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Abstract. The Grassmannian is a generalization of projective
spaces–instead of looking at the set of lines of some vector space,
we look at the set of all n-planes. It can be given a manifold
structure, and we study the cohomology ring of the Grassmannian
manifold in the case that the vector space is complex. The mul-
tiplicative structure of the ring is rather complicated and can be
computed using the fact that for smooth oriented manifolds, cup
product is Poincaré dual to intersection. There is some nice com-
binatorial machinery for describing the intersection numbers. This
includes the symmetric Schur polynomials, Young tableaux, and
the Littlewood-Richardson rule. Sections 1, 2, and 3 introduce no-
tation and the necessary topological tools. Section 4 uses linear
algebra to prove Pieri’s formula, which describes the cup product
of the cohomology ring in a special case. Section 5 describes the
combinatorics and algebra that allow us to deduce all the multi-
plicative structure of the cohomology ring from Pieri’s formula.

1. Basic properties of the Grassmannian

The Grassmannian can be defined for a vector space over any field;
the cohomology of the Grassmannian is the best understood for the
complex case, and this is our focus. Following [MS], the complex Grass-
mannian Gn(Cm+n) is the set of n-dimensional complex linear spaces,
or n-planes for brevity, in the complex vector space Cm+n topologized
as follows: Let Vn(Cn+m) denote the subspace of the n-fold direct sum
Cm+n⊕ . . .⊕Cm+n that consists of all n-tuples of linearly independent
vectors in Cm+n. Two points in Vn(Cn+m) are equivalent if they span
the same n-plane. Gn(Cm+n) is the quotient space induced by this
equivalence relation.

Proposition 1.1. Each point W ∈ Gn(Cn+m) has a neighborhood U
homeomorphic to Cnm. Gn(Cn+m) is a compact complex manifold of di-
mension nm. Its tangent bundle is isomorphic to Hom(γn(Cn+m), γ⊥),
where γn is the canonical complex n-plane bundle over Gn(Cn+m).

To prove this, we look at a neighborhood U of W0 homeomorphic to
Cnm for each W0 ∈ Gn(Cn+m). Let U be the set of all n-planes W such
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that W ∩W⊥
0 = 0. Consider the map that takes W ∈ U to p : W0 →

W → W⊥
0 , where both maps are the orthogonal projections and the

first is an isomorphism. This defines a homeomorphism between U and
Hom(W0, W

⊥
0 ), which is homeomorphic to Cnm. This also describes the

tangent space because the tangent space at a point in Cnm is canonically
isomorphic to Cnm. See lemma 5.1 [MS] for more details.

It is not clear that the proof in [MS] can be adapted to show the
Grassmannian is a complex manifold. This is proved in [GH] using a
different approach. Recall that any complex manifold has a canonical
preferred orientation. We will need this in section 3.

2. A CW-complex structure and additive cohomology

A partition λ of r is a weakly decreasing sequence λ = (λ1, λ2, . . . , λn)
such that r =

∑n
i=1 λi. We also define |λ| = r. Typically it is required

that λn > 0, but it is convenient to not make this restriction. Let i be
the largest integer such that λi > 0; we say λ is a partition of r into i
parts.

We define a CW-complex structure for Gn(Cn+m). Choose a basis
v1, . . . , vn+m for Cn+m and let Fi be the span of v1, . . . , vi. The chain
of nested subspaces

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fn+m = Cn+m

is a complete flag, which we denote by F . For λ with at most n parts
and λ1 ≤ m define e(λ, F ) ⊂ Gn(Cn+m) to be the set of all n-planes W
such that

dim(W ∩ Fm+i−λi
) = i, dim(W ∩ Fm+i−λi−1) = i− 1

for i = 1, 2, . . . n. We’ll use e(λ) instead of e(λ, F ) when there is no
confusion. The restriction λ1 ≤ m is made because if λ1 > m, Fm+1−λ1

is either 0 or undefined. Therefore, we define e(λ) to be empty if λ has
more than n parts or λ1 > m.

Example 2.1. Let n = 3, m = 4, and µ = (3, 3, 1). Points in e(µ) can
be thought of as the row space of a 3 by 7 matrix. W ∈ e(µ) implies
dim(W∩F1) = 0, dim(W∩F2) = 1, dim(W∩F3) = 2, dim(W∩F5) = 2,
and dim(W ∩ F6) = 3. dim(W ∩ F1) = 0 and dim(W ∩ F2) = 1 imply
that c1v1 +v2 ∈ W for some complex number c1. We can make the first
row of the matrix correspond to the vector c1v1+v2. Similar arguments
show that such a matrix represents a point in e(µ) if and only if it is
row equivalent to a matrix of the form (columns correspond to the basis



COHOMOLOGY OF THE COMPLEX GRASSMANNIAN 3

v1, . . . , vm+n) ∗ 1 0 0 0 0 0
∗ 0 1 0 0 0 0
∗ 0 0 ∗ ∗ 1 0

 ,

where * denotes an arbitrary element of C.

