1. (a) Let \(g \) and \(h \) be two paths from \(x_0 \) to \(x_1 \). Then the composition

\[
\pi_1(X, x_0) \xrightarrow{\beta_g} \pi_1(X, x_1) \xrightarrow{\beta_h} \pi_1(X, x_0)
\]

sends

\[
[f] \mapsto [h \cdot \overline{g} \cdot f \cdot \overline{g}] = [h \cdot \overline{g}] [f] [h \cdot \overline{g}]^{-1}.
\]

So \(\beta_g = \beta_h \) for all \(g, h \) iff conjugation by all elements of the form \([h \cdot \overline{g}] \) acts trivially on \(\pi_1(X, x_0) \). But any path \(f \) from \(x_0 \) to itself is homotopic to a loop of the form \(h \cdot \overline{g} \); to see this, let \(h \) be any path from \(x_0 \) to \(x_1 \) and let \(g = \overline{h} \cdot f \). So \(\beta_g = \beta_h \) for all \(g, h \) iff conjugation by any element of \(\pi_1(X, x_0) \) acts trivially, i.e. \(\pi_1(X, x_0) \) is abelian.

(b) Let \([S^1, X]\) denote the set of homotopy classes of free loops, i.e. continuous maps \(S^1 \to X \) without any basepoint conditions. There is an obvious map \(\pi_1(X, x_0) \to [S^1, X] \), and this descends to a map

\[
\Phi : \{ \text{conjugacy classes in } \pi_1(X, x_0) \} \to [S^1, X].
\]

The reason is that if \(f, g : [0, 1] \to X \) send \(0, 1 \mapsto x_0 \), then the path \(g \cdot f \cdot \overline{g} \) is homotopic through free loops to the path \(\overline{g} \cdot g \cdot f \) (by rotating the domain 1/3 turn), which is homotopic to \(f \).

To see that \(\Phi \) is surjective, consider a map \(S^1 \to X \), regarded as a map \(f : [0, 1] \to X \) with \(f(0) = f(1) \). Since \(X \) is path connected we can choose a path \(g \) from \(x_0 \) to \(f(0) \). Then as above \(g \cdot f \cdot \overline{g} \) is homotopic through free loops to \(f \), so \(\Phi[g \cdot f \cdot \overline{g}] = [f] \).

To see that \(\Phi \) is injective, let \(f_0, f_1 : [0, 1] \to X \) send \(0, 1 \mapsto x_0 \). Suppose these are homotopic through free loops, so that there is a map \(F : [0, 1] \times [0, 1] \to X \) with \(F(0, t) = f_0(t), F(1, t) = f_1(t), \) and \(F(s, 0) = F(s, 1) \). Define \(g(s) := F(s, 0) \). Then \(F \) induces a homotopy from \(f_0 \) to \(g \cdot f_1 \cdot \overline{g} \). [Draw picture.] Hence \([f_0]\) and \([f_1]\) are conjugate in \(\pi_1(X, x_0) \).

2. If \(\iota : A \to X \) denotes the inclusion, and if \(r : X \to A \) is a retraction, i.e. \(r \circ \iota = \text{id}_A \), then \(r_\ast \circ \iota_\ast \) is the identity on \(\pi_1(A, \ast) \).

In particular, \(\iota_\ast \) is injective. We can rule this out in cases (a), (b), (d), and (e) just by computing the groups. Namely, in case (a), \(\pi_1(X) = \{1\} \)
and \(\pi_1(A) = \mathbb{Z} \). In case (b), \(\pi_1(X) = \mathbb{Z} \) and \(\pi_1(A) = \mathbb{Z}^2 \). In case (d), \(\pi_1(X) = \{1\} \) and \(\pi_1(A) = \mathbb{Z} \times \mathbb{Z} \). In case (e), \(\pi_1(X) = \mathbb{Z} \) (because \(X \) deformation retracts onto the \(S^1 \) obtained by taking half of the boundary of \(D^2 \) and identifying the endpoints), while \(\pi_1(A) = \mathbb{Z} \times \mathbb{Z} \).

To rule out case (c), note that the solid torus \(X = S^1 \times D^2 \) has \(\pi_1 \simeq \mathbb{Z} \). The projection of the circle \(A \) from \(S^1 \times D^2 \) to \(S^1 \) is constant, so \(\iota_\ast: \pi_1(A) \to \pi_1(X) \) is zero. Since \(\pi_1(A) \simeq \mathbb{Z} \) is nontrivial, \(\iota_\ast \) is not injective.

