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ABSTRACT. Now Modular invariance is one of the most fundamental prin-
ciple in mathematical physics. In this expository paper, we will discuss what
they are, and how to use them to get some formulas of characteristic forms,
which play an important role in proving Ochanine congruence.

§0 Introduction
In the recent thirty years, the famous theorem of Rokhlin [R1] has been

extended to various versions. Rokhlin’s theorem states that the signature of an
closed oriented smooth spin 4-manifold is divisible by 16. In 1987, Ochanine
[O] generalized this result to manifolds of 8k + 4 dimensions, while another

generalization was given by Atiyah and Hirzebruch [AH], which states that
∧
A-

genus of a closed oriented smooth spin manifold is an even integer. Landweber
[La] shows that we can use the elliptic genus to get the Ochanine result directly
from the divisibility results of Atiyah and Hizebruch [AH].

In 1972, Rokhlin [R2] established a congruence formula of the type φ(B) ≡
Sign(M)−Sign(B·B)

8 mod 2Z, where B ·B is the self-intersection of B in M , and
B is an orientable characteristic submanifold of M , which is the Poincaré dual
of the scond class of tangent bundle. Ochanine [O] generalized this congruence
formula to the case of 8k + 4 dimensional closed spinc manifolds. Guillon and
Marin [GM] generalizes the result when B might be non-orientable.

On the physics aspect, when Alvarez-Gaumé and Witten [AW] directly com-
puted gravitational anomaly, they discoverd a so called ”Miraculous Cancella-

tion” formula, which is actually a formula of
∧
L-class,

∧
A-class and a twisted

∧
A-class of 12-dimension manifold. By using this formula, we can briefly deal
with the case of 12 dimensional spin manifolds to build a bridge between di-
visibility in [AH] and [O]. Liu [L] established a higher dimensional ”miraculous
cancellation” formula by developing modular invariance properties of character-
istic forms. Liu and Zhang [LZh] thus got an intrinsic analytic interpretation
of Ochanine invariant φ(B) for any 8k + 2 dimesional closed spin manifold B,
which leads to an analytic version of Ochanine congruence formula.

The purpose of this paper is to introduce the various characteristic forms
and modular invariance, then give a proof of the Han-Zhang formula in [HZ],
i.e. a twisted ”miraculous cancellation” formula. Finally we use Han-Zhang
formula to give a topological proof [HZ] of Ochanine congruence formula, where
we do not use too much analytic arguments.

§1 Characteristic Forms
In this section, we introduce some fundamental knowledge for this paper and

at the end of this section, one can get a simpliest cancellation formular. Thus
one can get some sense for the following section.

Considering an m-dimensional complex vector bundle E over a smooth man-
ifold M , we denote the curvature of a connection ∇E by ΩE .
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Definition 1.1 The (total) Chern form denoted by c(E,∇E) associated to
∇E is defined by c(E,∇E) = det(I +

√
−1
2π ΩE)

Property 1.2 We have the following identity for matrix
(1.1) det(1+A) = exp tr(ln(1+A)) = exp tr(A− A2

2 + · · ·+ (−1)n+1An

n + · · ·) =
1+ tr(A− A2

2 + · · ·)+ 1
2 [tr(A− A2

2 + · · ·)]2 + · · · = 1+ trA+ 1
2 [(trA)2− trA2]2 + · · ·

Definition 1.3 The cohomology class [c(E,∇E)] denote (total) Chern class
of E. Write c(E,∇E) as 1 + c1(E,∇E) + c2(E,∇E) + · · ·ck(E,∇E) with each
ci(E,∇E) ∈ Ω2i(M). We call ci(E,∇E) the i-th Chern form associated to ∇E

and its cohomology class [ci(E,∇E)] denoted by ci(E), the i-th Chern class of
E.