The closure e(λ) of e(λ) is a Schubert variety. [MS] shows that e(λ)
is the set of all n-planes W such that

dim(W ∩ Fm+i−λi
) ≥ i.

It is not hard to see that each W ∈ Gn(Cn+m) is in exactly one of
the open sets e(λ). Each e(λ) is homeomorphic to an open disk of
real dimension 2(nm − |λ|) [MS]. It is shown in detail in [MS] that
the e(λ) give the real Grassmannian a CW-complex structure and the
same proof works for the complex case.

CW-cohomology determines the additive structure of the cohomol-
ogy ring because all cells are even dimensional so the boundary maps
are zero [GH]. CW-cohomology shows that to each e(λ) there corre-
sponds a generator of the cohomology, and these generators have no re-
lations. The Schubert cycles are the cohomology classes σλ = [e(λ)]∗ ∈
H2|λ|(Gn(Cn+m), Z), where * denotes Poincaré dual. In this paper all
the homology and cohomology will be computed over the integers so
from now on we omit this from the notation. Note that σλ is 0 if λ has
more than n parts or λ1 > m. To summarize,

Proposition 2.2. The set of Schubert cycles σλ such that |λ| = r, λ
has at most n parts, and λ1 ≤ m is a basis for H2r(Gn(Cn+m)) over Z.

3. Intersection and cohomology

Following [Hu], we introduce machinery we will need to compute
cup products in the cohomology ring of the Grassmannian in terms
of intersections of the Schubert varieties. Let X be a closed oriented
smooth manifold of dimension d. Let A and B be closed oriented
smooth submanifolds of X of dimensions d − a and d − b. Let [A] ∈
Hd−a(X), [B] ∈ Hd−b(X) be the images of the fundamental classes of
A and B under the inclusions A ↪→ X, B ↪→ X. Denote the Poincaré
duals of these classes by [A]∗ ∈ Ha(X) and [B]∗ ∈ Hb(X, Z).

Since there are many submanifolds that represent the same homol-
ogy class, it is not surprising that we need to put restrictions on how
the submanifolds A and B intersect to say something useful about how
intersection relates to cup product. For example, in S1 × R, the sub-
manifolds S1 × 0 and S1 × 1 represent the same homology class and
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have empty intersection whereas if A = B = S1 × 0, A ∩ B = A;
clearly, the cup product can’t be the homology class of the empty set
and the homology class of A. We want to rule out situations like A = B
in the example. Intuitively, we want A and B to be “randomly cho-
sen” and their intersection to look like what happens “most of the
time.” The notion of intersecting transversely captures this intuition.
A and B intersect transversely means for every p ∈ A ∩ B, the map
Tp(A)⊕ Tp(B) → Tp(X) induced by the inclusions is surjective, where
Tp denotes the tangent space at p. This implies A∩B is a submanifold
of dimension d− (a + b).

Recall that the tangent bundle of a manifold, τX , of the smooth
manifold X has as its total space the tangent manifold, and X as its
base space. By lemma 11.6 of [MS] an orientation of X gives rise to an
orientation of the tangent bundle τX and vice-versa. The fundamental
classes [A], [B], and [X] determine orientations for A, B, and X and
therefore also for their tangent bundles. We need a convention for
determining which fundamental class of A∩B to take, or equivalently,
a convention to give an orientation to the tangent space of A ∩ B. In
this paper we only need the convention for the case when A ∩ B is
finite set of points: p ∈ A ∩ B is positively oriented if and only if
the isomorphism Tp(A) ⊕ Tp(B) ' Tp(X) induced by the inclusions is
orientation preserving. See [Hu] for the general case.

Now it makes sense to talk about [A ∩B] ∈ Hd−(a+b)(X), the image
of the fundamental class of A∩B induced by the inclusion A∩B ↪→ X.
We can now state the main theorem; a proof can be found in [Hu].

Theorem 3.1. Cup product is Poincaré dual to intersection. If A and
B intersect transversely, then

[A]∗ ` [B]∗ = [A ∩B]∗ ∈ Ha+b(X)

Example 3.2. Let X be a torus described explicitly as R2/Z2. Let
A and B be circles in the x and y directions respectively and let p be
their point of intersection. We must choose the classes [A], [B] and [X],
or equivalently orientations for Tp(A), Tp(B), and Tp(X). Let vx, vy be
vectors in the positive x and y directions respectively. Declare that vx

is an orientated basis for Tp(A), vy is an orientated basis for Tp(B),
and vx, vy is an orientated basis for Tp(X). Tp(A) ⊕ Tp(B) ' Tp(X)
is orientation preserving, while Tp(B) ⊕ Tp(A) ' Tp(X) is orientation
reversing; A∩B is a positively oriented point, while B∩A is a negatively
oriented point. Theorem 3.1 implies [A]∗ ` [B]∗ = [p]∗ = [X] and
[B]∗ ` [A]∗ = −[p]∗ = −[X].

