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1 Introduction

Cobordism theory is the study of manifolds modulo the cobordism relation:
two manifolds are considered the same if their disjoint union is the boundary
of another manifold. This may seem like a strange thing to study, but there
appears to be (at least) two good reasons why one may want to take a look
at such a thing. The first reason has to do with the homology of manifolds.
One can imagine trying to setup a homology theory of manifolds by looking at
chains built from embedded submanifolds. Because the boundary of a boundary
of a manifold is empty, this gives a differential chain complex. To compute the
homology of a manifold, one would then form the usual quotient ker ∂/im ∂. In
order to see if two cycles are equal, one would need to know if their difference
(which can be thought of as being some form of disjoint union) is the image of
∂, i.e., a boundary of another embedded manifold. This is precisely the question
that cobordism theory answers.

The second reason is a little more vague, but perhaps just as important.
There is no hope of classifying manifolds up to homeomorphism — a well known
result of A. Markov tells us that producing an algorithm that classifies compact
connected 4-manifolds up to homeomorphism is equivalent to producing an al-
gorithm that solves the classification problem for finitely-presented groups, a
problem for which no such algorithm can exist. So we have to set our sights
a little lower. Classifying manifolds up to cobordism might then seem like a
reasonable thing to try to do.

The notion of cobordism goes back to Poincaré, but the method that allows
us to successfully study it is more recent: Pontrjagin noticed that the study
of cobordism for framed manifolds is related to the study of certain homotopy
groups; Thom generalized this approach and successfully completed the compu-
tation of the unoriented cobordism groups. Thom’s method was then used by
other people to compute other cobordism groups.

The method used by Thom to study unoriented cobordism consists of two
steps. The problem is first reduced to a homotopy problem — the cobordism
groups in question are shown to be related to the homotopy groups of a certain
space, called the Thom space. These homotopy groups are then computed by
whatever means it seems appropriate to use. This basic pattern is followed
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in the study of other cobordism groups; this pattern is how we will approach
oriented cobordism in this paper.

2 Definitions

Let us define precisely the notions we introduced informally above. Unless
otherwise stated, we will assume that all maps are smooth and that all manifolds
are smooth and oriented — the focus will be on oriented cobordism theory.
There are other cobordism theories, but we will defer talking about them until
later.

Given an oriented manifold M , we will denote by −M the manifold that
has the same underlying topological and smooth structure as M , but with the
opposite orientation. By ∂M , we mean the boundary of M with the induced
orientation. By M + N , we mean the disjoint union of M and N ; by M − N ,
we mean M + (−N). By M = N , we mean that M is isomorphic to N as
oriented manifolds (i.e., M is diffeomorphic to N via an orientation preserving
diffeomorphism). What we are studying is the equivalence relation of cobordism:

Definition 1. Two compact boundaryless manifolds M and N are cobordant
if there exists a compact manifold with boundary W such that ∂W = M −N .
We might sometimes write this as M ∼ N .

Let us check that this is an equivalence relation. First, it is easy to see that
it is reflexive since M −M is the boundary of M × [0, 1]. It is also symmetric: if
∂W = M −N , then ∂(−W ) = N −M . Finally, we check transitivity. Assume
∂V = L −M and ∂W = M − N . Using the collar neighborhood theorem1,
we can define a new manifold X by gluing together the −M component of
∂V and the M component of ∂W . We would then have ∂X = L − N . Note
that our definition subsumes the equivalence relation of being isomorphic as
oriented manifolds, since if M is isomorphic to N , then M − N is isomorphic
to ∂(M × [0, 1]).

We can now define the oriented cobordism groups:

Definition 2. The n-th oriented cobordism group Ωn is the set of compact
boundaryless n-dimensional manifolds together with the group operation + (i.e.,
disjoint union), modulo the equivalence relation of cobordism.

