to check that two divisors determine
isomorphic line bundles if and only if they are linearly equivalent. Note that if D and
D′ are linearly equivalent, then [D] and [D′] are certainly rationally equivalent, but
the converse need not hold in general.

Finally, we note that if D is a divisor on X and j : V → X is a morphism such that
j(V ) ( |D|, then one obtains a divisor j−1D on V by pulling back the local equations
for D to get local equations over the open cover j−1Ui. (The hypothesis j(V ) ( |D|
is necessary to ensure that no rational function pulls back to zero.) By contrast, if L
is a line bundle on X, then the pull-back bundle j∗L is always defined. This makes
possible the following notion of ‘intersecting with a divisor D.’

Definition 4. Let D be a divisor on X, and j : V → X the closed inclusion of a k-
dimensional subvariety. The intersection product D · [V ] is a cycle class in Ak−1(|D|∩
|V |) defined as follows:

Case (1) If [V ] ( |D|, then let D · [V ] = [j−1D]
Case (2) If [V ] ⊆ |D|, then let D · [V ] = [D′], for any divisor D′ such that j∗OX(D) =

OV (D′).
If α =

∑
i[Vi] is any cycle in Z∗X, we define D · α =

∑
i D · [Vi] as a cycle class in

A∗X.

Note that in Case (2), we use the fact that all line bundles on a variety come from
some divisor, and that any two divisors determining the same line bundle are linearly
equivalent (and therefore rationally equivalent), so we get a well-defined cycle class.

If D is effective, then the prescription of case (1) simply amounts to taking the
scheme theoretic intersection D ∩ V , and then taking the associated cycle [D ∩ V ].
Of course, when V ⊂ |D|, then the scheme-theoretic intersection D ∩ V has the
wrong dimension so we must use a different prescription. When D is effective, the
recipe given in Case (2) may be interpreted geometrically as follows: OX(D)|D is
the normal bundle ND/X . The process of restricting this bundle to V , and then
taking the associated divisor D′, is the algebraic analogue of taking a generic section
s of ND/X and letting D′ be the subscheme defined by the vanishing of s on V . In
other words, one perturbs D to a section of its normal bundle, and defines D.[V ] by
intersecting this section with the copy of V embedded in the zero-section.

The reason we do not define D · [V ] by the prescription of case (2) in general is
that we want to obtain a cycle class in |D| ∩ |V | not simply on |V |. For example, if
D and V are two distinct lines in P2, meeting at a point P , computing D · V by the
method of case (2) would give an arbitrary point on the line V , while the method of
case (1) gives precisely the cycle class [P ] ∈ A0P . This will be extremely important
for us in section 3, when we need to keep track of the different connected components



6 DAVID SMYTH

of |D| ∩ |V | on which D · [V ] is supported. In section 4, however, we will be less
concerned with precise support of a given cycle class, and will therefore be able to
think of the intersection product as universally given by case (2).

Proposition 2. (Basic Properties of Intersection Classes)
(a) Let D be a divisor on X, and let α, α′ be k-cycles on X. Then

D · (α + α′) = D · α + D · α′
in Ak−1(|D| ∩ (|α| ∪ |α′|)).

(b) Let D, D′ be divisors on X, and let α be a k-cycle on X. Then

(D + D′) · α = D · α + D′ · α
in Ak−1((|D| ∪ |D′|) ∩ |α|).

(c) (Flat Pull-Back) Let D be a divisor on X, and let α be a k-cycle on X. If
f : X ′ → X is flat of relative dimension n, and g is the restriction of f to
f−1(|D| ∩ |α|), then

f−1D · f∗α = g∗(D · α)

in Ak+n−1(f−1(|D| ∩ |α|))
(d) (Projection Formula) Let D be a divisor on X, and let α be a k-cycle on X ′.

If f : X ′ → X is proper, g is the restriction of f to f−1(|D|) ∩ |α|, then

g∗(f−1D · α) = D · f∗(α)

as cycle classes in Ak−1(|D| ∩ f(|α|)).

(e) (Commutativity) If D and D′ are divisors on X, then D · [D′] = D′ · [D].
(f) If D and D′ are linearly equivalent divisors on X, and α is a k-cycle on X,

then D · α and D′ · α represent the same cycle class in Ak−1(α).

Remark. Parts (c) and (d) of the proposition do not make sense as stated because
the pull-back of a divisor is not defined for arbitrary morphisms f : X ′ → X. The
correct amendment is to define a generalized notion of divisor which still determines
intersection products, but also has a universally defined pull-back. Since we do not
have space to spell out this generalization, these parts may be assumed to carry the
extra hypothesis that X ′ and X are varieties and f(X ′) ( |α| (in which case f−1D is
defined). This extra hypothesis will in fact hold in the concrete cases where we make
appeal to this lemma. The general framework of characteristic classes established in
section 4, however, also relies on this generalized notion of pull-back so we recommend
the reader simply accept this ambiguity in the statements of lemmas and propositions
for the time being.

Proof. (a) is obvious from the definition, and in consequence of (a) other parts of
the proposition may be checked in the case α = [V ]. Then (b) and (f) boil down to
the fact that the map from divisors to cycles is a homomorphism and the fact that
linearly equivalent divisors determine the same line bundle. Parts (c) and (d) require
some technical algebraic lemmas to show that the multiplicities on both sides of the
equation are correct, but the reader may verify that the stated equalities at least
make sense set-theoretically.