The situation above cannot happen with complex manifolds and sub-
manifolds. For suppose X, A and B are complex manifolds and A and
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B intersect transversely at the point p. Let u1, . . . , ud−a, v1, . . . , vd−b

be a complex basis for Tp(X), u1, . . . , ud−a a complex basis for Tp(A),
and v1, . . . , vd−b an complex basis for Tp(B). Let w1, . . . , wd be some
reordering of the vi and ui. Then the isomorphism (induced by the in-
clusions of A and B into X) from the ordered basis w1, iw1, . . . , wd, iwd

to the ordered basis u1, iu1 . . . , ud−a, iud−a, v1, iv1 . . . , vd−b, ivd−b is ori-
entation preserving. A ∩B and B ∩ A are positively oriented points.

Unfortunately it is not completely correct to apply this theorem to
our situation. We need a more general theorem that handles subva-
rieties rather than just closed smooth submanifolds. For this to work
the intersections must occur away from singularities of the subvarieties.
This is certainly true in our case as we are looking at Schubert varieties
that intersect in their interiors and these interiors are homeomorphic
to open disks. Appendix B of [Fu] gives a sketch of the topology and
algebraic geometry needed for this.

4. Pieri’s formula

Given a partition λ of r, a Young diagram with shape λ is a collection
of r top-left-justified boxes with λi boxes in the ith row. We also talk
about the columns of a Young diagram or its corresponding partition;
λ has λ1 columns. This is a convenient way to picture partitions and
prepares us to define Young tableaux in the next section.

Pieri’s formula is

(1) σλ ` σ(k) =
∑

σλ′

where the sum is over λ′ obtained from λ by adding k boxes, no two in
a column.

Example 4.1. This simple example of Pieri’s formula will be continued
in more detail after the necessary theory has been developed. Let n = 2,
m = 4, λ = (2), and k = 2. Pieri’s formula implies

σ(2) ` σ(2) = σ(4) + σ(3,1) + σ(2,2).

Replacing each partition with its Young diagram makes this easier to
see:

σ ` σ = σ + σ + σ .

does not appear in the right hand side because this is obtained

from by adding two boxes to the same column.
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We follow the proof of Pieri’s formula given in section 9.4 of [Fu].
First we show that e(λ, F ) and e(λ, F ′) represent the same cohomology
class for any complete flags F and F ′. GL(Cn+m) acts transitively on
the set of flags so there is a g ∈ GL(Cn+m) such that g(Fk) = g(F ′

k)
for all k. GL(Cn+m) also acts on Gn(Cn+m) continuously. That is,
there is a continuous map GL(Cn+m)×Gn(Cn+m) → Gn(Cn+m) taking
f × W → f(W ). Since GL(Cn+m) is connected, there is a path G :
I → GL(Cn+m) from G(0) = g to the identity G(1) = In+m. This path
induces a homotopy from g : Gn(Cn+m) → Gn(Cn+m) (the function
taking W to g(W )) to the identity on map on Gn(Cn+m). Therefore
the induced maps on cohomology, g∗ and I∗n+m, are the same. Thus
e(λ, F ) and g(e(λ, F )) = e(λ, F ′) represent the same cohomology class.

Equivalently, [e(λ, F )]∗ = σλ = [e(λ, F̃ )]∗.

Let F̃k be the subspace of Cn+m spanned by vn+m, vn+m−1, . . . , vn+m−k+1

and let F̃ be the flag

F̃0 ⊂ F̃1 ⊂ . . . ⊂ F̃n+m.

We need this flag because we want to look at Schubert varieties that
intersect transversely. e(µ, F ) and e(λ, F ) do not intersect transversely
in general. (Probably most flags distinct from F would work, but this
one makes computations particularly easy.)

Example 4.2. Let n = 3, m = 4, µ = (3, 3, 1), and λ = (3, 1, 1).
Recall from example 2.1 that W ∈ e(µ, F ) if and only if it is the row
space of a matrix of the form∗ 1 0 0 0 0 0

∗ 0 1 0 0 0 0
∗ 0 0 ∗ ∗ 1 0

 .

Points in e(µ, F ) − e(µ, F ) are represented by matrices like the above
except with 1’s appearing further to the left. Similarly, an element of

e(λ, F̃ ) is the row space of a matrix of the form0 1 0 ∗ ∗ 0 ∗
0 0 1 ∗ ∗ 0 ∗
0 0 0 0 0 1 ∗

 .

