
Math 215a Homework #1 Solutions

1. (a) Let g and h be two paths from x0 to x1. Then the composition

π1(X, x0)
βg−→ π1(X, x1)

βh−→ π1(X, x0)

sends
[f ] 7−→ [h · g · f · g · h] = [h · g][f ][h · g]−1.

So βg = βh for all g, h iff conjugation by all elements of the form
[h · g] acts trivially on π1(X, x0). But any path f from x0 to itself
is homotopic to a loop of the form h · g; to see this, let h be
any path from x0 to x1 and let g = h · f . So βg = βh for all
g, h iff conjugation by any element of π1(X, x0) acts trivially, i.e.
π1(X, x0) is abelian.

(b) Let [S1, X] denote the set of homotopy classes of free loops , i.e.
continuous maps S1 → X without any basepoint conditions. There
is an obvious map π1(X, x0) → [S1, X], and this descends to a map

Φ : {conjugacy classes in π1(X, x0)} −→ [S1, X].

The reason is that if f, g : [0, 1] → X send 0, 1 7→ x0, then the
path g · f · g is homotopic through free loops to the path g · g · f
(by rotating the domain 1/3 turn), which is homotopic to f .

To see that Φ is surjective, consider a map S1 → X, regarded as a
map f : [0, 1] → X with f(0) = f(1). Since X is path connected
we can choose a path g from x0 to f(0). Then as above g · f · g is
homotopic through free loops to f , so Φ[g · f · g] = [f ].

To see that Φ is injective, let f0, f1 : [0, 1] → X send 0, 1 7→ x0.
Suppose these are homotopic through free loops, so that there is
a map F : [0, 1]× [0, 1] → X with F (0, t) = f0(t), F (1, t) = f1(t),
and F (s, 0) = F (s, 1). Define g(s) := F (s, 0). Then F induces a
homotopy from f0 to g · f1 · g. [Draw picture.] Hence [f0] and [f1]
are conjugate in π1(X, x0).

2. If ı : A → X denotes the inclusion, and if r : X → A is a retraction,
i.e. r ◦ ı = idA, then r∗ ◦ ı∗ is the identity on π1(A, ∗).
In particular, ı∗ is injective. We can rule this out in cases (a), (b), (d),
and (e) just by computing the groups. Namely, in case (a), π1(X) = {1}
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and π1(A) = Z. In case (b), π1(X) = Z and π1(A) = Z2. In case (d),
π1(X) = {1} and π1(A) = Z ∗ Z. In case (e), π1(X) = Z (because
X deformation retracts onto the S1 obtained by taking half of the
boundary of D2 and identifying the endpoints), while π1(A) = Z ∗ Z.

To rule out case (c), note that the solid torus X = S1×D2 has π1 ' Z.
The projection of the circle A from S1 × D2 to S1 is constant, so
ı∗ : π1(A, ∗) → π1(X, ∗) is zero. Since π1(A) ' Z is nontrivial, ı∗ is not
injective.

To rule out case (f), observe that the Möbius band deformation retracts
onto its core circle, and therefore has π1(X) ' Z. Moreover, the bound-
ary circle winds around twice, i.e. the map ı∗ : Z ' π1(A) → π1(X) ' Z
is multiplication by ±2. Then r∗ ◦ ı∗ is multiplication by some even
integer, so it cannot equal the identity.

3. (This will be a bit sketchy because I am too lazy to draw the pictures.)
Let X denote the complement of α and β in D2 × I, and let x0 be the
center point of D2×I. One can see in various ways that π1(X, x0) ' F2,
the free group on two generators a, b. For example, one can see by
isotoping α and β to straight lines that X is homeomorphic to a twice-
punctured disc cross an interval. In any event, the two generators a
and b are represented by small loops around α and β. We then see
that with suitable orientation conventions, [γ] = aba−1b−1. This is not
equal to the identity in the free group, and so γ is not nullhomotopic
in X.

4. Take the base point to be (x0, y0) where x0 and y0 are both irra-
tional. Given another pair of irrational numbers (x1, y1), define a path
R(x0, y0; x1, y1) by starting at (x0, y0), and then traversing a rectan-
gle by moving horizontally to (x1, y0), vertically to (x1, y1), horizon-
tally to (x0, y1), and vertically back to (x0, y0). As (x1, y1) ranges
over all pairs of irrational numbers, we obtain uncountably many paths
R(x0, y0, x1, y1). I claim that the homotopy classes of these paths are
all distinct in π1(R2 \Q2, (x0, y0)). To see this, let (x1, y1) and (x′

1, y
′
1)

be distinct pairs of irrational numbers with corresponding rectangles
R and R′. Then there is a rational point (p, q) ∈ Q2 which is en-
closed by one rectangle but not the other. Hence the path R · R′ has
winding number ±1 around the point (p, q). That is, the inclusion
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R2 \Q2 → R2 \ {(p, q)} induces a map on fundamental groups

π1(R2 \Q2, (x0, y0)) −→ π1(R2 \ {(p, q)}, (x0, y0)) ' Z

sending [R]−1[R′] 7→ ±1 6= 0. Since a homomorphism sends the identity
to the identity, it follows that [R] 6= [R′] in π1(R2 \Q2, (x0, y0)).