The associativity of + is obvious. To simplify things, we will think of the
empty set ∅ as being an n-manifold for every n. This allows us to set the
identity element in Ωn to be the equivalence class of ∅. What about inverses?
Our notation suggests a natural choice: the inverse of M should be −M . And
this is indeed the case: M −M , as we already mentioned, is the boundary of
M × [0, 1], hence is cobordant to ∅.

Note that any manifold M is the boundary of M × [0,∞). This is why we
should only look at compact manifolds — we would otherwise be studying a
completely trivial theory.

1[2] Ch. 4, Sec. 6 has a proof of this theorem.
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Because disjoint union is a commutative operation, Ωn is an abelian group.
If we have an m-manifold M and n-manifold N , we can take their cartesian
product M ×N . This gives an associative bilinear product Ωm ×Ωn → Ωm+n.
We can thus consider the graded ring Ω∗ =

⊕∞
n=0 Ωn. This is in fact com-

mutative in the graded sense: M × N is isomorphic to (−1)mnN ×M as an
oriented manifold. Further, the ring possesses an identity element 1 ∈ Ω0 —
the cobordism class of a point.

The classification of compact 0, 1, and 2-manifolds allows us to easily com-
pute Ωn for n = 0, 1, or 2. For Ω0, observe that a 0-manifold is just a collection
of signed points, and that the difference in number between the positive and
negative points determines the cobordism class of the manifold (since a positive
point and a negative point is the boundary of [0, 1]). Thus, Ω0 = Z. Ω1 and Ω2

are even easier to compute: there is only one compact boundaryless 1-manifold,
S1, and S1 with any orientation bounds the 2-disk D2 (with an appropriate
choice of orientation); similarly, the classification theorem for surface allows us
to list all possible compact orientable boundaryless surfaces, and each of these
is clearly the boundary of a suitable 3-manifold (just think of the solid sphere,
the solid torus, the solid doughnut with 2 holes, etc.). This means that Ω1 and
Ω2 are both 0. Determining Ωn for n > 2 turns out to be a little more difficult.
For n = 3, it is a theorem of Rohlin [5] that any compact orientable 3-manifold
is the boundary of a 4-manifold, allowing us to conclude that Ω3 is also 0. For
even larger n, we have to resort to the general theory described below.

3 Some differential topology

Let us begin our study of the oriented cobordism groups by asking a preliminary
question: how does the cobordism relation behave under (smooth) homotopies?
More precisely, if f : M → N and g : M → N are homotopic maps, how are
f−1(A) and g−1(A) related2?

Before we discuss this question, let us recall some definitions from differential
topology. Let f : M → N be a map between manifolds, and let A ⊂ N
be a submanifold. We say that f is transverse to A if for every y ∈ A and
every x ∈ f−1(y), the tangent space TyN is spanned by TyA and the image of
f∗ : TxM → TyN . This is usually written f t A. Note: if f is transverse to A,
then f−1(A) is a submanifold of M . The key fact3 about transversality is:

Theorem 3 (Transversality theorem). Let F : M × S → N be a map of
manifolds, where S may have boundary. Assume A is a submanifold of N . If
both F and ∂F are transverse to A, then for almost every s ∈ S, both F (−, s)
and ∂F (−, s) are transverse to A. Here, by ∂F , we mean the restriction of F
to the boundary of its domain, and by F (−, s), we mean the map from M to N
obtained from F by holding s constant.

2The discussion in the next three sections loosely follows that in [2], Ch. 7.
3See [1] or [2] for a proof.
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This theorem says that any map can be deformed by an arbitrarily small
amount to make it transverse. This will be used more or less freely in what
follows, usually by simply noting that certain maps may be chosen to be trans-
verse.

Before we try to answer the question asked above, we need to mention how
orientations work in our setup. Remember that we are considering the case of
a map f : M → N , and a submanifold A ⊂ N . Let νA be the normal bundle
of A, and assume that this bundle is oriented. Assume that M is oriented and
f t A. It can be verified that νA induces a bundle over f−1(A) in M that can
be identified with the normal bundle of f−1(A). The orientation of this bundle
together with the orientation on M determine an orientation on f−1(A).

