
A brief glance at K-theory

Dennis Courtney

June 1, 2004

1 Introduction

1.1 History

K-theory has its origins in the late 1950s generalization by Grothendieck of the Riemann-Roch theorem [2].
Algebraic geometry utterly baffles me, making me unfit to summarize Grothendieck’s achievement, but he
appears to have associated to each X in some family of algebraic spaces a group K(X) that turns out to be
a natural repository for information about X and various objects defined “over” X. Within this framework,
he recovered classical Riemann-Roch as a special case of a general theorem involving K-groups.

Hirzebruch and Atiyah soon realized that these ideas could be exported to the world of algebraic topology.
The resulting K-theory of topological spaces— the subject of this paper— turns out to be quite powerful:
among its early triumphs were Adams’ determination of the maximum number of linearly independent vector
fields on Sn, and the formulation and proof of the Atiyah-Singer index theorem. (Further work by many
others has extended the ideas and constructions of K-theory beyond topological spaces to C∗-algebras and
more general rings, but we will not discuss this here.)

1.2 Outline

Topological K is a functor from compact Hausdorff spaces to commutative rings. Roughly speaking, K(X)
is what you get when you turn the operations of direct sum and tensor product of vector bundles over X
into the addition and multiplication of a ring. Along with K we have his “reduced” companion K̃ which is
roughly K modulo trivial bundles.

By setting K̃−i(X) = K̃(SiX), SiX denoting the ith suspension of X, K̃ = K̃0 becomes the first of a
sequence of functors. After also defining K̃−i(X,A) = K̃i(X/A) for compact pairs (X,A), we get a long
exact sequence

· · · −→ K̃−1(X,A) −→ K̃−1(X) −→ K̃−1(A) −→ K̃0(X,A) −→ K̃0(X) −→ K̃0(A) (1)

Remarkably enough, it turns out that K̃−i(X) ∼= K̃−i−2(X) for all X in a natural way, allowing one to
extend the sequence K̃i to all integers i and turn the above sequence into one with only six terms:

K̃0(X,A) −−−−→ K̃0(X) −−−−→ K̃0(A)x y
K̃1(A) ←−−−− K̃1(X) ←−−−− K̃1(X,A)

(2)

These properties of K-theory make it computable; its relation to vector bundles makes it worth computing.
The first section of this paper defines K and K̃. The subsequent sections explain (1) and the isomorphism

K̃−i(X) ∼= K̃−i−2(X) that gives us (2). With this basic knowledge in hand we turn to an application: Adams’
result on the existence of maps with Hopf invariant 1 and its corollaries.

My general approach is to relate the ideas and skip the details. I give references wherever possible so
that the interested reader may see every unsubstantiated claim in full detail. I will only deal with complex
vector bundles over compact spaces although K-theory can certainly be developed in greater generality.



1.3 Aside: Why is it called K-theory?

For this bit of mathematical culture we turn to Grothendieck himself, as quoted in [5]:
The way I first visualized a K-group was as a group of “classes of objects” of an abelian (or more
generally, additive) category, such as coherent sheaves on an algebraic variety, or vector bundles, etc. I
would presumably have called this group C(X) (X being a variety or any other kind of “space”), C the
initial letter of ‘class,’ but my past in functional analysis may have prevented this, as C(X) designates
also the space of continous functions on X (when X is a topological space). Thus, I reverted to K instead
of C, since my mother tongue is German, Class = Klasse (in German), and the sounds corresponding to
C and K are the same.

Fascinating.

2 K(X) and K̃(X)

Throughout this section, X and Y will denote compact Hausdorff spaces.

2.1 Vector bundles

A trivial bundle over X is a product X × Cn for some nonnegative1 integer n, together with the projection
X × Cn → X. A vector bundle over X is a space E and a surjection p : E → X together with a complex
vector space structure on each fiber Ex = p−1(x), such that for each x ∈ X there is an open U containing x
such that p−1(U) is isomorphic to a trivial bundle U ×Cn. Here the isomorphism is understood in the sense
appropriate to vector bundles over X: a morphism E → F is a map E → F taking Ex linearly to Fx for all
x ∈ X. If the dimension of p−1(x) is constant over X it is called the rank of the bundle. A rank 1 bundle is
a line bundle.