Remark:1) every ci(E,∇E) ∈ Ω2i(M) is a closed differential form.
2) ci(E,∇E) determines a cohomology class [ci(E,∇E)] ∈ H∗

dR(M ;C).
3) This class, i.e. ci(E) does not depend on choice of ∇E .
For property 1.2 and Definition 1.3, we can write down the first two term of

Chern class
c1(E) =

√
−1
2π trΩE and c2(E) = 1

8π2 tr(ΩE ∧ ΩE − (trΩE) ∧ (trΩE)]
Definition 1.4 We can also introduce the Chern character as
(1.2) ch(E) = tr(exp

√
−1
2π ΩE)

Property 1.5 1) ch(E) = tr(
∞∑

k=0

1
k! (

√
−1
2π ΩE)k ∈ H∗(M ;R)

2) ch(E) =
∞∑

k=0

1
k!

r∑
j=1

xk
j =

r∑
j=1

exj = r +
r∑

j=1

xj + 1
2

r∑
j=1

x2
j + · · · = r + c1(E) +

1
2 [(c1(E))2 − 2c2(E)] + · · · =

∞∑
l=0

chl(E), where xj ’s are the Chern root corre-

sponding to the complex vector bundle E.
3) i) ch(E ⊕ F ) = tr(exp

√
−1
2π ΩE⊕F ) =

∑
i=1

exi +
∑
j=1

eyj = ch(E) + ch(F )

ii) ch(E⊗F ) = tr(exp
√
−1
2π ΩE⊗F ) =

∑
i,j

exi+yj =
∑

i

exj

∑
j

eyj = ch(E)ch(F )

Let Λt(E) and St(E) be the total exterior and symmetric powers of E, i.e.
(1.3) Λt(E) = C |M +tE+t2Λ2(E)+··· and St(E) = C |M +tE+t2S2(E)+···
, where C |M denotes a trivial line bundle on M .
From Atiyah’s book, we know
(1.4) St(E) = 1

Λ−t(E) and Λt(E − F ) = Λt(E)
Λt(F )

By Preoperty 1.5/3)/ii), we can get the formulas for Chern Character forms
(1.5) ch(St(E)) = 1

ch(Λ−t(E)) and ch(Λt(E − F )) = ch(Λt(E))
ch(Λt(F ))

From the Hirzebruch and roof polynomial, we can define
∧
L-genus and

∧
A-

genus of a (real) vector bundle E as follows.

(1.6)
∧
L(E) =

∏
j

xj

tanh xj
=
∏
j

(1− 1
3x2

j + 2
15x4

j − 17
315x6

j + · · ·), where xj ’s are

the Chern roots of bundle E.
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(1.7)
∧
A(E) =

∏
j

1
2 xj

sinh
xj
2

=
∏
j

(1 + 1
3! (

xj

2 )2 + 1
5! (

xj

2 )4 + · · ·)−1

Definition 1.6 In a similar way of Definition 1.1&1.3, we can also define
(total) Pontrjagin form associated to ∇E by

(1.8) p(E, ∇E) = det(I − ΩE

2π ), where E is a real vector bundle over M .
We still have following decompsition for the same reason
(1.9) p(E,∇E) = 1+p1(E,∇E)+p2(E,∇E)+···pk(E,∇E), with pi(E,∇E) ∈

Ω4i(M)
We call pi(E,∇E) the i-th Pontrjagin form associated to ∇E and call the

corresponding cohomology class pi(E), the i-th Pontrjagin class of E.
Let E ⊗ C be the complaexification bundle of the real vector bundle E. By

comparing the total pontrjagin classes and the Chern classes of E⊗C, we have
the following relation

(1.10) pi(E) = (−1)ic2i(E ⊗ C)
For the above definitions and results, one can refer to [Hou] and [Zh3].

Using a differential form view introduced by Zhang, the
∧
L-form and

∧
A-form

associated to ∇E , denoted by

(1.11)
∧
L(E,∇E) = det

1
2 (

√
−1
2π ΩE

tanh(
√
−1
4π ΩE)

) and
∧
A(E,∇E) = det

1
2 (

√
−1
4π ΩE

sinh(
√
−1
4π ΩE)

),

which are just another expressions of the above terms.(The former one is actually
in the De Rham cohomology ring and here is a differential form).