We can now answer the question:

Lemma 4. Let f : M → N and g : M → N be homotopic maps between
boundaryless manifolds, and let A ⊂ N be a closed boundaryless submanifold
with an oriented normal bundle νA. If both f and g are transverse to A, then
the manifolds −f−1(A) and g−1(A) are cobordant.

Proof. We can choose the homotopy H : M × I → N between f and g to be
transverse to A. Then H−1(A) is a submanifold of M × I whose boundary is
g−1(A)− f−1(A).

4 Reduction to homotopy theory

Let us try to massage the problem of corbodism into a form where we can
more readily apply Lemma 4. Assume the dimension n is fixed. We need to
choose the manifold M in the lemma to be “big” enough so that any compact
n-manifold can be thought of as an embedded manifold in M . This is easy
to arrange: the Whitney embedding theorem guarantees that this can be done
with M = Rn+k for sufficiently large k (in fact, for k ≥ n). But we are going to
go with the slightly different choice of M = Sn+k for sufficiently large k because
our goal is reduce things to homotopy theory, and the homotopy groups are
built from maps of spheres into spaces. What should we choose for N and
A? Whatever we choose has to satisfy a few conditions. First, dim f−1(A) =
dimM−dimN+dimA, so our choice will determine k. More importantly, under
the assumptions of the lemma, and as was already mentioned, the normal bundle
of f−1(A) inM is determined by the normal bundle of A in N4. Thus we need to
make sure that the oriented normal bundle of any embedded manifold X ⊂ M
can be pulled back via a map h : X → A from the oriented normal bundle of
A. What we need is precisely the property that the oriented universal bundle
has: we should take our A to be G̃k(Rs), the Grassmann manifold of oriented
k-planes in Rs, for s ≥ n + k; and we should take our N to be the total space
E(γ̃k(Rs)) of the oriented universal bundle γ̃k(Rs) over G̃k(Rs).

With our choices made as above, the situation is as follows. For any given
compact n-manifold X, we embed X into Sn+k. A tubular neighborhood U of

4It is the pullback bundle.
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X can be identified with the oriented normal bundle of X. By the properties
of the oriented universal bundle, there is a bundle map α between the bundle
U → X and the oriented universal bundle E(γ̃k(Rs)) → G̃k(Rs), provided that
s ≥ n+ k. This map α : U → E(γ̃k(Rs)) is what we will try to apply Lemma 4
to. But one problem with it as it stands is that α is only defined on a subset of
Sn+k; it needs to be extended to an α̃ defined on all of Sn+k, and α̃ must not
send points not in U to G̃k(Rs). The way to fix this problem is by adjoining a
point at infinity, which leads us to the notion of a Thom space.

5 Thom spaces

Given a Euclidean vector bundle ξ = (π,E,B), one can form a space T (ξ), called
the Thom space of ξ, as follows. Let V ⊂ E be the the set of all vectors in each
fiber whose norm is ≥ 1. T (ξ) is defined to be the quotient space E/V . If the
base B is compact, as it is in the case we will consider, the Thom space can just
be thought of as the Alexandrov one-point compactification of E (identify V
with the point∞). This space is what will allow us to fix the problem mentioned
in the previous section. The idea will be to send Sn+k \ U to ∞.

We can define a homomorphism, called the Thom homomorphism,

τ : πn+k(T (γ̃k(Rs))) → Ωn

as follows. Let α ∈ πn+k(E(γ̃k(Rs))), i.e., α is a homotopy class of maps from
Sn+k to T (γ̃k(Rs)). Define

τ(α) = [f−1(G̃k(Rs))],

where f is any map in the homotopy class α such that f t G̃k(Rs), and where
the orientation of f−1(G̃k(Rs)) is determined, as we discussed earlier, by the
pullback of the normal bundle of G̃k(Rs) in E(γ̃k(Rs)), which is just the bundle
γ̃k(Rs) itself.