An isomorphism p−1(U)→ U×Cn is called a trivialization over U (or more loosely a local trivialization).
We will denote the set of isomorphism classes of vector bundles over X by V (X), and n ∈ V (X) will

denote the trivial bundle of rank n.

2.2 Operations on vector bundles

2.2.1 The pullback

Given a map g : X → Y the pullback construction associates to each vector bundle q : E → Y over Y a
vector bundle g∗(E) over X.

We define g∗(E) = {(x, v) ∈ X ×E : g(x) = q(v)} together with p : g∗(E)→ X given by (x, v) 7→ x. The
map g induces a morphism g∗(E) → E by way of (x, v) 7→ v and one has g∗(E)x

∼= Eg(x) for all x ∈ X. It
is convenient to know that the pullback is characterized by this property: if one has a bundle F over X and
morphism φ : F → E inducing isomorphisms Fx

∼= Eg(x) on each fiber, then F ∼= g∗(E). ([11], 19)
The pullback is the basis of the functoriality of the constructions to come. It is clear that g∗ induces a

map V (Y )→ V (X) and that g 7→ g∗ respects composition of maps. When we define K we will see that g∗

also induces a map K(Y )→ K(X) that plays the role of K(g).

2.2.2 The direct sum

If E and F are vector bundles over X there is a natural notion of their direct sum E⊕F . Letting p : E → X
and q : F → X denote the bundle maps, we set E ⊕ F = {(e, f) ∈ E × F : p(e) = q(f)} with the obvious
map E ⊕ F → X (induced by either p or q). It is readily checked that this is a vector bundle over X and
that (E ⊕ F )x = Ex ⊕ Fx. It is characterized by a universal property analogous to that of the vector space
direct sum. We will need the following fact ([3], 27):

Fact 1. Every vector bundle over a compact Hausdorff space is a direct summand of a trivial bundle.
1C0 = 0.
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2.2.3 The tensor product

If E and F are vector bundles over X there is also a tensor product bundle E ⊗ F . At the fiber level it is
clear that one should have (E⊗F )x = Ex⊗Fx; the only question is how to topologize this collection. This is
not as straightforward as the direct sum case, but it is elementary: the idea is to topologize

⋃
x∈X(Ex⊗Fx)

by patching together the toplogies induced by local trivializations of E and F . This is done in ([11], 15-15)
or more generally in ([3], 6-9).

2.2.4 The kth exterior power, k ≥ 0

Given a bundle E over X, and k ≥ 0 one can form the kth exterior power Λk(E). This is a bundle over
X with (Λk(E))x = Λk(Ex); see ([3], 6-9) for the topology. Our main use of exterior powers will be in
constructing the Adams operations needed in §5. It is readily checked that

• Λ0(E) = 1 and Λ1(E) = E for any E,

• Λk(E) = 0 whenever k exceeds the dimension of any fiber of E,

• Λk(E ⊕ F ) =
∑∞

j=0 Λi(E)⊗ Λk−i(F ).

It follows that if E = L1 ⊕ · · · ⊕ Lj is a sum of line bundles then

Λk(E) = sk(L1, . . . , Lj)

where sk ∈ Z[x1, . . . , xj ] is the jth elementary symmetric polynomial in x1, . . . , xj (ie, (−1)j times the
coefficient of Xn−j in

∏j
k=1(X − xk)), and the evaluation of sk at L1, . . . , Lj has the obvious meaning2.

2.3 The semiring structure of V (X)

It is clear that ⊕ and ⊗ give rise to commutative and associative operations on V (X) satisfying a distributive
law (E ⊕ F ) ⊗ G = (E ⊗ G) ⊕ (F ⊗ G). The bundles 0 and 1 serve as identities for ⊕ and ⊗ respectively.
Thus V (X) is a commutative semiring with identity. If f : X → Y is given then f∗ : V (Y ) → V (X) is
readily checked to be a homomorphism of semirings3 and this assignment is functorial (as in §2.2.1).