To rule out case (f), observe that the Möbius band deformation retracts onto its core circle, and therefore has \(\pi_1(X) \simeq \mathbb{Z} \). Moreover, the boundary circle winds around twice, i.e. the map \(\iota_\ast: \mathbb{Z} \simeq \pi_1(A) \to \pi_1(X) \simeq \mathbb{Z} \) is multiplication by \(\pm 2 \). Then \(r_\ast \circ \iota_\ast \) is multiplication by some even integer, so it cannot equal the identity.

3. (This will be a bit sketchy because I am too lazy to draw the pictures.) Let \(X \) denote the complement of \(\alpha \) and \(\beta \) in \(D^2 \times I \), and let \(x_0 \) be the center point of \(D^2 \times I \). One can see in various ways that \(\pi_1(X, x_0) \simeq F_2 \), the free group on two generators \(a, b \). For example, one can see by isotoping \(\alpha \) and \(\beta \) to straight lines that \(X \) is homeomorphic to a twice-punctured disc cross an interval. In any event, the two generators \(a \) and \(b \) are represented by small loops around \(\alpha \) and \(\beta \). We then see that with suitable orientation conventions, \([\gamma] = aba^{-1}b^{-1} \). This is not equal to the identity in the free group, and so \(\gamma \) is not nullhomotopic in \(X \).

4. Take the base point to be \((x_0, y_0)\) where \(x_0 \) and \(y_0 \) are both irrational. Given another pair of irrational numbers \((x_1, y_1)\), define a path \(R(x_0, y_0; x_1, y_1) \) by starting at \((x_0, y_0)\), and then traversing a rectangle by moving horizontally to \((x_1, y_0)\), vertically to \((x_1, y_1)\), horizontally to \((x_0, y_1)\), and vertically back to \((x_0, y_0)\). As \((x_1, y_1)\) ranges over all pairs of irrational numbers, we obtain uncountably many paths \(R(x_0, y_0, x_1, y_1) \). I claim that the homotopy classes of these paths are all distinct in \(\pi_1(\mathbb{R}^2 \setminus \mathbb{Q}^2, (x_0, y_0)) \). To see this, let \((x_1, y_1)\) and \((x'_1, y'_1)\) be distinct pairs of irrational numbers with corresponding rectangles \(R \) and \(R' \). Then there is a rational point \((p, q)\) \(\in \mathbb{Q}^2 \) which is enclosed by one rectangle but not the other. Hence the path \(\overline{R} \cdot R' \) has winding number \(\pm 1 \) around the point \((p, q)\). That is, the inclusion
$\mathbb{R}^2 \setminus \mathbb{Q}^2 \to \mathbb{R}^2 \setminus \{(p, q)\}$ induces a map on fundamental groups

$$\pi_1(\mathbb{R}^2 \setminus \mathbb{Q}^2, (x_0, y_0)) \to \pi_1(\mathbb{R}^2 \setminus \{(p, q)\}, (x_0, y_0)) \simeq \mathbb{Z}$$

sending $[R]^{-1}[R'] \mapsto \pm 1 \neq 0$. Since a homomorphism sends the identity to the identity, it follows that $[R] \neq [R']$ in $\pi_1(\mathbb{R}^2 \setminus \mathbb{Q}^2, (x_0, y_0))$.

5. One can show by induction, either on the number of vertices or on the number of edges, that $\chi(T) = 1$ if T is a (finite) tree. This is pretty straightforward so I will omit the details. Now if X is a connected (finite) graph, let T be a maximal spanning tree, and let E denote the set of edges in $X \setminus T$. We know from class or Hatcher that the Seifert-van Kampen theorem implies that $\pi_1(X)$ is free with one generator for each edge in E, so $\text{rk} \pi_1(X) = |E|$. On the other hand, by definition $\chi(X) = \chi(T) - |E|$. We have seen that $\chi(T) = 1$, and combining these three equations gives $\text{rk} \pi_1(X) = 1 - \chi(X)$.

6. Here are two solutions. The first seems easier to think of, while the second is cleverer and shorter.

First solution: If f and g are paths starting and ending at 1, let $f \cdot g$ denote their concatenation as usual, and define a new path $f \star g$ using the group multiplication by

$$(f \star g)(t) := f(t)g(t).$$

This gives a well-defined operation on $\pi_1(\mathbb{G}, 1)$, because if F is a homotopy from f_0 to f_1 and if G is a homotopy from g_0 to g_1, then a homotopy from $f_0 \star g_0$ to $f_1 \star g_1$ is given by

$$(F \star G)(s, t) := f(s, t)g(s, t).$$

Now we compute that

$$f \cdot g = (f \cdot 1) \star (1 \cdot g) \sim f \star g \sim (1 \cdot f) \star (g \cdot 1) = g \cdot f.$$

Here the first and last equalities are immediate from the definitions, while the middle homotopies exist because \star is well-defined on homotopy classes.