Curiously, (e) turns out to be the key property of the intersection product requiring
genuine proof. Note that it is obvious if, say, D and D′ are both effective with no
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irreducible components in common (for then both sides are simply the cycle associated
to the scheme-theoretic intersection [D ∩D′]) or if D and D′ are equal. In general,
one must blow-up X along D∩D′ and use (c) to reduce to these special cases. Details
may be found in section 2.3 of [1]. ¤

An importance consequence of (c) is that intersection products may be computed
locally on each connected component of |D| ∩ |α|. To be more precise, suppose
Z1, . . . , Zn are the connected components of |D| ∩ |α|. Then there is a natural de-
composition A∗(|D| ∩ |α|) = A∗(Z1)⊕ . . .⊕ A∗(Zn). When we form the intersection
product D ·α ∈ A∗(|D|∩ |α|), it is natural to expect that the piece of D ·α supported
on Zi should simply be the intersection product D|Ui · α|Ui , where Ui is an open
neighborhood containing Zi and none of the other connected components. If f is the
inclusion of the open set Ui into X, then (c) says exactly that.

Example 3. Let X be singular cone in A3 defined by the equation z2−xy. Note that
X contains two lines l and l′, defined by x = z = 0 and y = z = 0 respectively. Let D
be the principal divisor on X defined by the regular function x. One easily computes
[div(x)] = 2l. (The zero-locus of x is l, and in the local ring OX,l the maximal ideal
ml is generated by z, so OX,l/(x) = OX,l/m2

l ). Now we compute D · l′.
In this case l′ ( |D|, so we simply pull-back the equation defining D to l′, and take

the cycle class of the corresponding divisor on l′. If we let P be the origin in A3, then
we see at once that x vanishes on P ∈ l′ with multiplicity one, so D · l′ = [P ] ∈ A0P .

In fact, we can use this result to show that there does not exist a divisor D′
with [D′] = [l′]. For if such D′ existed, we must have D′ · [l] = [P ], since the
scheme-theoretic intersection of l and l′ is just P with multiplicity one. Then, using
proposition 1 parts (e) and (a), we would have

[P ] = D · [D′] = D′ · [D] = D′ · 2[l] = 2D′ · [l] = 2[P ],

a contradiction. This example may be taken as a first indication of the difficulty in
constructing more general intersection products between subschemes which are not
complete intersections (i.e. not cut out by a succession of divisors).

We are ready to consider the specific case of intersection theory in Pn. Note that
by proposition 1(e), the expression P (D1, . . . , Dn) · α, where P is a polynomial in n
variables, gives a well-defined element of A∗(|D1|∩ . . .∩|Dn|∩ |α|). When D1, . . . , Dn

are divisors on X, we will also use the notation P (D1, . . . , Dn) as a short-hand for
the cycle class P (D1, . . . , Dn) · [X].

Definition 5. Given a collection of effective divisors D1, . . . , Dk on an n-dimensional
variety X, we say that they intersect properly if every irreducible component of their
scheme-theoretic intersection D1 ∩ . . .∩Dn has dimension n− k. If, in addition, each
irreducible component of D1∩. . .∩Dn appears with multiplicity one in [D1∩. . .∩Dn],
then we say that they intersect transversely.

Definition 6. The degree of k-cycle α ∈ ZkPn is the unique integer d, such that
α is rationally equivalent to d[Lk], where [Lk] is the class of a k-dimensional linear
subspace.

Theorem 3 (Bezout’s Theorem). Let D1, . . . , Dk be effective divisors (i.e. hypersur-
faces) on Pn. Then

deg(D1 · . . . ·Dn) = deg(D1) · . . . · deg(Dn).
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Proof. Using proposition 1(f), we see that both sides of the equation depend only on
the linear equivalence classes of the [Di], so we may replace each Di by deg(Di)Li,
where the Li are hyperplanes in Pn which intersect transversely.

Now, as we compute the intersection D1 · . . . · Dk, we are simply taking scheme-
theoretic intersections at every step. Clearly, L1 · . . . ·Lk = [Pn−k], the class of (n−k)-
dimensional linear subspace. Since the intersection product is a homomorphism, we
conclude

deg(D1)[L1] · . . . · deg(Dk)[Lk] = deg(D1) · . . . · deg(Dn)[Pn−k].

Thus,
D1 · . . . ·Dn ∼ deg(D1) · . . . · deg(Dn)[Pn−k],

which says deg(D1 · . . . ·Dn) = deg(D1) · . . . · deg(Dn) as desired. ¤

3. The Problem of Counting Conics

In this section, we explain a problem which was a great stimulus to the develop-
ment of intersection theory, precisely because it exposed the inadequacy of Bezout’s
theorem. Fix five smooth conics C1, . . . , C5 in the projective plane P2. How many
smooth conics will be tangent to all five? In the next few paragraphs, we will for-
malize this problem. We reduce the problem to a few key calculations, which will be
carried out at the end of section 4 using characteristic classes. In fact, with generous
hindsight, it is possible to see these difficult calculations as motivation for establishing
intersection theory within the framework of characteristic classes.

Plane conics are naturally parametrized by P5 via the correspondence

a0x
2 + a1y

2 + a2xy + a4xz + a4yz + a5z
2 → [a0 : a1 : a2 : a3 : a4 : a5].