One might wonder why V is not the focus of attention— or, as V is the starting point of K-theory,
why K-theory appeared only so recently. (Vector bundles are classical objects, and viewing ⊕ and ⊗ as
kinds of “addition” and “multiplication” is not particularly deep.) The fact is that V is very difficult to
compute. Thus, although particular vector bundles appear quite naturally in a variety of classical contexts,
the aggregate of all vector bundles over a space appears rather intractable at first glance. It is somewhat
miraculous that a quotient of V turns out to be both easy to compute and useful.

An elementary fact about V is that it is invariant under homotopy equivalence.

Fact 2. If f : X → Y is a homotopy equivalence then f∗ : V (Y )→ V (X) is an isomorphism. ([3], 18)

In the case of a point p we have an isomorphism V ({p})→ Z≥0 given by dimension; we conclude

Corollary 1. If X is contractible then V (X) ∼= Z≥0.

When A ⊆ X is contractible the projection X → X/A is often a homotopy equivalence. Even when it
isn’t, we have the following fact, which is needed to construct (1):

Fact 3. If A is a closed contractible subset of X then the quotient X → X/A induces an isomorphism
V (X/A)→ V (X). ([3], 19)

2For example if j = 3 we have s2(x1, x2, x3) = x1x2 + x1x3 + x2x3 and s2(L1, L2, L3) = (L1⊗L2)⊕ (L1⊗L3)⊕ (L2⊗L3).
3This is most easily done by checking that f∗(E)⊕ f∗(F ) satisfies the universal property required of f∗(E ⊕ F ), and so on.
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2.3.1 Vector bundles on spheres and clutching functions

In the following it will help to have some knowledge of vector bundles on spheres. First note that if E → Sn

is a vector bundle, as Sn is connected the locally constant function x 7→ dimEx on Sn is in fact constant,
so every element of V (Sn) has a well-defined rank.

There is a bijection between the set of isomorphism classes of rank k vector bundles on Sn and the set
of homotopy classes of maps Sn−1 → GLk(C). Given a map f : Sn−1 → GLk(C) (a “clutching function”)
we obtain a rank k vector bundle Ef on Sn via the following construction (the “clutching construction”).
Let D1 and D2 denote the upper and lower hemispheres of Sn; note D1 ∩D2 = Sn−1. Let Ef denote the
space obtained from the disjoint union of the trivial bundles T1 = D1×Ck and T2 = D2×Ck by identifying
(x, v) ∈ ∂D1 × Ck with (x, f(x)v) ∈ ∂D2 × Ck. The evident projection Ef → Sn makes Ef into a vector
bundle, depending (up to isomorphism) only on the homotopy class of f ([11], 24).

Going the other way, if E → Sn is any rank k vector bundle, the restrictions E1 and E2 of E to D1 and
D2 are each trivial by Corollary 1. Choosing trivializations h1 : E1 → D1 × Ck and h2 : E2 → D2 × Ck,
then h2h

−1
1 gives a map Sn−1 → GLk(C) whose homotopy class is independent of the choice of h1 and h2.

It is readily checked that this map is inverse to the clutching construction.
Since GLk(C) is path connected we conclude that every complex vector bundle over S1 is trivial so that

V (S1) ∼= Z≥0 by dimension. This will be important in §4.
A bundle of particular importance to us will be the bundle H → S2 corresponding to the clutching

function f : S1 → GL1(C) given by f(z) = z. (Regarding S2 as CP 1, this is the “tautological” bundle whose
fiber over a line in CP 1 is just that line.) It will be significant that (H ⊗H)⊕ 1 = H ⊕H. This can be seen
by noticing that the corresponding clutching functions z 7→ ( z2 0

0 1
) and z 7→ ( z 0

0 z ) are homotopic.