In the fashion of Pontrjagin class, we thus can rewrite

(1.12)
∧
L(E,∇E) = 1 + 1

3p1 + (− 1
45p2

1 + 7
45p2) + · · ·

Anyway, for the same reason as stated in Remark, we can write
∧
L(E) for

convenience.
In a similar way, we can also rewrite

∧
A(E) as

(1.12)
∧
A(E,∇E) = 1 + 1

22 (− 1
6p1) + 1

24 ( 7
360p2

1 − 1
90p2) + · · ·

Remark: (1) In the following section, we can see the prototype of all the

cancellation formulas is
∧
L = −8

∧
A (only compare the top form of them) for the

case of dimM = 4, which can be directly derived from the above discussion.
Actually Alvarez-Gaumé and Witten [AW] directly compute these identities
(they have other appearence in physics) and then got the so called ”miraculous
cancellation” formula for dimension 12.

(2)
∧
A and

∧
L do have geometric meaning. Integration of

∧
A is the index of a

spin complex, while Integration of
∧
L is the index of a signature complex, which

are the direct application of the Atiyah-Singer Index Theorem.

§2 The main result-A twisted ”miraculous cancellation” formula
Notations: Let V be a rank 2l real Euclidean vector bundle over M and ξ

be a rank two real oriented Euclidean vector bundle over M , which respectively
have connection ∇V and ∇ξ.

Denote E − Crank(E) by Ẽ, where E is a complex vector bundle.
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Set

(2.1) Θ1(TCM,VC , ξC) =
∞⊗

n=1

Sqn(T̃CM)⊗
∞⊗

m=1

Λqm(ṼC−2ξ̃C)⊗
∞⊗

r=1

Λ
qr− 1

2
(ξ̃C)⊗

∞⊗
s=1

Λ
−qs− 1

2
(ξ̃C)

Θ2(TCM,VC , ξC) =
∞⊗

n=1

Sqn(T̃CM)⊗
∞⊗

m=1

Λ
−qm− 1

2
(ṼC−2ξ̃C)⊗

∞⊗
r=1

Λ
qr− 1

2
(ξ̃C)⊗

∞⊗
s=1

Λqs(ξ̃C)

where q = e2π
√
−1τ with τ ∈ H, the upper half complex plane, and VC

denotes the complexification of the real bundle V .
We can expand Θ1(TCM,VC , ξC) and Θ2(TCM,VC , ξC) as formal Fourier

series with respect to q
1
2

(2.2) Θ1(TCM,VC , ξC) = A1(TCM,VC , ξC) + A1(TCM,VC , ξC)q
1
2 + · · ·

Θ2(TCM,VC , ξC) = B0(TCM,VC , ξC) + B1(TCM,VC , ξC)q
1
2 + · · ·

where the Aj ’s and Bj ’s are elements in the semi-group formally generated
by Hermitian vector bundles over M .

Let c = e(ξ,∇ξ) be the Euler form of ξ canonically associated to ∇ξ.
Now we can state the main theorem of this article as follows.
Main Theorem 2.1(Han-Zhang) Assume M is a manifold of dimension

8k +4. If the equality of first Pontrjagin class of tangent bundle and real vector
bundle V holds, i.e. p1(TM,∇TM ) = p1(V,∇V ), then we have

(2.3)
(

1
2

)l+2k+1
{ ∧

A(TM,∇T M ) det
1
2 (2 cosh(

√
−1
4π ΩV ))

cosh2( c
2 )

}(8k+4)

=
k∑

r=0

2−6r

{
∧
A(TM,∇TM )ch(br(TCM,VC , ξC)) cosh( c

2 )
}(8k+4)

with each br(TCM,VC , ξC), 0 ≤ r ≤ k, is a canonical integral linear combi-
nation of Bj(TCM,VC , ξC), 0 ≤ j ≤ r.

