Math 215a Homework #6, Due Wednesday 11/28 at 1:10 PM

Recall that if X and Y are compact oriented connected n-manifolds with fundamental classes $[X] \in H_n(X)$ and $[Y] \in H_n(Y)$, then the *degree* of a map $f: X \to Y$ is defined to be the integer $\deg(f)$ such that $f_*[X] = \deg(f)[Y]$.

- 1. Hatcher section 3.2 exercises 4, 11.
- 2. Let Σ_g denote the compact orientable surface of genus g. Show that one can identify the cohomology $H^*(\Sigma_g; \mathbb{Z})$ as

$$H^{1}(\Sigma_{g}; \mathbb{Z}) = \mathbb{Z}\{\alpha_{1}, \dots, \alpha_{g}, \beta_{1}, \dots, \beta_{g}\},$$

$$H^{2}(\Sigma_{g}; \mathbb{Z}) = \mathbb{Z}\{\gamma\}$$

such that the cup product is given by

$$\alpha_i \smile \alpha_j = \beta_i \smile \beta_j = 0,$$

$$\alpha_i \smile \beta_j = -\beta_j \smile \alpha_i = \begin{cases} \gamma, & i = j, \\ 0, & i \neq j. \end{cases}$$

Hint: One can do this directly from the definition using a suitable delta-complex structure, or one can follow the suggestion in Hatcher, section 3.2, exercise 1. One can also use the fact that cup product is Poincare dual to intersection of submanifolds.

- 3. Show that if g < h, then any map $f : \Sigma_g \to \Sigma_h$ has degree zero. Hint: Show that there exists a nonzero $\alpha \in H^1(\Sigma_h; \mathbb{Z})$ with $f^*\alpha = 0$. Use the previous exercise (or general facts related to Poincare duality) to show that there exists $\beta \in H^1(\Sigma_h; \mathbb{Z})$ with $\alpha \smile \beta \neq 0$. Use naturality of cup product to conclude that $\deg(f) = 0$.
- 4. Let A be an $n \times n$ matrix with integer entries. Then A induces a map $\phi : \mathbb{R}^n/\mathbb{Z}^n \to \mathbb{R}^n/\mathbb{Z}^n$.
 - (a) Show that under the obvious identification $H^1(T^n; \mathbb{Z}) \simeq \mathbb{Z}^n$, the pullback $\phi^* : H^1(T^n; \mathbb{Z}) \to H^1(T^n; \mathbb{Z})$ equals the transpose of A.
 - (b) Show that the degree of ϕ is the determinant of A. Hint: Use naturality of cup product and part (a). Alternatively, you can do Hatcher, section 3.3, exercise 8 and then use that.