2.4 K(X) and K̃(X)

We turn V (X) into a ring in a purely formal way. Let ∆ : V (X) → V (X) × V (X) be the diagonal
homomorphism of semirings, and let K(X) denote the set of cosets of ∆(V (X)) in V (X) × V (X). This
is clearly a quotient semiring, and it is readily checked that the map (a, b) 7→ (b, a) induces an inverse
operation for the addition in K(X) so that K(X) is a commutative ring. If f : X → Y is given, the pullback
f∗ : V (Y )→ V (X) induces a ring homomorphism K(Y )→ K(X). Functoriality is evident.

In a suitable sense, K(X) is the unique way of “making a ring out of” V (X). Let ι : V (X) → K(X)
denote the composition of E 7→ (E, 0) with the projection V (X)× V (X)→ K(X). The pair (K(X), ι) has
the property that if R is any ring and φ : V (X) → R any semiring homomorphism there is a unique ring
homomorphism Φ : K(X)→ G such that φ = Φι. This property determines K(X) up to isomorphism.

It is clear from Fact 2 that K is also invariant under homotopy equivalence. From Corollary 1 and the
universal property of K(X) we conclude that K(X) ∼= Z for any contractible X.

To get a better picture of K(X) let [E] denote ι(E), for E ∈ K(X). We have

[F ] = [G] iff there is B ∈ V (X) such that F ⊕B = G⊕B. (3)

and
K(X) = {[F ]− [G] : F,G ∈ V (X)} (4)

Note that [F ]− [G] = [H]− [K] iff there is B ∈ V (X) such that F ⊕K ⊕B = G⊕H ⊕B. By Fact 1 both
this B and the B in (3) may be taken to be trivial. Similarly, the RHS of (4) is equivalently {[F ] − [T ] :
F ∈ V (X), T trivial}. When there is a trivial B for which F ⊕ B = G ⊕ B, F and G are said to be stably
equivalent. The above shows that one may equally well have defined K(X) to be the collection of formal
differences of stable equivalence classes of vector bundles over X with the obvious operations.

It will be convenient to have a “reduced” form of K(X) based on a looser form of equivalence. Declare
E ∼ F in V (X) if there are trivial bundles T and T ′ (of potentially different ranks) such that E⊕T = F⊕T ′.
This is an equivalence relation and ⊕ induce a group structure on the set K̃(X) of ∼-equivalence classes.
One obtains a surjection K(X)→ K̃(X) by sending [E]− [T ] (here E ∈ V (X) and T is trivial) to the class
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of E. The kernel of this map is {[n] − [m] : m,n ∈ Z} ∼= Z. We thus have an exact sequence of abelian
groups

0 −→ Z −→ K(X) −→ K̃(X) −→ 0

For any x0 ∈ X, the inclusion {x0} → X induces a map K(X) → K({x0}) ∼= Z which restricts to an
isomorphism on ker(K(X) → K̃(X)); we thus have a splitting K(X) ∼= K̃(X) ⊕ Z determined by x0.
Regarding K̃(X) as ker(K(X) → K(x0)) allows us to define a ring structure on K̃(X) by restricting the
operations of K(X). Hence we may regard K̃ as a functor from pointed compact spaces to commutative
rings. This will be done in the following, although we will rarely make explicit mention of the choice of
basepoint.

3 The long exact sequence

3.1 A very short exact sequence

The starting point for (1) is the definition of K̃ for pairs (X,A) (here X is compact Hausdorff and A is a
closed subset of X: we set K̃(X,A) = K̃(X/A) (taking A ∈ X/A as a basepoint). The inclusion and quotient
give us an exact sequence

A −→ X −→ X/A (5)

Applying K̃ we get a sequence
K̃(X/A) −→ K̃(X) −→ K̃(A) (6)

Fact 4. The sequence (6) is exact.

The proof is elementary ([11], 52). The non-obvious part is to show that anything in the kernel of
K̃(X) → K̃(A) comes from something in K̃(X/A). (Adopting the view of K̃ as a quotient of V (X) by an
equivalence relation, given a bundle E in the kernel, one constructs a bundle over X/A using the trivialization
of any bundle ∼ E that is trivial over A.)