The intersection e(µ, F )∩e(λ, F̃ ) clearly contains the point in Gn(Cn+m)
that is the row space of0 1 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 0 0 1 0

 .
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Call this point W0. It is not hard to see that W0 is the only point of
intersection and we will prove this in general. To show that e(µ, F )

and e(λ, F̃ ) intersect transversely at W0 we look at the neighborhood
U of W0 homeomorphic to Cnm described in section 1.

Given any matrix M such that row space(M) = W ∈ U , the orthog-
onal projection of W onto W0 = span(v2, v3, v6) is an isomorphism.
Therefore the submatrix consisting of columns 2,3, and 6 of M is in-
vertible, which implies M is row equivalent to a unique matrix of the
form ∗ 1 0 ∗ ∗ 0 ∗

∗ 0 1 ∗ ∗ 0 ∗
∗ 0 0 ∗ ∗ 1 ∗

 .

We see that e(µ, F ) and e(λ, F̃ ) are contained in U . U is homeomor-
phic to C12 and it is clear from the matrices above that TW0(e(µ, F ))

and TW0(e(λ, F̃ )) are orthogonal to each other and of dimensions 5
and 7 respectively. We conclude that the inclusion TW0(e(µ, F )) ⊕
TW0(e(λ, F̃ )) → TW0(U) is surjective and the intersection is transverse.

This is an example of the duality theorem. The following subspaces
are convenient to work with: A0 = B0 = 0; Ai = Fm+i−µi

, Bi =

F̃m+i−λi
, and Ci = Ai ∩ Bn+1−i for i = 1, . . . , n. Let C be the span of

the Ci.

Theorem 4.3. Suppose |µ|+ |λ| = nm. Then

σµ ` σλ =

{
σ(m,...,m) if µi + λn+1−i = m for i = 1, 2, . . . , n
0 otherwise

Proof. If µi+λn+1−i > m, then (m+i−µi)+(m+n+1−i−λn+1−i) <
m + n + 1. Therefore Ai and Bn+1−i intersect only at 0. So for any
n-plane W , dim(W ∩Ai) + dim(W ∩Bn+1−i) ≤ n. On the other hand,

W ∈ e(µ, F ) ∩ e(λ, F̃ ) implies dim(W ∩ Ai) + dim(W ∩ Bn+1−i) ≥
i + (n + 1− i) = n + 1, so e(µ, F ) ∩ e(λ, F̃ ) is empty.

If µi + λn+1−i ≤ m for i = 1, . . . , n, then since |µ| + |λ| = nm,
µi + λn+1−i = m for all i. In this case, (m + i− µi) + (m + n + 1− i−
λn+1−i) = m+n+1 for each i and Ci = Cvm+i−µi

. The exact sequence

0 −→ W ∩ Ai ∩Bn+1−i −→ (W ∩ Ai)⊕ (W ∩Bn+1−i) −→ W −→ 0

and dimension counting shows that dim(W ∩Ai ∩Bn+1−i) = dim(W ∩
Ci) ≥ 1. This is an equality since dim(Ci) = 1, and thus W =⊕

i Cvm+i−µi
is the point of intersection of e(µ, F ) and e(λ, F̃ ). The
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proof given in example 4.2 that the intersection is transverse easily
generalizes so by theorem 3.1

σµ ` σλ = [e(µ, F ) ∩ e(λ, F̃ )]∗ = σ(m,...,m),

the cohomology class of a point. This point is positively oriented by
the discussion in section 3. 2

The unique partition µ such that σµ ` σλ is nonzero is called the

dual to λ, which we denote λ̃.
σλ ` σ(k) has cohomological dimension 2(|λ|+ k) and therefore

(2) σλ ` σ(k) =
∑

cλ′σλ′

for some integers cλ′ , where the sum is over all λ′ with |λ′| = |λ| + k.
Now by the duality theorem, taking a cup product of (2) with any σµ

so that |µ|+ |λ|+ k = nm yields

(3) σµ ` σλ ` σ(k) = c
eµ(σµ ` σ

eµ) = c
eµ σ(m,...,m).

To prove Pieri’s formula we must determine the c
eµ and this is done by

computing the left hand side of (3).
Given an (m + 1 − k)-plane L, define e((k), L) (a slight abuse of

notation) to be the set of n-planes that intersect L nontrivially. For
each µ such that

(4) |µ|+ |λ|+ k = nm

we compute σµ ` σλ ` σ(k) by determining e(µ, F )∩e(λ, F̃ )∩e((k), L).
We compute this for a small example before doing the general case.