The locus of singular conics is parametrized by a hypersurface Y ⊂ P5. In fact Y is
just the image of the closed immersion j : P2 × P2 → P5 defined by

[a : b : c]× [a′ : b′ : c′] → [aa′ : bb′ : ab′ + ba′ : ac′ + ca′ : bc′ + cb′ : cc′],

since a conic is singular if and only if it degenerates into two lines. The locus of
double lines Z ⊂ P5 is the image of the embedding i : P2 → P5 defined by

[a : b : c] → [a2 : b2 : 2ab : 2ac : 2bc : c2].

We shall say two conics are tangent if they intersect at some point with multiplicity
greater than one, where the multiplicity of intersection of two conics f and g at a
point P is defined as the dimk(OP2,P /(f, g)). Observe that, with this definition, any
double-line f is tangent to every other conic g. Indeed, after a change of coordinates
we may assume f = x2 and P = (0, 0). Then the dimension of OP2,P /(f, g) > 1 since
the k[x, y]-span of f and g can contain at most a one-dimensional subspace of the
k-vector space spanned by {1, x, y}. This fact will be the major sticking point in the
problem we wish to solve.

Let VC ⊂ P5 be the locus of conics which are tangent to a fixed smooth conic C.
Then the set of smooth conics tangent to C1, . . . , C5 is simply the set VC1∩. . . VC5−Y.
In general, this set will not be finite. Is it, however, reasonable to expect that the
set will be a fixed finite integer for generic C1, . . . , C5? (We use the adjective generic
to mean that the locus of conics (C1, . . . , C5) ∈ P5

5 satisfying our stated condition is
open in P5

5.) Suppose we could prove that for generic C1, . . . , C5,

(1) Each VCi is hypersurface of degree six in P5,
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(2) The hypersurfaces VCi meet transversely at every component in the nonsin-
gular locus, and

(3) The hypersurfaces VCi contain no singular conics in common.

Taken together, (2) and (3) imply that every irreducible component of the scheme-
theoretic intersection VC1 ∩ . . .∩ VC5 is a point corresponding to a nonsingular conic,
and that each point occurs with multiplicity one in the intersection product VC1 · . . . ·
VC5 . (Recall the notation D1 · . . . ·Dn just means the cycle class D1 · . . . ·Dn · [X],
where the Di are divisors on X.) Thus, the number of nonsingular conics tangent
to C1, . . . , C5 would be the degree of this intersection product. By Bezout’s theorem
and (1), this degree must be 65.

Alas, we have already seen that (3) fails because every VC must contain the surface
Z of double-lines. Thus, the best we can hope for is that for C1, . . . , C5 generic:

(3†) The hypersurfaces VCi contain no singular conics in common, except the sur-
face of double-lines.

In fact, (1), (2), and (3†) hold (generically). The arguments are ad hoc, elementary,
and will be omitted. For the rest of this section, we assume our choice of C1, . . . , C5

satisfies these assumptions.
Now our situation is this: the scheme-theoretic intersection VC1 ∩ . . .∩VC5 consists

of Z and a residual finite set of nonsingular conics tangent to C1, . . . , C5. By the
discussion following proposition 1, the intersection product VC1 · . . . · VC5 can be
computed on each connected component separately. Thus, VC1 · . . . · VC5 will be the
sum of some class α ∈ A0Z and the classes [P ] (in A0P ) for each point P in the
residual set. Thus, the number we seek is 65 − deg(α).

Now our problem is reduced to computing deg(α), but this is hardly straightfor-
ward. The key idea is to blow-up X along Z, and use the compatibility of intersection
products with proper push-forward. Blowing-up is a general method for reducing
problems about arbitrary subvarieties Z ⊂ X to problems about divisors. We shall
use the following facts about blow-ups (for the definition of blowing-up and references
for the following statements, please see II.7 in [3]).

Proposition 4. Properties of Blow-Ups

1 When X is a variety, and Z ⊂ X is a nonsingular subvariety, the blow-up X̃
of X along Z is a variety.

2 There is a proper morphism π : X̃ → X, which is an isomorphism when
restricted to the open set π−1(X − Z).

3 The closed subscheme Z̃ = π−1(Z) is an effective divisor on X̃, called the
exceptional divisor.

4 For any effective divisor D on X, π−1D = D̃ + mE, where D̃ is the blow-up
of D along D ∩ Z and m is the multiplicity of Z in D. (This multiplicity
may be defined as the greatest power of the maximal ideal of OX,Z containing
a local equation for D in a neighborhood of Z.)

Since π : X̃ → X is proper and π∗([X̃]) = [X], proposition 2(d) says

VC1 · . . . · VC5 = π∗(π−1(VC1) · . . . · π−1(VC5))

By blow-up property (4) above, we have π−1(VCi) = ṼCi + mZ̃, where m is the
multiplicity of Z in VCi . (Actually, this multiplicity is two, but this computation is
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also omitted.) Now, using basic properties of the intersection product, we compute

ṼC1 · . . . · ṼC5 = (π−1(VC1)−mZ̃) · . . . · (π−1(VC5)−mZ̃)

= π−1(VC1) · . . . · π−1(VC5)

−
∑

i<j<k<l

mZ̃ · π−1(VCi) · π−1(VCj ) · π−1(VCk
) · π−1(VCl

)

+
∑

i<j<k

m2Z̃2 · π−1(VCi) · π−1(VCj ) · π−1(VCk
)

−
∑

i<j

m3Z̃3 · π−1(VCi) · π−1(VCj ) +
∑

i

m4Z̃4 · π−1(VCi)−m5Z̃5,

as cycle classes in A0X̃. This significance of this messy equation is illuminated once
we realize that for C1, . . . , C5 generically chosen,

(4) The set-theoretic intersection ṼC1 ∩ . . . ∩ ṼC5 is disjoint from Z̃.

