
Math 215a Homework #2 Solutions

Sorry, I didn’t have time to draw pictures for this.

1. The first covering space is a “linear chain” of spheres connected by
arcs. More precisely one can take X̃ to be the subset of R3 consisting
of spheres of radius 1 centered at the points (3k, 0, 0) for k ∈ Z, together
with a line segment from (3k+1, 0, 0) to (3k+2, 0, 0) for each k ∈ Z. The
covering map sends each sphere to the standard sphere by translation,
and each interval to a diameter of the standard sphere by translation
along the x-axis and reflection.

To make the second covering space, start with the universal cover of
S1

∨
S1 as we described it in class. Now pull apart each vertex into

a copy of S2, with the two outgoing edges attached to the north pole
and the two incoming edges attached to the south pole. The covering
map sends each ‘a’ edge to one arc of the circle and each ‘b’ edge to
the other arc of the circle.

2. The answer X̃ looks like covering space number 8 on page 58 of Hatcher,
except using an 8-gon instead of a 4-gon. To see that this works, let x̃0

be any vertex of X̃, let G := π1(X̃, x̃0), and let N denote the normal
subgroup of F2 generated by (ab)4, a2, and b2; we need to show that
G = N . The algorithm for computing π1 of a graph shows that G is
generated by (ab)4 together with a2, b2, and some conjugates thereof.
Thus G ⊂ N . Since (ab)4, a2, b2 ∈ G, to show that N ⊂ G it is enough
to show that G is a normal subgroup of F2. Equivalently, we need to
show that the automorphism group of the covering X̃ acts transitively
on the vertices. One can rotate the picture by π/2; this acts on the
vertices via two disjoint four-cycles. The picture also has a “reflectional
symmetry” which exchanges the two four-cycles. (The automorphism
group of the covering is the dihedral group of order 8.)

3. Let X = RP2 ∨
RP2 with the natural base point x0. The universal

cover X̃ can be identified with the subset of R3 consisting of radius 1
spheres centered at the points (2k + 1, 0, 0) for k ∈ Z. Regarding RP2

as S2 modulo the antipodal map, the covering map sends the sphere
centered at (4k + 1, 0, 0) to the first RP2, and the sphere centered at
(4k + 3, 0, 0) to the second RP2. We can take the base point x̃0 to be
the origin.
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To find the other coverings, note that in general, π1(X, x0) acts on the

left on the universal cover X̃, where [f ] ∈ π1(X, x0) sends [γ] ∈ X̃

to [f · γ]. The connected covering X̂ corresponding to a subgroup

G ⊂ π1(X, x0) is obtained by modding out X̃ by the restriction of this
action to G.

In our particular case, the left π1(X, x0) action on the universal cover

X̃ is given as follows. Let a and b denote the generators of π1 of the
first and second RP2’s, respectively. Then a reflects the whole picture
through the point (1, 0, 0), while b reflects through the point (−1, 0, 0).
In particular, ab translates everything 4 units to the right.

We now determine the nontrivial subgroups G of π1(X, x0) and the

corresponding covering spaces X̂. If G does not contain a reflection,
then G is generated by (ab)k for some positive integer k, so X̂ is a
cyclic chain of 2k spheres. Now suppose that G contains a reflection.
If G has order 2, then X̂ is a half-infinite chain of spheres, with an RP2

attached to the end. If G also contains a translation (ab)k where the

positive integer k is as small as possible, then X̂ is a chain of k − 1
spheres with an RP2 attached to each end.

4. This is one of those problems where it is probably easier to do it yourself
than to read a solution.

5. By a previous homework problem, if X is a connected graph with v
vertices and e edges, then π1(X, x0) ' F (e − v + 1). Now let (X̃, x̃0)
be the path connected based covering space of

∨
n S1 corresponding to

the subgroup G. Then X̃ is a graph with k vertices and kn edges. So
G = π1(X̃, x̃0) ' F (kn− k + 1).

6. Since the universal covering space of T n is Rn, any path connected
covering space X̃ of T n is isomorphic to Rn/G where G is a subgroup
of Zn. By basic algebra, there are vectors v1, . . . , vm ∈ Zn, which are
linearly independent over R, such that G = span(v1, . . . , vm). We can
perform a real change of basis sending vi to the ith standard basis vector
ei. Then X̃ is homeomorphic to

Rn

span(e1, . . . , em)
' Rm

span(e1, . . . , em)
× Rn−m = Tm × Rn−m.
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7. We will first find the covering space X̃ of S1
∨

S1 corresponding to

the commutator subgroup G ⊂ F (2), and then find a basis for π1(X̃),
regarded as a subgroup of F (2).

Let X̃ be the “grid”

X̃ := (Z× R)
⋃

(R× Z) ⊂ R2

with x̃0 := (0, 0) ∈ X̃. Define a covering p : X̃ → S1
∨

S1 by sending
the horizontal edges of the grid to the ‘a’ circle and the vertical edges
of the grid to the ‘b’ circle. I claim that (X̃, x̃0) corresponds to the
commutator subgroup G of F (2). To see this, given an element f ∈
F (2) = π1(S

1
∨

S1, x0), let m denote the total exponent of a and let n

denote the total exponent of b in f . Then f lifts to a path in X̃ from
(0, 0) to (m, n). Now f is in p∗π1(X̃, x̃0) iff f lifts to a loop in X̃, i.e.
m = n = 0. It is not hard to check that the latter condition holds iff f
is in the commutator subgroup. (That is, the map sending f 7→ (m, n)
defines an isomorphism from the abelianization of F (2) to Z2.)

Now we need to find a free basis for π1(X̃, x̃0). Following the algorithm,

we choose the maximal spanning tree of X̃ consisting of the x-axis
together with all of the vertical lines. Each remaining edge connects a
pair of lattice points (m, n) and (m−1, n) where m ∈ Z and n ∈ Z\{0}.
We then get the basis

{ambna−1b−na−1−m | m ∈ Z, n ∈ Z \ {0}}. (1)

One can then do a change of basis to obtain the nicer basis

{[am, bn] | m, n ∈ Z \ {0}}. (2)

To see this, note that the m = 1 elements in (1) agree with the m = 1
elements in (2). The m > 1 elements in (1) are given in terms of the
nice basis (2) by

ambna−1b−na−1−m = [am, bn][am−1, bn]−1.

The m ≤ 0 elements in (1) are handled similarly.

8. No extra credit for me this week.
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