The key result in cobordism theory, due to Thom, is the following theorem5.

Theorem 5. τ is surjective if k > n and s ≥ n + k and injective if k > n + 1
and s ≥ n+ k + 1. Thus, τ is an isomorphism if k > n+ 1 and s ≥ n+ k + 1.

Proof. To simplify the notation, we will set E = E(γ̃k(Rs)), G = G̃k(Rs), and
γ = γ̃k(Rs). First, we will prove surjectivity. The Whitney embedding theorem
lets us embed any compact boundaryless n-manifold M in Rn+k since k > n.
Choose a tubular neighborhood U of M ; this is diffeomorphic to the total space
of the normal bundle, νM , of M . By using something similar to the generalized
Gauss map, we can get a map β from this space to E(γ̃k(Rn+k)): for a point
(x, v) ∈ E(νM ), with x ∈ M and v in the fiber over x in νM (which we will
denote NxM), we set

β(x, v) = (NxM,v) ∈ E(γ̃k(Rn+k)),
5The proof is pieced together from those given in [4] and [2].
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where we can consider the oriented vector space NxM as a point of G̃k(Rn+k)
thanks to the embedding in Rn+k. Using the obvious inclusion E(γ̃k(Rn+k)) ⊂
E, this can be thought of as a map from E(νM ) to E. The diffeomorphism
between U and E(νM ) lets us turn this into a map from U to E. Finally,
there is a canonical map E → T (γ). Composing all these maps gives us a map
g : U → T (γ) which is transverse to the zero-section G. We can extend g to ĝ
defined on all of Rn+k by sending Rn+k \ U to ∞. By thinking of Sn+k as the
one-point compactification of Rn+k, we can think of ĝ as a map from Sn+k to
T (γ) (we of course send ∞ ∈ Sn+k to ∞ ∈ T (γ)). Clearly τ sends the homotopy
class of ĝ to the cobordism class of M .

Let us now prove injectivity. In order to do this, we need to recall some
more definitions and results from differential topology. A submanifold A ⊂ M
is called a neat submanifold of M if ∂A = A ∩ ∂M and A is covered by charts
(φ,U) of M such that A ∩ U = φ−1(Rk), where k = dimA. The idea is that
the boundary of a neat submanifold A is nicely placed in the boundary of M :
TxA 6⊂ Tx(∂M) for x ∈ ∂A. An embedding A → M is called a neat embedding
if its image is a neat submanifold. The result that we will need about neat
submanifolds is the following6: if A ⊂ M is a neat submanifold, then every
tubular neighborhood of ∂A in ∂M is the intersection with ∂M of a tubular
neighborhood of A in M .

Assume the homotopy class of some map g : Sn+k → T (γ) gets sent by τ to
the 0 cobordism class. We need to fiddle with g to get it into a form where we
can use our previous results. We start by using the transversality theorem to
replace g with a map homotopic to g and transverse to G. Using this new map
(which we will continue to call g), set M = g−1(G).

Next, we will adjust g so that there is tubular neighborhood U of M such
that U = g−1(E) and such that g|U : U → E is a map of vector bundles. This
would mean that g(Sn+k\U) = ∞. To accomplish this, set U ⊂ g−1(E). This is
a tubular neighborhood of M in Sn+k. Let X ⊂ U be a disk subbundle. By yet
another result in differential topology7, we can assume that g agrees in X with
a vector bundle map ψ : U → E. We can define a new map h : Sn+k → T (γ),
by h ∼= ψ on U and h ∼= ∞ on Sn+k \ U . By construction, g and h agree on
X, in particular on ∂X. They also both map Sn+k \ intX into T (γ) \G, which
is contractible (we can contract to ∞). By a smooth version of the homotopy
extension property, g and h are homotopic. For the rest of the proof, we will
replace g with h.