Example 4.4. Let n = 3, m = 4, λ = (2), and k = 2. Points in

e((2), F̃ ) are 3-planes in G3(C6) that intersect F̃3 nontrivially. Let L
be a generic 3-plane. e((2), L) is the set of 3-planes that intersect L
nontrivially. According to Pieri’s formula, σ(2) ` σ(2) = σ(4) + σ(3,1) +
σ(2,2). To check that σ(4) should appear on the right, cup product both
sides with σ

f(4)
= σ(4,4), which yields

[e((4, 4), F ) ∩ e((2), F̃ ) ∩ e((2), L)]∗ = σ(4,4,4)

by the duality theorem. e((4, 4), F ) ∩ e((2), F̃ ) is the set of 3-planes
containing v1 and v2 and intersecting span(v5, v6, v7) nontrivially. L in-
tersects the span(v1, v2, v5, v6, v7) in a 1-plane; there are complex num-
bers c1, c2, c5, c6, c7 such that this 1-plane is span(c1v1 + c2v2 + c5v5 +

c6v6 +c7v7). Thus e((4, 4), F )∩e((2), F̃ )∩e((2), L) is the single 3-plane
span(v1, v2, c1v1 + c2v2 + c5v5 + c6v6 + c7v7), as required.
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Lemma 4.5. (a) C = A0 + B0 +
∑n

i=1 Ai ∩Bn+1−i = ∩n
i=0(Ai + Bn−i).

(b) W ∈ e(µ, F ) ∩ e(λ, F̃ ) implies W ⊂ C. (c) If e(µ, F ) ∩ e(λ, F̃ ) is
nonempty, then

∑n
i=1 dim(Ci) = k + n. (d) C1, . . . , Cn linearly inde-

pendent and W ∈ e(µ, F ) ∩ e(λ, F̃ ) implies W =
⊕n

i=1(W ∩ Ci).

Proof. To prove (a) all we need to use is that A0 ⊂ A1 ⊂ . . . ⊂ An

and B0 ⊂ B1 ⊂ . . . ⊂ Bn. In general given W, X, Y ⊂ Cn+m with
W ⊂ Y , (W + X) ∩ Y = W + X ∩ Y . If w ∈ W , x ∈ X, and
w + x ∈ Y , then x = (w + x) − w ∈ Y since w ∈ W ⊂ Y . Therefore
w + x ∈ W + X ∩ Y . The other direction is easier. By applying
this twice we obtain the following fact: If W ⊂ Y and Z ⊂ X, then
(W + X) ∩ (Y + Z) = W + Z + Y ∩X. Applying this n times yields
(a):

(A0+Bn)∩(A1+Bn−1)∩. . .∩(An+B0) = (A0+A1∩Bn+Bn−1)∩(A2+Bn−2)∩. . .

= (A0+A1∩Bn+A2∩Bn−1+Bn−2)∩. . . = . . . = A0+A1∩Bn+A2∩Bn−1+. . . An∩B1+B0

The second equality uses that A0 + A1 ∩Bn ⊂ A2 and Bn−2 ⊂ Bn−1.
By (a) it suffices to show W ⊂ Ai + Bn−i for all i. If Ai ∩Bn−i 6= 0,

then W ⊂ Cn+m = Ai + Bn−i as needed. Otherwise Ai ∩Bn−i = 0 and
(W∩Ai)⊕(W∩Bn−i) ⊂ W . dim(W∩Ai) ≥ i and dim(W∩Bn−i) ≥ n−i
so (W ∩Ai)⊕ (W ∩Bn−i) has dimension n, the same dimension as W .
Therefore (W ∩Ai)⊕ (W ∩Bn−i) must be all of W so W ⊂ Ai + Bn−i.

dim(Ci) = (m + i − µi) + (m + n + 1 − i − λn+1−i) − (n + m) =
m + 1 − µi − λn+1−i if this is nonnegative, and 0 otherwise. W ∈
e(µ, F ) ∩ e(λ, F̃ ) implies (by dimension counting as in the proof of
Pieri’s formula) dim(W ∩ Ci) ≥ 1. Therefore

∑n
i=1 dim(Ci) = nm +

n− |µ| − |λ| = k + n; the last equality is by (4).
The Ci linearly independent implies the W ∩ Ci are linearly inde-

pendent and thus
⊕

i W ∩ Ci ⊂ W . We just mentioned that W ∈
e(µ, F )∩e(λ, F̃ ) implies dim(W ∩Ci) ≥ 1. The dimension of

⊕
i W ∩Ci

is at least the dimension of W so
⊕

i W ∩ Ci = W . 2

The condition that the Ci are independent corresponds to the right
hand side of Pieri’s formula. If the Ci are independent, this means they
are nonzero so Ci = span(vm+n+1−(m+n+1−i−λn+1−i), . . . , vm+i−µi

). The
Ci are independent if and only if

the intervals [m+n+1−(m+n+1−i−λn+1−i), m+i−µi] are disjoint

if and only if

0 < m+n+1−(m+n−λn) ≤ m+1−µ1 < m+n+1−(m+n−1−λn−1) ≤

m + 2− µ2 < . . . ≤ m + n− µn
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if and only if

0 < 1 + λn ≤ m + 1− µ1 < 2 + λn−1 ≤ m + 2− µ2 < . . . < m + n− µn

Because these are integers, we can get rid of the strict inequalities to
obtain the equivalent statement

0 ≤ λn ≤ m− µ1 ≤ λn−1 ≤ m− µ2 ≤ . . . ≤ m− µn, or

(5) 0 ≤ λn ≤ µ̃n ≤ λn−1 ≤ µ̃n−1 ≤ . . . ≤ µ̃1

This precisely means that µ̃ is obtained from λ by adding k boxes, no
two in a column.