Now we see that the left side of the equation is a cycle class supported off Z̃. On
the right side of the equation, every term past the first is supported on Z̃. As for
π−1(VC1) · . . . · π−1(VC5), it must decompose into a sum of cycle classes supported on
Z̃ and the inverse images of the residual points. Let the piece supported on Z̃ be
denoted (π−1(VC1) · . . . · π−1(VC5))

Z̃ . Now if we restrict our attention to what the
equation says regarding cycle classes supported on Z̃, we have

0 = (π−1(VC1) · . . . · π−1(VC5))
Z̃

−
∑

i<j<k<l

mZ̃ · π−1(VCi) · π−1(VCj ) · π−1(VCk
) · π−1(VCl

)

+
∑

i<j<k

m2Z̃2 · π−1(VCi) · π−1(VCj ) · π−1(VCk
)

−
∑

i<j

m3Z̃3 · π−1(VCi) · π−1(VCj ) +
∑

i

m4Z̃4 · π−1(VCi)−m5Z̃5

Let p be the restriction of π to Z̃. Applying p∗ to the equation above, and using
proposition 1(c), we obtain

p∗(π−1(VC1)·. . .·π−1(VC5))
Z̃ =

∑

i<j

m3VCi·VCj ·p∗([Z̃3])−
∑

i

m4VCi·p∗([Z̃4])+m5p∗([Z̃5]),

as cycle classes in A0Z. Note that the terms from the second and third line vanished
because p∗([Z̃]) = p∗([Z̃2]) = 0 (we are pushing forward to a two-dimensional space,
while [Z̃] and [Z̃2] are cycles in dimensions four and three respectively).

The expression on the left of this equation is just the piece of VC1 ·. . .·VC5 supported
on Z. Though it is not obvious, the expression on the right is intrinsically computable.
It may help to think of it as the zero-dimensional component of

(1 + 6H)5 · (m5π∗(Z̃5)−m4π∗(Z̃4) + m3π∗(Z̃3)),



ON THE NUMBER OF SMOOTH CONICS TANGENT TO FIVE FIXED CONICS 11

where H is a hyperplane divisor in P5. Now we see the problem boils down to
computing (m5π∗(Z̃5)−m4π∗(Z̃4) + m3π∗(Z̃3)) ∈ A∗Z. In the next section, we shall
see that this is essentially the total Segre class of the normal bundle NZ/P5 .

In summary: the following five assertions, whose proofs all rely on relatively ele-
mentary geometric arguments and are omitted, all hold for generic C1, . . . C5.

(1) VC ⊂ P5 is a hypersurface of degree 6.
(2) The hypersurfaces VCi meet transversely at every component in the nonsin-

gular locus,
(3†) The hypersurfaces VCi contain no singular conics in common, except the dou-

ble lines,
(4) The set-theoretic intersection ṼC1 , . . . , ṼC5 is disjoint from Z̃, and
(5) The multiplicity m of Z in VCi is 2.

Given these assertions, we may conclude that the number of nonsingular conics tan-
gent to give generic conics C1, . . . , C5 is precisely 65− d, where d is the degree of the
zero-dimensional component of

(1 + 6H)5 · (25π∗(Z̃5)− 24π∗(Z̃4) + 23π∗(Z̃))

We now turn to the problem of building the machinery which makes this computation
trivial.

4. Algebraic Characteristic Classes

In this section, we will inductively build a definition of Chern Classes and Segre
Classes entirely in terms of algebraic intersection theory. Recall from section 1 that
for any divisor D, we have an intersection homomorphism ZkX → Ak−1|D|, given
by α → D · α. There is a canonical inclusion Ak−1|D| → Ak−1X given by proper
push-forward, so we can easily view this as a homomorphism ZkX → Ak−1X. If
α ∈ ZkX is rationally equivalent to zero, it’s not hard to see that D · α = 0. Using
proposition 1(e), we have

D · (
∑

i

[div(fi)]) =
∑

i

div(fi) · [D] = 0 ∈ Ak−1(|D|),

because div(fi) · [V ] is, by the definition of the intersection product, the cycle asso-
ciated to a principal divisor on V . Thus, there is an induced homomorphism

iD : AkX → Ak−1X

.
By proposition 1(f), iD does not depend on the linear equivalence class of D.

Therefore, we can sensibly view the homomorphism as depending only on the line
bundle OX(D), rather than the divisor D. The homomorphism iD has the form of a
cap product by a cohomology class, which motivates the following definition.

Definition 7. Let L be a line bundle on X. For any variety V ⊂ X, we have
L|V = OX(DV ) for some divisor DV on V . Define the first chern class of L, denoted
c1(L), as the intersection homomorphism

c1(L) : AkX → Ak−1X,

which sends
[V ] → DV · [V ] = [DV ]

.
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Observe that if X is a variety, so that L = OX(D) for some divisor D on X, this
definition coincides with the homomorphism iD defined above. The awkwardness in
this definition simply results from the fact that a line bundle L over an arbitrary
scheme need not come from any globally-defined divisor on X. Given α ∈ AkX, we
will denote its image under c1(L) by c1(L)∩α. The basic properties of the first chern
class follow easily from the basic properties of the intersection product.