Take M , U , and g as in the paragraph above. Since τ([g]) = 0, M must be
the boundary of some (n + 1)-manifold W . The assumption k > n + 1 means
that n + k + 1 > 2(n + 1); by the Whitney embedding theorem, this allows us
to embed W in Dn+k+1. It is easy to see that this embedding can be chosen so
that it extends the inclusion of M = ∂W into Sn+k = ∂Dn+k+1 and so that it is
neat — the obvious way to do this is to construct a small collar neighborhood of
M in Dn+k+1 so that the “collar” is normal to the boundary sphere, and then to

6[2], Ch. 4, Sec. 6; this is sometimes taken to be part of the definition of a neat submanifold.
7Ibid
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attach W along this collar. U extends to a tubular neighborhood V ⊂ Dn+k+1

of W by the result mentioned earlier about neat submanifolds. Remember that
we can think of U as a k-plane bundle over the n-manifold M, and of g as a
bundle map g : U → E. We can similarly think V as a k-plane bundle over the
(n + 1)-manifold W . The assumption s ≥ k + (n + 1) means that there is a
bundle map from V to E. This map ĝ : V → E can be chosen so that it extends
g; this is due to the fact that any classifying map ∂W = M → G̃k(Rs) for the
bundle U extends to a classifying map W → G̃k(Rs) for the bundle V 8. Extend
ĝ to all of Dn+k+1 by sending Dn+k+1 \ V to ∞. ĝ is defined on a contractible
space and ĝ|Sn+k = g. Thus, the homotopy class of g must be zero.

6 Solving the homotopy problem

The only thing left to do is to compute the homotopy groups of the Thom
space T (γ̃k(Rs)). We will not attempt to compute these groups completely; the
full computation is perhaps best done with the machinery of the Adams spec-
tral sequence9, and so we will content ourselves with a computation modulo
C-isomorphism. By C-isomorphism, we mean a homomorphism h : G → H be-
tween abelian groups whose kernel and cokernel are both are both finite abelian
groups10.

Let ξ = (π,E,B) be a Euclidean k-plane bundle over a base space B. We
can give the space T (ξ) a CW-structure:

Lemma 6. Given a CW-complex structure on B, T (ξ) has a (k− 1)-connected
CW-complex structure having one (n + k)-cell for each n-cell of B, and one
additional 0-cell (the point ∞).

Proof. If ea is an open n-cell of B, then π−1(ea)∩ (E \V ) is an open (n+k)-cell
of. These cells are pairwise disjoint, and they cover E \ V ∼= T (ξ) \ {∞}.

Let c : Dn → B be the characteristic map for ea. The pullback bundle c∗(ξ)
is trivial since Dn is contractible. The vectors of length ≤ 1 in c∗(ξ) thus forms
a product Dn ×Dk. We can form the characteristic map of π−1(ea) in T (ξ) by
taking the composition

Dn ×Dk ↪→ c∗(ξ) → E → T (ξ).

It is easy to see that this gives the required CW-complex structure on T (ξ). The
fact that it is (k− 1)-connected simply follows from the fact that this structure
has no n-cells for n = 1, . . . , k − 1.

We can also compute the homology of T (ξ):

Lemma 7. Hk+i(T (ξ),∞) is canonically isomorphic to Hi(B).

8[2] Thm. 4.3.4
9[3], Ch. 9 has a discussion on the use of the Adams spectral sequence to compute the

homotopy groups of Thom spaces.
10This section is based on Ch. 18 of [4].
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Proof. B is embedded in E\V ∼= T (ξ)\{∞} as the zero-section. Let T0(ξ) be the
complement of the zero-section in T (ξ). T0(ξ) is contractible — we can contract
to ∞. The exact sequence of the triple (T (ξ), T0(ξ),∞) yields an isomorphism
Hn(T (ξ),∞) ' Hn(T (ξ), T0(ξ)). By excision, Hn(T (ξ),∞) ' Hn(E,E0), where
E0 is the complement of the zero-section in ξ. But then the Thom isomorphism
tells us that Hn(E,E0) ' Hn−k(B).

These homology groups will allow us to extract some information about the
homotopy groups of the Thom space. The key to this is the following theorem,
proven in [4] by putting together some results of Serre.