By lemma 4.5 (c), if e(µ, F ) ∩ e(λ, F̃ ) 6= ∅ and the Ci are linearly
dependent, then dim(C) < k + n. A generic (m − k + 1)-plane L

intersects C only at 0. W ∈ e(µ, F )∩e(λ, F̃ ) implies W ⊂ C by lemma

4.5 (b) and this implies W ∩ L = 0. Thus e(µ, F ) ∩ e(λ, F̃ ) ∩ e((k), L)
is empty. (3) implies

0 = σµ ` σλ ` σ(k) = c
eµ σ(m,...,m)

and therefore c
eµ = 0. Combining this with the previous paragraph, we

conclude that if µ̃ is not obtained from λ by adding k boxes, no two in
a column, then c

eµ = 0.
Conversely, if (5) holds, then the Ci are linearly independent and

dim(C) = k + n. Let L be a generic (m− k + 1)-plane that intersects
C in a 1-plane of the form C · u, with u = u1 ⊕ . . .⊕ un, ui a nonzero

vector in Ci. e((k), L) intersects e(µ, F ) ∩ e(λ, F̃ ) transversely. Given

W ∈ e(µ, F )∩e(λ, F̃ ) such that W intersects L nontrivially, W must be
span(u1, . . . , un). This is because span(u1, . . . , un) ⊂ ⊕(W ∩ Ci) = W
and equality in dimensions show the inclusion is an equality. Thus
the triple intersection is a single point and (3) implies c

eµ = 1. This
completes the proof of Pieri’s formula.

5. Littlewood-Richardson numbers

In this section we sketch a nice combinatorial description of the co-
homology ring of the Grassmannian that is implied by Pieri’s formula.
Notation and proofs follow various parts of [Fu]. We give more specific
Let λ be a partition of r. A Young tableaux or, more briefly, a tableaux
of shape λ is Young diagram of shape λ filled with positive integers,
one in each box, such that entries weakly increase along each row and
strongly increase along each column. The following is a tableaux with
shape (4, 3, 2).

1 1 3 4
2 4 4
5 6
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Given a tableaux T define xT =
∏∞

i=1 x
bi(T )
i , where bi(T ) is the num-

ber of boxes of T filled with an i. For the tableaux above, xT =
x2

1x2x3x
3
4x5x6. The Schur polynomial corresponding to partition λ on

variables x1, . . . , xn is sλ(x1, . . . , xn) =
∑

xT , where the sum is over all
tableaux T of shape λ with entries in [n] = {1, 2, . . . , n}.

Theorem 5.1. The Schur polynomials satisfy Pieri’s formula (we omit
the dependence of the Schur polynomials on x1, . . . , xn):

sλs(k) =
∑

sλ′

where the sum is over all λ′ obtained from λ by adding k boxes, no two
in a column.

This formula is naturally the “projection” of a similar formula that
holds in the tableaux ring. The tableaux ring R[n] is the free Z-module
with a basis element for each tableaux with entries in [n]. Multipli-
cation is determined by a certain product on tableaux, which we now
describe.

Given a tableaux T and positive integer a1, the result of row bumping
a1 into T is a tableaux, T ′, with one more box than T . To obtain T ′,
first find the left-most entry in the first row of T that is larger than
a1 and replace this by a1. Let a2 be the entry that a1 bumped out. If
there is no entry larger than a1 in the first row, add a new box to the
end of first row with entry a1. If a new box wasn’t added, continue by
finding the left-most entry in the second row that is larger than a2 and
replace this with a2; let a3 be the deleted entry. Continue this process
until a new box is added. If an entry is bumped out from the bottom
row, add a box below T to make a new row with one entry. The result
is T ′.

For example, the following sequence of tableaux show the process of
row bumping 2 into the first tableaux in the list.

1 1 2 2 3
2 4 5
5 6

,
1 1 2 2 2
2 4 5
5 6

,
1 1 2 2 2
2 3 5
5 6

,
1 1 2 2 2
2 3 5
4 6

,

1 1 2 2 2
2 3 5
4 6
5

In this example a1 = 2, a2 = 3, a3 = 4, and a4 = 5; the entries bumped
in are in bold.