Remark:
1) In (2.3), we compare two top-dimensional differential forms on M .
2) If we let ξ be the trivial bundle, i.e. ξ = R2, thus we have c = 0 and

recover Liu’s main result.
3) If we consider a 12-dimensional manifold M with V = TM and ∇V =

∇TM , which means that the conditional equality automatically holds, we just
recover the ”miraculous cancellation” formula of Alvarez-Gaumé and Witten.

§3 Modular forms and its property

Let Γ be a subgroup of SL2(Z) =
{(

a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
Defnition 3.1 A modular form over Γ is a holomorphic function f(τ) on

H∪{∞} which, for any g =
(

a b
c d

)
∈ Γ, satisfies the transformation formula
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(3.1) f(gτ) = f
(

aτ+b
cτ+d

)
= χ(g)(cτ + d)kf(τ)

where χ : Γ → C∗ is a character of Γ and k is called the weight of f .
Defnition 3.2 Four Jacobi theta-functions are defined as follows

(3.2) θ(υ, τ) = 2q
1
8 sin(πυ)

∞∏
j=1

[
(1− qj)(1− e2π

√
−1υqj)(1− e−2π

√
−1υqj)

]
θ1(υ, τ) = 2q

1
8 cos(πυ)

∞∏
j=1

[
(1− qj)(1 + e2π

√
−1υqj)(1 + e−2π

√
−1υqj)

]
θ2(υ, τ) =

∞∏
j=1

[
(1− qj)(1− e2π

√
−1υqj− 1

2 )(1− e−2π
√
−1υqj− 1

2 )
]

θ3(υ, τ) =
∞∏

j=1

[
(1− qj)(1 + e2π

√
−1υqj− 1

2 )(1 + e−2π
√
−1υqj− 1

2 )
]

where q = e2π
√
−1τ with τ ∈ H.

Remark: All these Jacobi theta-functions are holomorphic functions for
(υ, τ) ∈ C ×H.

Proposition 3.3 θ′(0, τ) := ∂θ(υ,τ)
∂υ |υ=0= πθ1(0, τ)θ2(0, τ)θ3(0, τ)

Let S, T be the two generators of SL2(Z) defined by Sτ = − 1
τ , Tτ = τ + 1.

Property 3.4 We have the following transformation laws of Jacobi theta-
functions with respect to two generators S, T .

(3.3) θ(υ, Tτ) = e
π
√
−1
4 θ(υ, τ), θ(υ, Sτ) = 1√

−1

(
τ√
−1

) 1
2

e−τυ2
θ(τυ, τ)

(3.4) θ1(υ, Tτ) = e
π
√
−1
4 θ1(υ, τ), θ1(υ, Sτ) =

(
τ√
−1

) 1
2

e−τυ2
θ2(τυ, τ)

(3.5) θ2(υ, Tτ) = θ3(υ, τ), θ2(υ, Sτ) =
(

τ√
−1

) 1
2

e−τυ2
θ1(τυ, τ)

(3.6) θ3(υ, Tτ) = e
π
√
−1
4 θ2(υ, τ), θ3(υ, Sτ) =

(
τ√
−1

) 1
2

e−τυ2
θ3(τυ, τ)

§4 Proof of the Main Theorem
Lemma 4.1 If {wi} are the formal Chern roots of a Hermitian vector bundle

E carrying a Hermitian connection ∇E , then we have the following formula for
the Chern character form of Λt(E)

(4.1) ch(Λt(E)) =
∏

i

(1 + ewit)

Proof. From the Property 1.5/2), we know ch(E) =
r∑

j=1

ewj . Because {wi}

are the formal Chern roots of E, {wi + wj}i 6=j are the formal Chern roots of

Λ2E. Thus we get ch(Λ2E) =
r∑

i,j=1

i 6=j

ewi+wj .