3.2 Cones and suspensions

For any space X we recall the notions the cone CX and the suspension SX of X. One obtains CX from
X × [0, 1] by collapsing X ×{1} to a point, and one obtains SX from X × [−1, 1] by collapsing X ×{1} and
X × {−1} to points. (In each case one regards X = X × {0} as contained in the resulting space.)

If one is given a pair (X,A), one may attach the cone on A to X in an obvious way, by identifying the
image of A in CA with the image of A in X. We denote this space by X ∪ CA. An iterated version of this
construction gives rise to (1).

3.3 The long exact sequence

More precisely, (5) may be viewed as the beginning of the sequence

A −−−−→ X −−−−→ X ∪ CA −−−−→ (X ∪ CA) ∪ CX −−−−→ ((X ∪ CA) ∪ CX) ∪ C(X ∪ CA)

collapse CA

y collapse CX

y collapse C(X ∪ CA)

y
X/A SA SX

It is clear how to continue the first row: at each step, attach the cone on the space from two steps ago. Each
vertical map collapses the newly attached cone to a point. Applying K̃ and making repeated use of (6) and
Fact 3 we obtain the exact sequence

· · · −→ K̃(SX) −→ K̃(SA) −→ K̃(X/A) −→ K̃(X) −→ K̃(A)

5



Making the definitions K̃−i(X) = K̃(SiX) and K̃−i(X,A) = K̃(Si(X/A)) we obtain (1).
It is worth noting that the construction of (1) via cones and suspensions requires very little about K̃

beyond its formal properties, namely homotopy invariance and “half exactness”4. These properties and the
constructions they permit are important in the axiomatization and characterization of K-theories (eg [8] in
the case of C∗-algebras).

4 Periodicity and K̃(Sn)

In this section we outline one way of establishing the isomorphism K̃0(X) ∼= K̃−2(X) giving rise to (2). The
details of this argument are somewhat involved (see ([11], 42-55) or ([3], 57-78) or the original paper [4]). Of
primary interest to us will be the parts of the argument allowing us to compute K̃(Sn).

4.1 The product theorem

Recall the bundle H → S2 from § 2.3.1. It satisfies H ⊗H ⊕ 1 = H ⊕H so that H2 + 1 = 2H in K(S2), or
equivalently (H − 1)2 = 0 in K(S2). The ring homomorphism Z[x]→ K(S2) given by x 7→ H thus induces
a homomorphism φ : Z[x]/(x− 1)2 → K(S2).

4.2 The external product

There is a natural multiplication K(X)⊗K(Y )→ K(X × Y ) induced by the projections px : X × Y → X
and py : X × Y → Y . Given a ∈ K(X) and b ∈ K(Y ) we define

a ∗ b = px
∗(a)py

∗(b) ∈ K(X × Y )

the external product of a and b. An involved argument shows that the composition

K(X)⊗ Z[x]/(x− 1)2
id⊗φ−→ K(X)⊗K(S2) ∗−→ K(X × S2)

is an isomorphism. When X is a point this shows that K(S2) = Z[x]/(x − 1)2. Thus the abelian group
K(S2) is generated by H and 1; the kernel of K(S2) → K(s0) is thus generated as an abelian group by
H − 1. Since (H − 1)2 = 0 in K(S2) we conclude that the multiplication in K̃(S2) is trivial. Thus the ring
structure K̃(S2) is completely determined.

4.3 The reduced external product and periodicity

The external product K(X) ⊗K(Y ) → K(X × Y ) induces a map K̃(X) ⊗ K̃(Y ) → K̃(X ∧ Y ) called the
reduced external product. (Recall that the wedge product X ∧ Y of pointed spaces (X,x0) and (Y, y0) is the
space obtained from X × Y by collapsing (X × {y0}) ∪ ({x0} × Y ) to a point.)