Second solution: If f and g are paths starting and ending at 1, define a map $H : [0, 1]^2 \to \mathbb{G}$ by

$$H(s, t) := f(s)g(t).$$
Since \(f(0) = f(1) = g(0) = g(1) = 1 \), it follows that \(H \) sends the boundary of the square (starting at \((0,0)\) and going counterclockwise) to the concatenation \(f \cdot g \cdot \overline{f} \cdot \overline{g} \). Since \(H \) is defined continuously on the whole square, it follows that \([f][g][f]^{-1}[g]^{-1}\) is the identity in \(\pi_1(G,1) \).

7. My solution to this problem is going to be a bit more demanding of the reader than those to the previous problems. In particular I will quote some theorems and ideas which you might not know. I did say “extra for experts” after all! Maybe one of you found a more elementary solution.

The problem is a little easier when \(\gamma \) is a smooth embedding. Then you can cut \(T^2 \) along \(\gamma \) to obtain a surface with boundary \(X \). One can then apply the classification of surfaces with boundary to deduce that if \(X \) is connected then \(X \) is homeomorphic to a cylinder, and otherwise \(X \) is homeomorphic to a disc union a punctured torus. The second case is impossible by our assumption that \(\gamma \) is not nullhomotopic. So we can identify \(X \) with the cylinder \(S^1 \times I \); but then when you glue the boundary circles back together to get a torus \(S^1 \times S^1 \), you see immediately that the boundary curve gets glued to a circle representing the class \((0,1) \in \pi_1(S^1 \times S^1)\), which is not divisible in \(\mathbb{Z}^2 \).

If all we know is that \(\gamma \) is continuous and injective, it is a bit trickier. Still, you can lift \(\gamma \) to the universal cover to get a map \(\widetilde{\gamma} : \mathbb{R} \to \mathbb{R}^2 \) such that \(\widetilde{\gamma}(t + 1) = \widetilde{\gamma} + (a,b) \). Now identify \(\mathbb{R}^2 \simeq \text{int}(D^2) \) by, in polar coordinates, sending \((r, \theta) \in \text{int}(D^2)\) to \((r/(1-r), \theta) \in \mathbb{R}^2\). Under this identification, since \((a,b) \neq (0,0)\), it follows that \(\widetilde{\gamma} \) compactifies to an arc \(\gamma' : [0,1] \to D^2 \). One then use the Jordan curve theorem to conclude that \(D^2 \setminus \gamma' \), and hence \(\mathbb{R}^2 \setminus \widetilde{\gamma} \), has two components. Now suppose that \((a,b) = k(a',b')\) where \(k, a', b'\) are integers and \(k > 1\). Let \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) denote the translation by \((a', b')\). Observe that \(\widetilde{\gamma} \) cannot intersect \(T \circ \widetilde{\gamma} \). (Proof: if \(\widetilde{\gamma}(t) = \widetilde{\gamma}(t') + (a', b') \), then \(t' - t \in \mathbb{Z} \) since \(\gamma \) is injective, but then the periodicity property of \(\widetilde{\gamma} \) implies that \((a', b')\) is an integer multiple of \((a,b)\), which is a contradiction.) Thus \(T \circ \widetilde{\gamma} \) is in one component of \(\mathbb{R}^2 \setminus \widetilde{\gamma} \). Moreover, \(T \) sends the component of \(\mathbb{R}^2 \setminus \widetilde{\gamma} \) that contains \(T \circ \widetilde{\gamma} \) to the component of \(\mathbb{R}^2 \setminus T \circ \widetilde{\gamma} \) that does not contain \(\widetilde{\gamma} \). (One can see this by noting that under our identification of \(\mathbb{R}^2 \) with \(\text{int}(D^2) \), \(T \) extends to a self-homeomorphism of \(D^2 \) which fixes the boundary.) In particular, if \(A \subset \mathbb{R}^2 \) denotes the union of \(\widetilde{\gamma} \).
with the component of $\mathbb{R}^2 \setminus \tilde{\gamma}$ that contains $T \circ \tilde{\gamma}$, then T sends A to $A \setminus \tilde{\gamma}$. Then $T^k \circ \tilde{\gamma}$ does not intersect $\tilde{\gamma}$, but this contradicts the fact that $T^k \circ \tilde{\gamma}$ is a reparametrization of $\tilde{\gamma}$.

By the way, if we replace T^2 by a genus g oriented surface Σ, then one can still show that a non-nullhomotopic injective loop γ must represent an indivisible element of $\pi_1(\Sigma)$. (This does not work for an unorientable surface. Do you see why?)