The product, T · U , of the tableaux T and U is the result of row
bumping the entries of U into T , in the following order: begin with
the bottom-left entry of U and continue from left to right along the
bottom row; proceed with the next to the last row, from left to right,
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and so on. For example,

1 1 3
4 4
5

· 1 2
4 =

1 1 3 4
4 4
5

· 1 2 =

1 1 1 4
3 4
4
5

· 2 =

1 1 1 2
3 4 4
4
5

This product is associative, although this is not obvious from this def-
inition (see chapters 1 and 2 of [Fu]). It is not commutative. We now
have the machinery to prove theorem 5.1.

Proof of theorem 5.1. There is a canonical map from R[n] onto
Z[x1, . . . , xn] that sends the tableaux T to the monomial xT . Let
Sλ[n] ∈ R[n] be the sum of all tableaux of shape λ with entries in [n].
The image of Sλ[n] is the Schur polynomial sλ(x1, . . . , xn). It therefore
suffices to show

(6) Sλ[n]S(k)[n] =
∑

Sλ′ [n]

holds in R[n] where the sum is over all λ′ obtained from λ by adding k
boxes, no two in a column. We show that there is a bijection between
terms in the left hand side and terms in the right hand side of (6).
More precisely, given T of shape λ and U of shape (k), we must show
that T ·U is a tableaux with shape obtained from λ by adding k boxes,
no two in a column. We must also show that if λ′ is a shape obtained
from λ by adding boxes with no two in a column, then a tableaux V
on λ′ determines tableaus of shape λ and shape (k). Furthermore, we
must show that these two processes are inverses of each other.

Suppose that a1 is row bumped into T and a1, . . . , ar is the sequence
of entries that are bumped, and let B(ai) be the box ai is bumped into.
Note that a1 < a2 < . . . < ar and that B(ai+1) is below and weakly to
the left of B(ai).

Consider the product of tableaux T · c1 c2 . . .ck , for some ci such
that 1 ≤ c1 ≤ . . . ≤ ck ≤ n. Let c1 = a1 < a2 < . . . < ar be the
sequence of entries obtained from row bumping c1 and let c2 = b1 <
b2 < . . . < bs be the sequence of entries obtained from row bumping c2.
Put T ′ = T · c1 c2 . As above, use the notation B() to denote the box
a given entry was bumped into.

For example if T =
1 1 2 2 3
2 4 5
5 6

, c1 = 1, and c2 = 2, we have

1 1 2 2 3
2 4 5
5 6

· 1 2 =

1 1 1 2 3
2 2 5
4 6
5

· 2 =

1 1 1 2 2
2 2 3
4 5
5 6
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The sequences a1 = 1, a2 = 2, a3 = 4, a4 = 5 and b1 = 2, b2 = 3, b3 =
5, b4 = 6 are in bold and italics respectively. Note that B(ai) is to the
left of B(bi) for i ∈ [4]. We will prove that this happens in general.

a1 ≤ b1 implies a1 and b1 both appear in the first row of T ′ with
B(a1) to the left of B(b1). Therefore the entries bumped out by a1 and
b1 came from two entries in the first row of T ; T a tableaux implies
a2 ≤ b2. Since b2 was bumped into the second row after a2, B(a2) is to
the left of B(b2). Repeating this reasoning we see B(ai) is to the left of
B(bi) for i = 1, . . . , s (and s ≤ r). As noted in the previous paragraph,
B(ar) is below and weakly to the left of B(as). This implies B(ar) is
strictly left of B(bs) and these are the new boxes in T ′ and not in T .
They are in different columns, as desired. More generally, this shows
that the new box after row bumping ci−1 is strictly to the left of the
new box after row bumping ci, and therefore no two of the new boxes
is in the same column.

To go the other direction, the proof is similar (section 1.1 [Fu] has
more details). We note that row bumping is reversible if the position
of the new box is known. Given V of shape λ′, reverse bump the boxes
that are not contained in the Young diagram λ. Do this in order from
right to left. We obtain a tableaux T of shape λ and the entries reverse
bumped out form a tableaux U of shape (k). T · U = V , as required.
2

Define Λn
i to be the ring of homogeneous symmetric polynomials over

Z of degree i in n variables. Using theorem 5.1, it takes a little work
to show

Proposition 5.2. The Schur polynomials sλ(x1, . . . , xn) are symmetric
in the variables x1, . . . , xn. The set {sλ(x1, . . . , xn) : |λ| = i} is a basis
over Z for Λn

i .

See sections 2.2 and 6.1 of [Fu] for a proof; we omit it here.
The Sλ ∈ R[n] and the Schur polynomials sλ(x1, . . . , xn) satisfy the

Littlewood-Richardson rule:

(7) Sλ[n] · Sµ[n] =
∑

ν

cν
λµSν [n].

The cν
λµ are positive integers called the Littlewood-Richardson numbers.