A corollary of the product theorem in the previous section is that multiplication by H − 1 induces an
isomorphism K̃(X)→ K̃(S2 ∧X) for any X ([11], 55). Now S2 ∧X is a quotient of S2X by a contractible
subset so that K̃(S2 ∧X) ∼= K̃(S2X) in a natural way. Thus

Theorem 1. The reduced product with H − 1 induces an isomorphism K̃(X)→ K̃(S2X).

As Sn = S(Sn−1) for any n ≥ 1 we conclude that the group K̃(S2n) ∼= K̃(S2) ∼= Z with generator
(H − 1) ∗ (H − 1) ∗ · · · ∗ (H − 1) (n times), and the multiplication in K̃(S2n) is trivial. The n-fold reduced
power of H − 1 will be referred to as “the” generator of K̃(S2n). By §2.3.1 we conclude K̃(S2n+1) = 0 for
any n.

4The property that K̃(A) → K̃(B) → K̃(C) is exact whenever 0 → A→ B → C → 0 is

6



5 Applications

One may view the preceding sections merely as the construction of a functor from compact Hausdorff
spaces to abelian groups that vanishes on closed discs Dn but not on their boundaries— thus obtaining
the nonexistence of retractions Dn → ∂Dn and the Brouwer fixed point theorem. Alternatively, one could
develop the degree theory of maps on spheres: to each f : Sn → Sn, regard f∗ : K̃(Sn) → K̃(Sn) as a
homomorphism Z→ Z, hence multiplication by some integer d(f). This agrees with the usual definition in
terms of Hn(Sn) or Hn(Sn), and the same elementary results (eg the “hairy ball theorem”) follow.

5.1 The Bott-Milnor theorem

The above applications are a little underwhelming in that they exploit only the functorial and cohomological
character of K-theory. We will now turn to a more impressive application where the role of vector bundles
is more explicit, namely the result of Bott and Milnor [6] (and Kervaire [13]) of 1958:

Theorem 2. The tangent bundle5 TSn−1 to Sn−1 is trivial only when n = 2, 4, or 8.

To aid in the appreciation of this result we mention a related problem: for which n does there exist a
division algebra of dimension n? The answer,

Theorem 3. The dimension of a division algebra is 1, 2, 4, or 8.

will be deduced along with Theorem 2 from calculations in the K-theory of spheres.

5.2 Division algebras

A division algebra is a finite dimensional real vector space with a bilinear multiplication such that for any
b 6= 0 the maps x 7→ bx and x 7→ xb are bijective; the usual examples are R, C, the quaternions H, and the
octonions O of dimensions 1, 2, 4, and 8. Classical results show that in various restricted senses these are
the only possibilities: R, C, and H are the only associative examples (Frobenius 1877; [9], 229), and R, C,
H, and O are the only alternative6 examples (Hurwitz 1898; [9], §10.1). Other division algebras (eg C with
the non-alternative (x, y) 7→ xy, and variations on this theme) were known in the 19th century, but all with
the dimensions of known examples. That these are the only possible was not established until 1958, as a
corollary of Theorem 2.

It is somewhat remarkable that all known proofs use algebraic topology ([10], p. 173). To see how it enters
the picture, assume n > 1 and suppose Rn is a division algebra. One may assume without loss of generality
([11], p.60) that the multiplication has a two-sided identity e. Extending e to a basis e, v1, . . . , vn−1 of Rn

ones sees that the vector fields x 7→ d
dt |t=0(x · (e + tvj)) on Sn−1, 1 ≤ j ≤ n − 1, are linearly independent,

so that the tangent bundle TSn−1 is trivial7.
From the existence of C, H, and O one thus deduces the triviality of the bundles mentioned in Theorem 2.

More significantly, one can gets partial information on the general question from various algebraic invariants.
Viewed this way, basic developments in homology and cohomology in the early 20th century represent further
progress on the problem: if TSn−1 is trivial,

• The degree theory of maps on spheres (the “hairy ball theorem”) tells us that n must be even (Brouwer,
1910s; [10], p.135)

• Calculations in the Z/2 cohomology ring of RPn−1 ×RPn−1 (Hopf 1940 [12]; or [10], 222; [9], 283) or
the Stiefel-Whitney classes of TRPn (Stiefel 1940 [14]; or [9], 289) tell us that n must be a power of 2.