Proposition 5. (a) If L,L′ are line bundles on X, α a k-cycle on X, then

c1(L) ∩ (c1(L′) ∩ α) = c1(L′) ∩ (c1(L) ∩ α)

in Ak−2X.
(b) (Additivity)If L, L′ are line bundles on X, α a k-cycle on X, then

c1(L⊗ L′) ∩ α = c1(L) ∩ α + c1(L′) ∩ α

in Ak−1X.
(c) (Flat pull-back) If f : X ′ → X is flat of relative dimension n, L a line bundle

on X, then
c1(f∗L) ∩ f∗α = f∗(c1(L) ∩ α)

in Ak+n−1(X ′)
(d) (Projection formula) If f : X ′ → X is proper, L a line bundle on X, α a

k-cycle on X ′, then

f∗(c1(f∗L) ∩ α) = c1(L) ∩ f∗(α)

in Ak−1X.

Proof. Parts (a),(b),(c), and (d) follow immediately from parts of (e),(b),(c),(d) of
proposition 2. ¤

In order to generalize the first Chern class, we must recall some facts about projec-
tive bundles in algebraic geometry. If E is a vector bundle on X of rank e + 1, then
the sheaf of sections of E is a locally-free sheaf of rank e+1 on X, usually denoted E ,
and we construct an associated projective space bundle as follows. Let {SpecAi} be
an open affine cover of X over which E is trivial. Then one forms the projective bun-
dle P(E) by gluing together the open subschemes ProjAi[x0, . . . xe] according to the
linear transition functions of E . The natural maps pi : ProjAi[x0, . . . , xe] → SpecAi

glue to define a morphism p : P(E) → X which is both proper and flat. Also, the line
bundles Oi(1) on each ProjAi[x0, . . . , xe] (these are, by definition, the line bundles
corresponding to the divisor class of a hyperplane) glue to give a line bundle OP (E)(1),
often called the canonical bundle.

Given any morphism f : X ′ → X, there is a natural identification of P (E) ×X

X ′ with P (f∗E). Thus, there is a natural map f ′ : P (f∗E) → P (E), such that
f ′∗OP (E)(1) = OP (f∗E)(1). These facts may be found in Chapter II, Section 7 of [3].

Definition 8. Let E be a vector bundle of rank e+1 on X, P the associated projective
space bundle with projection p : P → X. Let O(1) be the canonical line bundle on
P . Then the Segre classes si(E) are homomorphisms A∗X → A∗−iX given by:

α → p∗(c1(O(1))e+i ∩ p∗α)
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Since, the action of c1(O(1)) on A∗P is given by intersecting with a (twisted)
generic hyperplane section, this formula has a transparent geometric interpretation:
Given a k-cycle in X, take it’s inverse image to get a k + e cycle in P , then cut with
e+ i generic hyperplane sections, to get something k− i dimensional in P , and finally
project this down to X. And since the definition is built up from the definition of
the first Chern class, it comes equipped with the same desirable formal properties.

Proposition 6. (a) (Commutativity)If E, F are vector bundles on X, α a k-
cycle on X, then

si(E) ∩ (sj(F ) ∩ α) = sj(F ) ∩ (si(E) ∩ α)

in Ak−i−jX.
(b) If E is a vector bundle on X, α a k-cycle on X, then

si(E) ∩ α = 0 for i < 0, and

s0(E) ∩ α = α.

(c) (Flat pull-back) If f : X ′ → X is flat of relative dimension n, E a vector
bundle on X, and α a k-cycle on X, then

si(f∗E) ∩ f∗α = f∗(si(E) ∩ α)

in Ak+n−i(X ′)
(d) (Projection formula) If f : X ′ → X is proper, E a line bundle on X, α a

k-cycle on X ′, then

f∗(si(f∗E) ∩ α) = si(E) ∩ f∗(α)

in Ak−iX.

Proof. We prove (c) and (d) first. For (c), we have the following fibre square with f
and f ′ flat:

P (f∗E)
f ′

//

p′

²²

P (E)

p

²²
X ′ f // X

f∗(si(E) ∩ α) = f∗p∗(c1(OE(1)e+i ∩ p∗α)

= p′∗f
′∗(c1(OE(1))e+i ∩ p∗α) by lemma 1

= p′∗(c1(f∗OE(1))e+i ∩ f ′∗p∗α) by proposition 5(c)

= p′∗(c1(f∗OE(1))e+i ∩ p′∗f∗α) by functoriality of flat pull-back

= si(f∗E) ∩ f∗α

The proof of (d) is a nearly identical unravelling of definitions, using proposition 5
(d) at the appropriate juncture.

For (b), it suffices to prove the statement when α = [V ], a variety. Making the
proper base change to V , part (c) says we may assume X = V . Then Ak−iX = 0
for i < 0, so the first statement holds. For the second statement, we must have
s0(E) ∩ [V ] = m[V ] for some integer m (simply because AkV = Z[V ]). The integer
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m is locally determined, so, after making a flat base change to an open set U over
which E is trivial, we may assume P (E) = X × Pe. But then

s0(E) ∩ [X] = c1(O(1))e ∩ p∗[X] = c1(O(1))e ∩ [X × P e] = [X],

since the action of c1(O(1)) is simply to cut by a hyperplane section of the bundle.
Thus, m = 1 as desired.