These numbers have several combinatorial interpretations. cν
λµ is the

number of ways a tableaux V of shape ν can be written as a product of
a tableaux T of shape λ times a tableaux U of shape µ. Remarkably,
this number is the same for every tableaux V of shape ν. See chapter
5 of [Fu] for many more facts about these numbers.
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The fact that cν
λµ does not depend on n and the rest of formula (7)

does may seem strange at first. Here’s an example with n = 2:

S(1,1)[2]·S(2)[2] = 1
2 ·

(
1 1 + 1 2 + 2 2

)
= 1 1 1

2 + 1 1 2
2 + 1 2 2

2 = S(3,1)[2]

implying c
(3,1)
(1,1)(2) = 1. However this does not imply all the other

Littlewood-Richardson numbers cν
(1,1)(2) are 0 because, for instance,

S(2,1,1)[2] = 0. The same computation for n = 3 follows.

S(1,1)[3]·S(2)[3] =
( 1

2 + 1
3 + 2

3

)
·
(

1 1 + 1 2 + 1 3 + 2 2 + 2 3 + 3 3
)

=

1 1 1
2 + 1 1 2

2 + 1 1 3
2 + 1 2 2

2 + 1 2 3
2 + 1 3 3

2 + 1 1 1
3 + 1 1 2

3 + 1 1 3
3 + 1 2 2

3 +

1 2 3
3 + 1 3 3

3 +
1 1
2
3

+
1 2
2
3

+
1 3
2
3

+ 2 2 2
3 + 2 2 3

3 + 2 3 3
3 = S(3,1)[3]+S(2,1,1)[3].

Therefore c
(2,1,1)
(1,1)(2) = 1. We could have deduced this much more quickly

from theorem 5.1 since there are only two ways to add two boxes to
(1, 1) with no two in the same column. This also tells us that we have
found all nonzero Littlewood-Richardson numbers of the form cν

(1,1)(2).
We conclude with the main theorem.

Theorem 5.3. The Schubert cycles σλ in Gn(Cm+n) satisfy

σλ ` σµ =
∑

ν

cν
λµσν ,

where cν
λµ are the Littlewood-Richardson numbers.

Proof. There is an additive surjective homomorphism Θ from
⊕∞

i=0 Λn
i

to H∗(Gn(Cm+n)) that sends sλ(x1, . . . , xn) to σλ for each λ (recall that
σλ is 0 if λ has more than n parts or more than m columns). This de-
termines Θ completely by proposition 5.2. Now

⊕∞
i=0 Λn

i is generated
as a ring by the Schur polynomials s(k) for k = 0, 1, . . . , n. (It is well
known that the elementary symmetric polynomials generate the ring
of symmetric polynomials as a Z-algebra. These Schur polynomials are
the complete symmetric polynomials and it is not surprising that they
generate as well. See section 6.1 [Fu] for more details.) Because of
Pieri’s formula and the corresponding formula for the Schur polynomi-
als (theorem 5.1), Θ is a homomorphism of rings.

sλsµ =
∑

ν

cν
λµsν

holds in
⊕∞

i=0 Λn
i , so the image of this formula holds in H∗(Gn(Cm+n)),

as desired. 2
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This method of proof shows indirectly that Pieri’s formula is enough
to compute any cup product in the cohomology ring of the complex
Grassmannian. Although we have not described many properties of the
Littlewood-Richardson numbers, we have shown that multiplication in
the cohomology ring of the complex Grassmannian can be given an ex-
plicit combinatorial interpretation. We conclude with a small example
where we can do all the combinatorial calculations and visualize the
geometry (at least a little).

Example 5.4. Shown below is a multiplication table for the cohomol-
ogy ring of G2(C5), where σλ has been replaced by the Young diagram
of λ. The Schubert cycles σ(0,0) and σ(3,3) have been omitted because
they are less interesting. The remainder of the table can be filled in
using the fact that cup product is commutative in this case and that
σµ ` σλ = 0 when |µ|+ |λ| > 6.



+ + +

+ + 0 0

0 0 0 0 0

0 0 0

+ 0 0 0 0


The first three rows and columns were computed using Pieri’s for-

mula. The duality theorem applies when |µ| + |λ| = 6. There are
several good ways to compute the other products. For example, we
can use (7) to compute ` = :

S(1,1)[2] · S(2,1)[2] = 1
2
· 1 1

2
= 1 1 1

2 2
.

Alternatively, we can use Pieri’s formula in a tricky way:

` = ` ( ` − ) = = 2 − =

Proposition 5.2 and theorem 5.3 imply that we can always use Pieri’s
formula for such computations.

We can use this multiplication table to compute the number of 2-
planes in C5 intersecting 6 2-planes in general position, as is done in
[GH]. This is the 6-fold intersection of the Schubert variety e((1)),
which we can compute from σ6

(1).

( )6 = ( ` ( + ))2 = (2 + )2 = 4 + = 5 ,
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the class of 5 distinct points in G2(C5). So there are 5 2-planes inter-
secting 6 2-planes in general position.
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