Thus we have the following formula,
(4.2) ch(Λt(E)) = ch(C |M ) + tch(E) + t2ch(Λ2E) + · · ·

5



= 1 + t
r∑

j=1

ewj + t2
r∑

i,j=1

i 6=j

ewi+wj + · · · =
∏

i

(1 + ewit)

Set

(4.3) P1(τ) =
{ ∧

A(TM,∇T M ) det
1
2 (2 cosh(

√
−1
4π ΩV ))

cosh2( c
2 )

ch
(
Θ1(TCM,VC , ξC),∇Θ1(TCM,VC ,ξC)

)}(8k+4)

P2(τ) =
{
∧
A(TM,∇TM )ch

(
Θ2(TCM,VC , ξC),∇Θ2(TCM,VC ,ξC)

)
cosh( c

2 )
}(8k+4)

where ∇Θ1(TCM,VC ,ξC), i = 1, 2, are the Hermitian connections with q
j
2 -

coefficients on Θ1(TCM,VC , ξC) induced from those on the Aj ’s and Bj ’s.
By using the terminology of formal Chern roots (c.f (1.7)), we can rewrite

P1(τ) as follows,

(4.4) P1(τ) = 2l


4k+2∏

j=1

πxj

sin(πxj)

( l∏
υ=1

cos(πyυ)

)
chΘ1((TCM,VC ,ξC))

cos2(πu)


(8k+4)

where we denote the formal Chern roots of (VC ,∇VC )(resp.(TCM,∇TCM ))
by {±2π

√
−1yυ}(resp.{±2π

√
−1xj} and let c = 2π

√
−1u.

From (1.5) (2.1), we can write ch(Θ1(TCM,VC , ξC)) explicitly,

(4.5) ch(Θ1(TCM,VC , ξC)) =
∞∏

n=1

ch(Λ−qn (C8k+4))
ch(Λ−qn (TCM))

∞∏
m=1

ch(Λqm (VC))

ch(Λqm (C2l)

∞∏
t=1

(
ch(Λ−qn (C2))
ch(Λ−qn (ξC))

)2

∞∏
r=1

ch(Λ
q

r− 1
2

(ξC))

ch(Λ
q

r− 1
2

(C2))

∞∏
n=1

ch(Λ
−q

s− 1
2

(ξC))

ch(Λ
−q

s− 1
2

(C2))

By (3.2) (4.1) (4.4) (4.5) and Proposition 3.3, we can get following identities.
Proposition 4.2

(4.6) P1(τ) = 2l


4k+2∏

j=1

xj
θ′(0,τ)
θ(xj ,τ)

( l∏
υ=1

θ1(yυ,τ)
θ1(0,τ)

)
θ2
1(0,τ)θ3(u,τ)θ2(u,τ)

θ2
1(u,τ)θ3(0,τ)θ2(0,τ)


(8k+4)

In a similar way, we can also compute P2(τ) and thus get
Proposition 4.2’

(4.6)’ P2(τ) = 2l


4k+2∏

j=1

xj
θ′(0,τ)
θ(xj ,τ)

( l∏
υ=1

θ2(yυ,τ)
θ2(0,τ)

)
θ2
2(0,τ)θ3(u,τ)θ1(u,τ)

θ2
2(u,τ)θ3(0,τ)θ1(0,τ)


(8k+4)

Now we’d like to introduce some terminology.
Let MR(Γ) denote the ring of modular forms over Γ with real Fourier coef-

ficients.
Definition 4.3 We defined δ and ε functions as follows
(4.7) δ1(τ) = 1

8 (θ4
2(0, τ) + θ4

3(0, τ)), ε1(τ) = 1
16θ4

2(0, τ)θ4
3(0, τ)

δ2(τ) = − 1
8 (θ4

1(0, τ) + θ4
3(0, τ)), ε2(τ) = 1

16θ4
1(0, τ)θ4

3(0, τ)
where θi’s are Jacobi theta-functions.
We can expand them as formal Fourier series
(4.8) δ1(τ) = 1