For (a), we consider the fibre square

Q
p′

//

q′
²²

P (F )

q

²²
P (E)

p // X

If e + 1 and f + 1 are the ranks of E and F , then

si(E) ∩ (sj(F ) ∩ α) = p∗(c1(OE(1)e+i) ∩ p∗q∗(c1(OF (1))f+j ∩ q∗α))

= p∗(c1(OE(1)e+i) ∩ q′∗p′∗(c1(OF (1))f+j ∩ q∗α)) by lemma 1

= p∗q′∗(c1(q′∗OE(1))e+i) ∩ (c1(p′∗OF (1))f+j ∩ p′ ∗ q∗α)))by proposition 5 (c),(d)

= q∗p′∗(c1(p′∗OF (1))f+j ∩ (c1(q′∗OE(1))e+i ∩ q′∗p∗α))

by proposition 5 (a) and functoriality of push-forward/pull-back. Reversing the steps,
the last expression is seen to equal sj(F ) ∩ (si(E) ∩ α). ¤

Now we shall see that the Chern classes of a vector bundle are determined by the
Segre Classes in a straightforward manner. While the Segre classes have a straight-
forward geometric interpretation, the Chern classes have, in some sense, more natural
combinatorial properties.

The Segre classes naturally form a commutative ring with identity, with multipli-
cation given by composition of homomorphisms. Thus, for any vector bundle E on
X, we may define a formal power series

st(E) =
∞∑

i=0

si(E)ti.

Definition 9. We define the Chern classes ci(E) : AkX → Ak−iX by the relation

st(E)−1 =
∞∑

i=0

ci(E)ti.

For example, c0(E) = 1, c1(E) = −s1(E), and c2(E) = s1(E)2 − s2(E).
We should check immediately that if E is a line bundle on X, then our new defi-

nition of c1 is compatible with our original definition for line bundles. (Equivalently,
c1(E) ∩ [X] = [D] where D is the divisor corresponding to E). Let us temporarily
denote our new definition of the first Chern class by c′1 and the old definition by c1.
Then we have

c′1(E) ∩ [X] = −s1(E) ∩ [X] = −c1(OE(1)) ∩ [P (E)] = −c1(E
∨
) ∩ [X] = c1(E) ∩ [X],

where the last equality holds by additivity of the original first Chern class (proposition
5), and the second to last equality holds because the natural identification of P (E)
with X takes OE(1) to E

∨
. (Here E

∨
is the dual Hom(E,OX).)
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The following formula is the key both to proving basic properties of Chern classes,
and for many practical computations.

Proposition 7. Suppose E has a filtration by line bundles Li. This means that there
exists a sequence of subbundles E = E1 ⊃ E2 ⊃ . . . ⊃ En ⊃ En+1 = 0 such that
Ei/Ei+1 is a line bundle Li, where rank(E) = n. Then

ct(E) =
n∏

i=1

(1 + c1(Li)t)

The proof requires the following lemma.

Lemma 8. If E satisfies the hypotheses of the above proposition, and E has a nowhere
vanishing section s then

∏r
i=1 c1(Li) = 0.

Proof. (Lemma 8) It suffices to prove the following stronger statement by induction
on r: If s is a section of E vanishing on the closed subset Z ⊂ X, α a k-cycle on X,
then

∏r
i=1 c1(Li) ∩ α is rationally equivalent to a cycle supported on Z.

The section s determines a section s̄ of the quotient bundle L1, and s̄ vanishes on
some closed subset Y ⊃ Z. Now c1(L1)∩α is rationally equivalent to a cycle supported
on Y since Lr corresponds to a divisor with support Y . Thus, c1(L1) ∩ α = j∗β ∈
Ak−1X for some β ∈ Ak−1Y , where j : Y → X is the inclusion. By the projection
formula (proposition 5 (d)),

r∏

i=1

c1(Li) ∩ α = j∗

(
r∏

i=2

c1(j∗Li) ∩ β

)

Now s induces a section of j∗E2 which vanishes on Z. By induction,
∏r

i=2 c1(j∗Li) is
rationally equivalent to a cycle supported on Z, hence

∏r
i=2 c1(j∗Li)∩β is as well. ¤

We return to the proof of proposition 7.

Proof. Let p : P (E) → X be the associated projective bundle.The bundle p∗E⊗O(1)
has a filtration with line bundle quotients p∗Li⊗O(1), and the tautological subbundle
O(−1) of p∗E induces a trivial line subbundle of p∗E⊗O(1). Thus, the lemma implies

n∏

i=1

c1(p∗Li ⊗O(1)) = 0.

Let ζ = c1(O(1)), σk the kth elementary symmetric function of the c1(Li), and σ̃k

the kth elementary symmetric function of the c1(p∗Li). By additivity (proposition 5
(b)), this equation may be expanded out to obtain

ζn + σ̃1ζ
n−1 + . . . σ̃n = 0.

Thus, for all i > 0 and α ∈ A∗X,

p∗(ζn+i−1 ∩ p∗α) + p∗(σ̃1ζ
n+i−2 ∩ p∗α) + . . . p∗(σ̃nζi−1 ∩ p∗α) = 0.

By the projection formula (proposition 6 (d)), this gives

si(E) ∩ α + σ1si−1(E) ∩ α + . . . σrsi−r(E) ∩ α = 0.