5If you are unfamiliar with the tangent bundle, it is exactly what you think it ought to be. For a precise definition see e.g.
([7], 55).

6An algebra is alternative if x(yy) = (xy)y and (xx)y = x(xy) for all x and y.
7For more information see ([9], 289)
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The 1958 proof of Theorem 2 used rather involved calculations in cohomology. The proof we give here follows
a 1966 paper of Adams and Atiyah [1], as simplified in [3] and [11].

With the long history in mind, we outline the proof of:

Theorem 4. Suppose n > 1. If Rn is a division algebra, or if TSn−1 is trivial, then n = 2, 4, or 8.

From the above more elementary results we may assume n is even8. So let us replace n with 2n.
Either hypothesis implies existence of a g : S2n−1 × S2n−1 → S2n−1 with two-sided identity element9

(one says that S2n−1 is an H-space). An elementary construction ([11], p.62) now constructs from g a map
g̃ : S4n−1 → S2n. The proof continues by examining what g̃ does on K-theory.

5.3 The Hopf invariant

Given a general f : S4n−1 → S2n let X denote the space obtained by attaching a 4n-cell to S2n via f . As
K̃1(S2n) = K̃1(S4n) = 0 the sequence (2) for the pair (X,S2n) has three terms:

0→ K̃(S2n) −→ K̃(X) −→ K̃(S4n)→ 0

Let A and B denote the generators of K̃(S2n) and K̃(S4n) respectively. Let a denote the image of A in
K̃(X). If x is any element mapping to B then x2 maps to zero (as any square in K̃(S4n) is zero); thus
x2 = ma for some m ∈ Z. The coset m + 2Z does not depend on the choice of x 10; we call this the Hopf
invariant of f . If f = g̃ from the previous section, a diagram chase ([11], p.62) shows that the Hopf invariant
of f is 1.

5.4 Adams’ theorem

It thus suffices to prove the following theorem of Adams:

Theorem 5. If there is f : S4n−1 → S2n with Hopf invariant 1 then n is 1, 2, or 4.

The proof constructs for any X and k > 0 natural maps ψk : K(X) → K(X). (Here “natural” means
that if f : X → Y one has ψkf∗ = f∗ψk for any f : X → Y .)

Natural maps K(X)→ K(X) defined for all X are called operations in K-theory. The Adams operations
ψk are an extension of the notion of taking the kth tensor power of a line bundle.

5.4.1 Adams operations

More precisely, we have ψk(L) = Lk for any line bundle L, and if E = L1⊕ · · ·⊕Lj is a sum of line bundles,
we have

ψk(E) = Lk
1 + Lk

2 + · · ·+ Lk
j (7)

This property essentially serves as the definition of ψk. As a degree k symmetric polynomial in L1, . . . , Lj ,
Lk

1 + Lk
2 + · · · + Lk

j is a polynomial pk in the elementary symmetric polynomials s1, . . . , sk in L1, . . . , Lj .
From §2.2.4 we know that sq = Λq(E) so we have Lk

1 + Lk
2 + · · ·+ Lk

j = qk(Λ1(E), . . . ,Λk(E)). As the right
hand side of this makes sense for any bundle we define

ψk(E) = qk(Λ1(E), . . . ,Λk(E))

At the moment all we have is a map V (X)→ K(X) defined for any X. This clearly satisfies f∗ψk = ψkf for
any f : X → Y as f∗ commutes with Λk. To extend the definition of ψk to K(X) we will need the following
“splitting principle” for K-theory. See ([11], 66) or ([3], 110).