Theorem 8. Let X is a finite, (k − 1)-connected, CW-complex, with k ≥ 2.
Then the Hurewicz homomorphism πi(X) → Hi(X; Z) is a C-isomorphism for
i < 2k − 1.

We know the homology of G̃k(Rn+k): Hi(G̃k(Rn+k)) is finite if i 6≡ 0(mod 4),
and is finitely generated of rank p(r) if i = 4r, where p(r) is the number of
partitions of r. Together with the above theorem, this impllies that

rankπi(G̃k(Rn+k) = p(r)

if i = 4r; otherwise πi(G̃k(Rn+k)) is finite.
We can combine all these results to get the main theorem, which is due to

Thom:

Theorem 9. Ωn is finite for n 6≡ 0(mod 4), and is finitely generated of rank
p(r) for n = 4r.

It is possible to prove part of this theorem by other means, namely, by
looking at Pontrjagin numbers11. A compact oriented 4n-manifold M cannot
be the boundary of a 4n+ 1 manifold if some Pontrjagin number pi1 . . . pir

[M ]
of M is non-zero. The Pontrjagin number of CP 2k is given by

pi1 . . . pir [CP 2k] =
(

2k + 1
i1

)
. . .

(
2k + 1
ir

)
,

where i1, . . . , ir is a partition of k. In particular, it is not zero; hence, CP 2k

is not cobordant to zero. What is also true is that Pontrjagin numbers are
additive:

pi1 . . . pir [M1 +M2] = pi1 . . . pir [M1] + pi1 . . . pir [M2].

This implies that the map Ω4n → Z defined by M 7→ pi1 . . . pir
[M ] is a ho-

momorphism for any choice of the partition i1, . . . , ir of n = 1
4 dimM . Fi-

nally, there is a theorem — appropriately enough, also due to Thom — about
the linear independence of Pontrjagin numbers: if Mj1 , . . . ,Mjs

are oriented
manifolds of dimensions 4kj1 , . . . , 4kjs

and such that the characteristic numbers

11See [4] Ch. 16, 17 for details.

8



skji
(p)[Mji ] 6= 0, then the square matrix (with the number of rows equal to the

number of partitions of kj1 + · · ·+ kjs
)[

pi1 . . . pir
[M j1 × · · · ×M js ]

]
is non-singular. This theorem applies to the products CP 2m1 × · · · × CP 2mt ,
wherem1, . . . ,mt is a partition of n, to show that the set of all products CP 2m1×
· · ·×CP 2mt , where m1, . . . ,mt ranges over all partitions of n, represent linearly
independent elements of the cobordism group Ω4n. This is enough to show that

rank Ω4n ≥ p(n).

Combining this with the main theorem, we can also say something about Ω∗⊗Q:
it is a polynomial algebra over Q with independent generators CP 2,CP 4, . . .

7 Other cobordism theories

There are many other types of cobordism theories. Instead of looking at ori-
ented manifolds, we could look at unoriented manifolds. This would give us
the unoriented cobordism groups Rn. We could also look at manifolds with
additional structures: manifolds with an equivalence class of complex vector
bundle structures on the normal bundle, manifolds with an equivalence class of
quaternionic vector bundle structures on the normal bundle, manifolds with an
equivalence class of Spin structures on the normal bundle, which would lead to
theories of complex corbordism, symplectic cobordism, spin cobordism. (And
these by no means exhaust all the possibilities.) The study of these groups
follows the same overall pattern used to study oriented cobordism: the problem
is reduced to a homotopy problem, which is solved by various methods. Thom
spaces play the same role in these other theories as they did in the oriented case
— Thom spaces are defined in the category of objects under consideration and
the cobordism problem is reduced to a computation of the homotopy groups of
these Thom spaces. [6] is a good reference for cobordism theory in general, and
contains a discussion of the notion of a cobordism category, which serves as a
unifying language for talking about the different cobordism theories.
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