Thus,
(1 + σ1t + . . . σrt

r)st(E) = 1,
which implies the statement of the proposition. ¤
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Proposition 9. (a) (Commutativity)If E, F are vector bundles on X, α a k-
cycle on X, then

ci(E) ∩ (cj(F ) ∩ α) = cj(F ) ∩ (ci(E) ∩ α)

in Ak−i−jX.
(b) (Flat pull-back) If f : X ′ → X is flat of relative dimension n, E a vector

bundle on X, and α a k-cycle on X, then

ci(f∗E) ∩ f∗α = f∗(ci(E) ∩ α)

in Ak+n−i(X ′)
(c) (Projection formula) If f : X ′ → X is proper, E a line bundle on X, α a

k-cycle on X ′, then

f∗(ci(f∗E) ∩ α) = ci(E) ∩ f∗(α)

in Ak−iX.
(d) (Vanishing) If E is a vector bundle on X, then for all i > rank(E), ci(E) = 0.
(e) (Whitney Sum Formula) Given an exact sequence of vector bundles on X:

0 // E′ // E // E′′ // 0

We have ct(E) = ct(E′)ct(E′′).

Proof. Since each Chern class is a polynomial in the Segre Classes, statements (a),(b),(c)
each follow from the corresponding statement for Segre classes proved in proposition
6.

For (d), the statement holds when E has a filtration by line bundles by proposition
7. Also, (e) holds when E′ and E′′ have filtrations with line bundle quotients Li and
Lj . For then there is an induced filtration on E with quotients Li and Lj , and again
proposition 7 gives the desired result. By the Splitting principle, below, these special
cases imply the formulas in general. ¤

The Splitting principle says that to prove any formula involving the Chern classes
of a finite number of vector bundles, it is sufficient to establish the formula in the
case where all the bundles involved have filtrations with line bundle quotients. This
principal is justified by the naturality with respect to flat pull-back (proposition 9(b)),
in conjunction with the following construction.

Given a finite collection S of vector bundles on X, we construct a flat morphism
f : X ′ → X such that

(1) f∗ : A∗X → A∗X ′ is injective, and
(2) For each E in the collection, f∗E has a filtration with line bundle quotients.

First, fix one bundle E in the collection, let P = P (E), and consider the projection
p : P (E) → E. Note that the homomorphism p∗ : Ak → Ak+n−1 is injective for
each k by proposition 6 (b), since p∗(c1(OE(1))n−1 ∩ (·)) is inverse to it. Also, p∗E
has the tautological subbundle OE(−1) (this is just the bundle whose fiber over a
point p ∈ P (E) is the line corresponding to p). Now E′=p∗E/OE(−1) has rank
one less than E; repeating this process with E′ and continuing inductively, we get
a finite sequence of maps, whose composition satisifies (1) and satisfies (2) for the
fixed bundle E. To finish, we simply repeat the construction for each bundle in the
collection.
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The great virtue of characteristic classes is their intrinsic computability. We will
compute a few examples, before proving the crucial proposition linking these char-
acteristic classes to the intersection numbers we were attempting to calculate in the
problem of the five conics. The following definition is a convenient way of packaging
the information encoded in these characteristic classes.

Definition 10. Let E be a rank n vector bundle on X. The total Chern class of E
is an element c(E) ∈ A∗X defined by

c(E) = (1 + c1(E) + . . . + cn(E)) ∩ [X].

Similarly, the total Segre class of E is an element s(E) ∈ A∗X defined by

s(E) = (1 + s1(E) + s2(E) . . .) ∩ [X].

This sum is finite since si(E) ∩ [X] = 0 for all i > dimX.

Note that the Whitney sum formula implies c(E) = c(E′)c(E′′) when there is an
exact sequence of bundles

0 // E′ // E // E′′ // 0

Example 4. Recall the fundamental exact sequence

0 // OPn // OPn(1)n+1 // TPn // 0

From this sequence, we obtain

c(TPn) = c(OPn(1)n+1)c(OPn) = (1 + H)n+1,

since c(OPn) = 1 and c(OPn(1)) = (1 + H), where H is the class of a hyperplane in
Pn.

Example 5. We have an exact sequence

0 // TX
// i∗TY

// NX/Y // 0

whenever i : X → Y is a closed immersion of nonsingular varieties. We obtain

c(i∗TY ) = c(NX/Y )c(TX).

For example, suppose X ⊂ Pm has codimension r and X = D1 · · · · · Dr is the
scheme-theoretic intersection of r hypersurfaces. Then the normal sheaf NX/Y has a
filtration whose quotients are isomorphic φ∗i NDi/Pn , where φi : X → Di is the natural
inclusion. Thus,

c(NX/Y ) = c(φ∗1ND1/Pn) . . . c(φ∗rNDr/Pn)

=
r∏

i=1

(1 + nih)

where h is the divisor class of i∗OPm(1) on X, and ni is the degree of Di (so that
φ∗i NDi/Pm = i∗OPm(ni)). Using the previous example, we deduce

c(TX) = (1 + h)m+1/

r∏

i=1

(1 + nih)
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Example 6. Consider the d-uple embedding i : Pn → Pm, m =
(
n+d

d

) − 1. From the
exact sequence

0 // TPn // i∗TP m // NPn/Pm // 0,

we have
c(NPn/Pm) = c(i∗TPm)/c(TPn) = (1 + dh)m+1/(1 + h)n+1,

where h is the class of a hyperplane in Pn. Here, we are using the fact that i∗OPm(1) =
OPn(d).