5. One can show by induction, either on the number of vertices or on the
number of edges, that χ(T ) = 1 if T is a (finite) tree. This is pretty
straightforward so I will omit the details. Now if X is a connected
(finite) graph, let T be a maximal spanning tree, and let E denote the
set of edges in X \ T . We know from class or Hatcher that the Seifert-
van Kampen theorem implies that π1(X) is free with one generator for
each edge in E, so rk π1(X) = |E|. On the other hand, by definition
χ(X) = χ(T )−|E|. We have seen that χ(T ) = 1, and combining these
three equations gives rk π1(X) = 1− χ(X).

6. Here are two solutions. The first seems easier to think of, while the
second is cleverer and shorter.

First solution: If f and g are paths starting and ending at 1, let f · g
denote their concatenation as usual, and define a new path f ? g using
the group multiplication by

(f ? g)(t) := f(t)g(t).

This gives a well-defined operation on π1(G, 1), because if F is a ho-
motopy from f0 to f1 and if G is a homotopy from g0 to g1, then a
homotopy from f0 ? g0 to f1 ? g1 is given by

(F ? G)(s, t) := f(s, t)g(s, t).

Now we compute that

f · g = (f · 1) ? (1 · g) ∼ f ? g ∼ (1 · f) ? (g · 1) = g · f.

Here the first and last equalities are immediate from the definitions,
while the middle homotopies exist because ? is well-defined on homo-
topy classes.

Second solution: If f and g are paths starting and ending at 1, define
a map H : [0, 1]2 → G by

H(s, t) := f(s)g(t).
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Since f(0) = f(1) = g(0) = g(1) = 1, it follows that H sends the
boundary of the square (starting at (0, 0) and going counterclockwise)
to the concatenation f · g · f · g. Since H is defined continuously on the
whole square, it follows that [f ][g][f ]−1[g]−1 is the identify in π1(G, 1).

7. My solution to this problem is going to be a bit more demanding of
the reader than those to the previous problems. In particular I will
quote some theorems and ideas which you might not know. I did say
“extra for experts” after all! Maybe one of you found a more elementary
solution.

The problem is a little easier when γ is a smooth embedding. Then
you can cut T 2 along γ to obtain a surface with boundary X. One can
then apply the classification of surfaces with boundary to deduce that
if X is connected then X is homeomorphic to a cylinder, and otherwise
X is homeomorphic to a disc union a punctured torus. The second
case is impossible by our assumption that γ is not nullhomotopic. So
we can identify X with the cylinder S1 × I; but then when you glue
the boundary circles back together to get a torus S1 × S1, you see
immediately that the boundary curve gets glued to a circle representing
the class (0, 1) ∈ π1(S

1 × S1), which is not divisible in Z2.

If all we know is that γ is continuous and injective, it is a bit trickier.
Still, you can lift γ to the universal cover to get a map γ̃ : R → R2

such that γ̃(t + 1) = γ̃ + (a, b). Now identify R2 ' int(D2) by, in polar
coordinates, sending (r, θ) ∈ int(D2) to (r/(1 − r), θ) ∈ R2. Under
this identification, since (a, b) 6= (0, 0), it follows that γ̃ compactifies
to an arc γ′ : [0, 1] → D2. One then use the Jordan curve theorem to
conclude that D2 \ γ′, and hence R2 \ γ̃, has two components. Now
suppose that (a, b) = k(a′, b′) where k, a′, b′ are integers and k > 1. Let
T : R2 → R2 denote the translation by (a′, b′). Observe that γ̃ cannot
intersect T ◦ γ̃. (Proof: if γ̃(t) = γ̃(t′) + (a′, b′), then t′ − t ∈ Z since γ
is injective, but then the periodicity property of γ̃ implies that (a′, b′)
is an integer multiple of (a, b), which is a contradiction.) Thus T ◦ γ̃
is in one component of R2 \ γ̃. Moreover, T sends the component of
R2 \ γ̃ that contains T ◦ γ̃ to the component of R2 \T ◦ γ̃ that does not
contain γ̃. (One can see this by noting that under our identification
of R2 with int(D2), T extends to a self-homeomorphism of D2 which
fixes the boundary.) In particular, if A ⊂ R2 denotes the union of γ̃
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with the component of R2 \ γ̃ that contains T ◦ γ̃, then T sends A to
A \ γ̃. Then T k ◦ γ̃ does not intersect γ̃, but this contradicts the fact
that T k ◦ γ̃ is a reparametrization of γ̃.

By the way, if we replace T 2 by a genus g oriented surface Σ, then one
can still show that a non-nullhomotopic injective loop γ must represent
an indivisible element of π1(Σ). (This does not work for an unorientable
surface. Do you see why?)
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