4 + 6q + · · ·, ε1(τ) = 1
16 − q + · · ·

δ2(τ) = − 1
8 − 3q

1
2 + · · ·, ε2(τ) = q

1
2 + · · ·

Let Γ0(2), Γ0(2) be two subgroups pf SL2(Z) defined as
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(4.9) Γ0(2) =
{(

a b
c d

)
∈ SL2(Z) | c ≡ 0 mod 2Z

}
Γ0(2) =

{(
a b
c d

)
∈ SL2(Z) | b ≡ 0 mod 2Z

}
Property 4.4 1) T , ST 2ST are two generators of Γ0(2); while STS, T 2STS

are the two generators of Γ0(2).
2) δ2(− 1

τ ) = τ2 δ1(τ), δ2(τ +2) = δ2(τ), δ1(− 1
τ ) = τ2 δ2(τ), δ1(τ +1) = δ1(τ)

ε2(− 1
τ ) = τ4 ε1(τ), ε2(τ + 2) = ε2(τ), ε1(− 1

τ ) = τ4 ε2(τ), ε1(τ + 1) = ε1(τ)
3) δ2 and ε2 are modular forms of weight 2 and 4 respectively over Γ0(2);

while δ1 and ε1 are modular forms of weight 2 and 4 respectively over Γ0(2).
Moreover, we have MR(Γ0(2)) = R[δ2(τ), ε2(τ)].

Proof. 1) 2) trvial
3) We can check directly on denerators of Γ0(2) and Γ0(2), where we

will use 1) and 2)
The last result need to refer lemma 2 in [L]

Proposition 4.5 If p1(TM,∇TM ) = p1(V,∇V ) holds, then P1(τ) is a mod-
ular form of weight 4k + 2 over Γ0(2); while P2(τ) is a modular form of weight
4k + 2 over Γ0(2). Futhermore, we also have the following formula

(4.10) P1(− 1
τ ) = 2lτ4k+2P2(τ)

Proof. For the first part, we only need to check
P1(Tτ) = P1(τ) and P1(ST 2STτ) = P1(−τ−1

2τ+1 ) = (2τ + 1)4k+2P1(τ)
P2(STSτ) = P2(− τ

τ−1 ) = (τ − 1)4k+2P1(τ) and P2(T 2STSτ) = P2( τ−2
τ−1 ) =

(τ − 1)4k+2P2(τ), which are trivial. (by Prop 4.2 and Property 3.4)
For the second part, it is still a routine to check.
At any point x ∈ M , up to the volumn form determined by the metric of

TxM , P2(τ) can be considered as a formal power serise of q
1
2 with real Fourier

coefficients.
By Property 4.4 and Proposition 4.5, we can expand P2(τ) in such a way
(4.11) P2(τ) = h0(8δ2)2k+1 + h1(8δ2)2k−1ε2 + · ·+hk(8δ2)εk

2

where each hj , 0 ≤ j ≤ k, is a real multiple of the volumn form at x.
By (4.10) and (4.11), we can rewrite P1(τ) as follows
(4.12) P1(τ) = 2l

τ4k+2 P2(− 1
τ )

= 2l

τ4k+2 [h0(8δ2(− 1
τ ))2k+1+h1(8δ2(− 1

τ ))2k−1ε2(− 1
τ )+···+hk(8δ2(− 1

τ ))(ε2(− 1
τ ))k]

By using Property 4.4/2), we get the similar expression as (4.11)
(4.13) P1(τ) = 2l[h0(8δ1)2k+1 + h1(8δ1)2k−1ε1 + · ·+hk(8δ1)εk

1 ]
Setting q = 0 in both (4.3) and (4.13) and by using (4.8), we get the following

identity

(4.14)
{ ∧

A(TM,∇T M ) det
1
2 (2 cosh(

√
−1
4π ΩV ))

cosh2( c
2 )

}(8k+4)