For example, if Z ⊂ P5 is the surface of double lines discussed in section 3 (the
image of P2 under the 2-uple embedding), then

c(NP2/P5) = (1 + 2h)6/(1 + h)3

= (1 + 12h + 60h2)/(1 + 3h + 3h2)

= (1 + 12h + 60h2)(1− 3h + 6h2)

= 1 + 9h + 30h2,

using the fact that h3 = 0 in A∗P2. Since s(NP2/P5) = c(NP2/P5)−1, we also have

s(NP2/P5) = 1− 9h + 51h2

Finally, we are ready to pursue an explicit link between intersection theory and our
characteristic classes. For notational convenience, when X is a nonsingular subvariety
of Y , we will denote the total Segre class of the normal bundle NX/Y by s(X,Y ).

Proposition 10. Suppose that Y is a variety, and that X ⊂ Y is a nonsingular
subvariety. Let Ỹ be the blow-up of Y along X, let X̃ = f−1(X) be the exceptional
divisor, and let g : X̃ → X be the induced morphism. Then g∗s(X̃, Ỹ ) = s(X, Y ) ∈
A∗X.

Proof. Let O(1) = ONX/Y
(1) and O ′(1) = ONX̃/Ỹ

(1). There exists a commutative
diagram

P (NX̃/Ỹ )
G

//

p′

²²

P (NX/Y )

p

²²
X̃

g // X

with G∗[P (NX̃/Ỹ )] = [P (NX/Y )], and G∗O(1) = O ′(1). To see this, recall that

P (NX/Y ) is naturally identified with X̃, the exceptional divisor, and under this iden-
tification O(1) is identified with NX̃/Ỹ . But since NX̃/Ỹ is a a line bundle, P (NX̃/Ỹ )
is also naturally identified with NX̃/Ỹ in such a way that O ′(1) = NX̃/Ỹ . Thus, the
desired isomorphism G exists. We have

g∗s(X̃, Ỹ ) = g∗p′∗
∑

i

c1(O ′(1))i ∩ [P (NX̃/Ỹ )]

= q∗G∗
∑

i

c1(O ′(1))i ∩ [P (NX̃/Ỹ )] by functoriality of push-forward

= q∗
∑

i

c1(O(1))i ∩ [P (NX/Y )] by projection formula (proposition 5)

= s(X, Y )
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An immediate corollary of this proposition is that

s(X, Y ) =
∑

k≥1

(−1)k−1g∗(X̃k).

(Simply observe that s(X̃, Ỹ ) =
∑

k≥1(−1)k−1(X̃k) since c1(O ′(1)) = −c1(O ′(−1))
and the action of c1(O ′(−1)) corresponds to intersection with the exceptional divisor
X̃, which has normal bundle O ′(−1) in Ỹ ).

We are now in a position to pick up the computation we left off in section 3. Recall
that we had P5 parametrizing the set of plane conics, and the locus of double-lines
parametrized by a surface Z ⊂ P5 (the image of the 2-uple embedding of P2). We
blew-up P5 along Z, and needed to compute the degree of

(1 + 6H)5 · (25π∗(Z̃5)− 24π∗(Z̃4) + 23π∗(Z̃))

where Z̃ is the exceptional divisor of the blow-up, and H is the cycle class of a
hyperplane in P5.

We computed s(P2,P5) = 1− 9h + 51h2 in example 6, where h was the class of a
hyperplane in P2. Therefore, by the above discussion

25π∗(Z̃5)− 24π∗(Z̃4) + 23π∗(Z̃3) = 23 − 24 · 9h + 25 · 51h2.

Also, the class of H restricted to P2 is 2h, since the 2-uple embedding has degree two.
Thus, we are left to compute the degree of

(23 − 24 · 9h + 25 · 51h2)(1 + 12h)5

Multiplying out, we get 8 · 1440 − 60 · 16 · 9 + 32 · 51 = 4512. Thus, the number of
nonsingular conics tangent to five generic conics is 65 − 4512 = 3264.

Lest this calculation seem all too magical, let us pause and recap what has occurred.
Our essential problem (very common in enumerative geometry) was to compute the
multiplicity of an intersection of hypersurfaces along Z, the locus of degeneracy. Using
the geometric technique of blowing-up and compatibility of intersection products with
proper morphisms, this multiplicity was seen to be computable in terms of the push-
forward of the self-intersection classes of the exceptional divisor of the blow-up. The
key intuition which might lead one down this road, and which was finally proven
rigorously as a consequence of proposition 10, is that these cycle classes π∗(Z̃i) are
encoded naturally and functorially in the geometry of the vector bundle NZ/P5 . Once
this is realized, it is a purely formal affair to express these classes as polynomial
expressions in the Chern classes of the bundle, which are easily computed using the
Whitney Sum formula. Laying aside for a moment the problem of the five conics,
we would suggest that the real significance of the these results is they provide one
(among many possible) geometric explanation of where characteristic classes ‘come
from.’ While the interpretation only works for vector bundles which arise as normal
bundles of closed embeddings, it is nevertheless very satisfying to think of them as
arising concretely out of the functorial operations of blowing-up and computing self-
intersections.



20 DAVID SMYTH

References

[0] [1] William Fulton, Intersection Theory, Springer-Verlag (1998).
[2] Phillip Griffiths and Joseph Harris, Principles of Algebraic Geometry, Wiley Classics Library

(1994).
[3] Robin Hartshorne, Algebraic Geometry, Springer-Verlag (1978).