8One can also give a one-paragraph K-theoretic reduction to the even case ([11] p. 61).
9In the first case this is established by reducing to the case when the multiplication on Rn has a two sided identity element

and setting g(s, t) = (s · t)/|s · t|). In the second one chooses vector fields v1, . . . , v2n−1 on S2n−1 so that x, v1(x), . . . , v2n−1(x)
is orthonormal for all x and such that vi(e1) = ei+1 for 1 ≤ i ≤ 2n − 1, where ej denotes the ith standard basis vector; then
g(s, t) = αs(t) where αs is the matrix sending the standard basis to x, v1(x), . . . , v2n−1(x). ([11], p.61)

10If x′ has the same image as x then x′ = ka+ x for some k ∈ Z; squaring and using the fact that a2 = 0 we conclude that
(x′)2 and x2 differ by 2xka.
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Fact 5. Given any bundle E → X there is a compact Hausdorff space Y and p : Y → X such that
p∗ : K(X)→ K(Y ) is injective and p∗(E) is a sum of line bundles.

We now verify that ψk, as a map V (X)→ K(X), is additive. Fix bundles E and F and suppose that F
is a sum of line bundles. Choose p : Y → X as in the theorem so that p∗(E) is a sum of line bundles. Then
p∗(E) and p∗(F ) are each sums of line bundles, and clearly ψk(p∗(E) ⊕ p∗(F )) = ψk(p∗(E)) + ψk(p∗(F )).
Thus p∗(ψk(E)⊕ψk(F )−ψk(E)−ψk(F )) = 0 in K(Y ). As p∗ is injective we conclude that ψk(E)⊕ψk(F ) =
ψk(E) + ψk(F ) in K(X), verifying additivity in this case. For general E and F , choose p : Y → X as in
the theorem so that p∗(F ) is a sum of line bundles. As we have just shown that ψk(p∗(E) + p∗(F )) =
ψk(p∗(E)) + ψk(p∗(F )) the general claim follows from injectivity of p∗.

The additive map ψk therefore gives rise to an additive K(X) → K(X). Naturality is immediate;
furthermore,

(A) Each ψk is a ring homomorphism,

(B) ψkψl = ψlψk = ψkl for any k and l,

(C) If p is prime then ψp(x) = xp mod p (in the sense that for all x there is y with ψp(x)− xp = py).

By the splitting principle it suffices to check these properties on sums of line bundles, where each is obvious.
It is clear that each ψk induces a homomorphism K̃(X)→ K̃(X). To prove Adams’ theorem we wil need

to compute ψk on K̃(S2n). In the case n = 1, consider the generator H − 1 of K̃(S2):

ψk(H − 1) = Hk − 1 definition of ψk on line bundles

= ((H − 1) + 1)k − 1

= (k(H − 1) + 1)− 1 binomial theorem and (H − 1)j = 0, j ≥ 2
= k(H − 1)

More generally we have that ψk : K̃(S2n)→ K̃(S2n) is multiplication by kn. As it is clear that ψk respects
the external product K̃(S2)⊗ K̃(S2n−2)→ K̃(S2n), this follows by induction11.

5.4.2 The proof of Adams’ theorem

With these properties in mind, consider the setup of Section 5.3, where f : S4n−1 → S2n is a map of Hopf
invariant 1, a is the image of the generator of K̃(S2n) in K̃(X), and x is a chosen element in the preimage
of the generator of K̃(S4n).

By naturality and the properties of ψk on even-dimensional spheres we have ψ2(a) = 2na and ψ3(a) = 3na.
Similarly we have r ∈ Z and s ∈ Z such that ψ2(x) = 22nx+ ra and ψ3(x) = 32nx+ sa. With these we can
compute formulas for ψ2ψ3(x) and ψ3ψ2(x); by (B) we conclude

3n(3n − 1)r = 2n(2n − 1)s

Note that r is odd: x2 = ma for some odd m by definition of the Hopf invariant and r−m is is even by (C).
As 3n is also odd we conclude that 2n divides 3n− 1. It is then mere arithmetic ([11], p.66) to show that 2n

divides 3n − 1 only if n is 1, 2, or 4.

11For a the generator of K̃(S2) and b the generator of K̃(S2n−2), a∗b is the generator for S2n and ψk(a∗b) = ψk(a)∗ψk(b) =
kna ∗ kn−1b = kn(a ∗ b).
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