= 2l[h0(2)2k+1 + h1(2)2k−1 1
16 + · ·+hk(2)( 1

16 )k] = 2l+2k+1

k∑
r=0

2−6rhr

Then the remain thing is to prove that the above hr can be expressed as a

canonical integral linear combination of
{
∧
A(TM,∇TM )ch(Bj ,∇Bj ) cosh( c

2 )
}(8k+4)
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, 0 ≤ j ≤ r.
By (4.8) (4.11), we have the following Fourier expansion for P2(τ) with

respect to q
1
2

(4.15)
P2(τ) = −[h0(1+24q

1
2 + · · ·)2k+1 +h1(1+24q

1
2 + · · ·)2k−1(q

1
2 + · · ·)+h2(1+

24q
1
2 + · · ·)2k−3(q

1
2 + · · ·)2 + · · ·+ hk(1 + 24q

1
2 + · · ·)(q 1

2 + · · ·)k]
= −[h0(1+24(2k +1)q

1
2 +288(2k +1)(2k−1)+ · · ·)+h1(q

1
2 +24(2k−1)q +

· · ·) + h2(q + · · ·) + · · ·]
= −h0− [24(2k + 1)h0 + h1]q

1
2 − [576k(2k + 1)h0 + 24(2k− 1)h1 + h2]q + · · ·

By (2.2) (4.3) and Property (1.5)/3), we have another Fourier expansion for
P2(τ) with respect to q

1
2

(4.16)

P2(τ) = {
∧
A(TM,∇TM )ch(B0(TCM,VC , ξC)+B1(TCM,VC , ξC)q

1
2 +B2(TCM,VC , ξC)q+

· · ·) cosh( c
2 )}(8k+4)

= {
∧
A(TM,∇TM )ch(B0(TCM,VC , ξC)) cosh( c

2 )+
∧
A(TM,∇TM )ch(B1(TCM,VC , ξC)) cosh( c

2 )q
1
2 +

∧
A(TM,∇TM )ch(B2(TCM,VC , ξC)) cosh( c

2 )q + · · ·}(8k+4)

By comparing (4.15) with (4.16), we can get the following equations

(4.17) −h0 =
{
∧
A(TM,∇TM )ch(B0(TCM,VC , ξC)) cosh( c

2 )
}(8k+4)

−[24(2k+1)h0+h1] =
{
∧
A(TM,∇TM )ch(B1(TCM,VC , ξC)) cosh( c

2 )
}(8k+4)

−[576k(2k+1)h0+24(2k−1)h1+h2] =
{
∧
A(TM,∇TM )ch(B2(TCM,VC , ξC)) cosh( c

2 )
}(8k+4)

· · ·
Then we can find all the hr can be determined in this way by indection

method. For example, we have

(4.18) h0 = −
{
∧
A(TM,∇TM )ch(B0(TCM,VC , ξC)) cosh( c

2 )
}(8k+4)

h1 =
{
∧
A(TM,∇TM )[24(2k + 1)− ch(B1(TCM,VC , ξC))] cosh( c

2 )
}(8k+4)

h2 =
{
∧
A(TM,∇TM )[−576k(2k + 1) + 24(2k − 1)− (ch(B2(TCM,VC , ξC)) cosh( c

2 )
}(8k+4)

Remark: From the above identity and assuming V = TM , ∇V = ∇TM ,
k = 1 and c = 0, we can get original ”miraculous cancellation” formula which
stated in [Al, W].

§5 Application in Topology
Now we use this twisted ”miraculous cancellation” formula to Spinc mani-

folds to give a direct ”topological” proof of the analytic version of the Ochanne
congruence stated in Theorem 4.2 of [Liu, Zh].

Let M be an oriented and closed 8k + 4 dimensional Riemannian manifold
and B is an 8k+2 dimensional closed oriented submanifold whose Poincaré dual

8



is the second Stiefel-Whitney class of TM , i.e. c̃ ∈ H2(M,Z) is the Poincar
´
e

dual of B and
(5.1) c̃ ≡ w2(TM) mod 2Z
Then we can find an oriented real rank two Euclidean vector bundle ξ over

M having a Euclidean connection ∇ξ s.t. c̃ = [c] = [e(ξ,∇ξ)] ∈ H2(M,Z).
Let V = TM and ∇V = ∇TM , then (2.3) becomes

(5.2)
{ ∧

L(TM,∇T M )
cosh2( c

2 )

}(8k+4)

= 8
k∑

r=0

26k−6r

{
∧
A(TM,∇TM )ch(br(TCM, ξC)) cosh( c

2 )
}(8k+4)

In this section, we briefly use br(TCM, ξC) for br(TCM,TCM, ξC) and same
for Bj and Θj .

There is an important identity in [O]

(5.3)
∫

M

∧
L(TM,∇T M )

cosh2( c
2 )

=Sign(M)−Sign(B ·B)

By (5.2) (5.3), because only the top form can contribute to the integral, we
have the following formula

(5.4) Sign(M)−Sign(B·B)
8 =

∫
M

k∑
r=0

26k−6r

{
∧
A(TM,∇TM )ch(br(TCM, ξC)) cosh( c

2 )
}

Another important result we need to use is given by [AH]∫
M

∧
A(TM,∇TM )ch(br(TCM, ξC)) cosh( c

2 ) ∈ Z, 0 ≤ r ≤ k

In (5.4), thus all the term r < k mod 64Z are zero and the only remain term
is r = k.

Then we have the following congruence formula
Theorem 5.1
(5.5) Sign(M)−Sign(B·B)

8 ≡
∫

M

∧
A(TM,∇TM )ch(bk(TCM, ξC)) cosh( c

2 ) mod 64Z

where bk(TCM, ξC) is just the same term as in our Main Theorem and can be
can be canonically expressed as an integral linear combination of Bj(TCM, ξC), 0 ≤
j ≤ k.

Finally we prove our analytic version of the Ochanine congruence stated in
Theorem 4.2 of [LZh], where we translate it to our notataion.

Theorem 5.2 (Theorem 4.2 of [LZh])
Sign(M)−Sign(B·B)

8 ≡
∫

M

∧
A(TM,∇TM )ch(bk(TCM + C2 − ξC , C2)) cosh( c

2 )

mod 2Z
Proof. By (2.1), we can get the following identity through direct computa-

tion

(5.6) Θ2(TCM, ξC) = Θ2(TCM +C2−ξC , C2)⊗

∞⊗
r=1

Λ
q

r− 1
2

(ξ̃C)⊗
∞⊗

s=1

Λqs (ξ̃C)

∞⊗
m=1

Λ
−q

m− 1
2

(ξ̃C)⊗
∞⊗

n=1

Λ−qn (ξ̃C)

By (1.4) and rk(ξ) = 2, we can verifies the following identity
(5.7) Λqr (ξ̃C) ≡ Λ−qr (ξ̃C) mod 2qr ξ̃CZ[[qr]] and Λ

qr− 1
2
(ξ̃C) ≡ Λ

−qr− 1
2
(ξ̃C)

mod 2qr− 1
2 ξ̃CZ[[qr− 1

2 ]]
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From (5.6) and (5.7), we have
(5.8) Θ2(TCM, ξC) ≡ Θ2(TCM + C2 − ξC , C2) mod 2q

1
2 ξ̃CZ[TCM, ξC ][[q

1
2 ]]

By (2.2) and (5.8), we get the relation between Bj ’s
(5.9) Bj(TCM, ξC) ≡ Bj(TCM +C2−ξC , C2) mod 2ξ̃CZ[TCM, ξC ] for j ≥ 1
Because the br’s are defined by induction as those in section 4, we have the

same realtion for br’s as follow
(5.10) br(TCM, ξC) ≡ br(TCM +C2−ξC , C2) mod 2ξ̃CZ[TCM, ξC ] for j ≥ 1
Then we can have the expression as
(5.11) br(TCM, ξC) = br(TCM + C2 − ξC , C2) + 2ξ̃CCr for some Cr ∈

Z[TCM, ξC ]
On another hand, [AH] states that

(5.12)
∫

M

∧
A(TM,∇TM )ch(ξ̃CCr) cosh( c

2 ) ∈ Z, 0 ≤ r ≤ k

Combining (5.5), (5.11) and (5.12), we fufill the proof of Theorem 5.2.
Finally, we want to point out that
(1) By using this ”miraculous cancellation” formula, we also can deal with

the Finashin congruence, which need some knowledge of η − invariants.
(2) We also have the such kind of twisted cancellation formula for 8k dimen-

sion.
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