1. 10 pts Evaluate the integral
\[\int e^{\sqrt{x}} \frac{dx}{\sqrt{x}} \]
2.15 \textit{pts} Evaluate the integral

$$\int \frac{1}{(t+1)^2(t-1)} \, dx$$
3.15 pts Indicate which of the following statements are true and which are false. Do not show your work.

1. \(\int_1^\infty \frac{1 - e^{-x}}{x^3} \, dx \) converges by comparison test with \(\int_1^\infty \frac{1}{x^3} \, dx \).

2. \(\int_0^1 \frac{\sin(x)}{x} \, dx \) diverges by comparison test with \(\int_0^1 \frac{1}{x} \, dx \).

3. \(\int_0^1 \frac{dx}{\sqrt{x^2 + x}} \) is a convergent improper integral.

4. \(\int_1^\infty \frac{1}{(x - 1)^2} \, dx \) is a divergent improper integral.

5. \(\int_0^1 \frac{\ln(x)}{x^{1/2}} \, dx \) is a convergent improper integral.
4.15 pnts Find the radius and the interval of convergence of the power series

\[
\sum_{n=1}^{\infty} \frac{n - 1}{(n + 2)(2n + 5)} \left(\frac{x}{2} \right)^n
\]
5.15 pts State whether the following series is absolutely convergent, conditionally convergent, or divergent. Do not show your work.

1. \[\sum_{n=1}^{\infty} \cos\left(\frac{\pi}{n^2}\right) \]

2. \[\sum_{n=1}^{\infty} (-1)^n \frac{13 + n + e^{-n}}{13 + 4n^2} \]

3. \[\sum_{n=1}^{\infty} \left(\frac{1}{\arctan n + 1} - \frac{1}{\arctan n} \right) \]

4. \[\sum_{n=1}^{\infty} \frac{3^n}{n^3} (-1)^n \]

5. \[\sum_{n=2}^{\infty} \cos(\pi n) \frac{1}{n \ln^2(n)} \]
6.15 points For each statement indicate whether it is true or false. Do not show your work.

1. If \(\sum_{n=1}^{\infty} c_n \) converges, then \(\sum_{n=1}^{\infty} (-1)^n c_n^2 \) also converges.

2. If \(f(x) < 0 \) is continuous and \(\int_{1000}^{\infty} f(x) \, dx \) is convergent then \(\sum_{n=1}^{\infty} f(n) \) converges.

3. If the sequence \(\{a_n\} \) diverges and the series \(\sum_{n=0}^{\infty} b_n \) diverges then \(\sum_{n=0}^{\infty} a_n b_n \) diverges.

4. If the sequence \(\{a_n\} \) diverges and and the sequence \(\{b_n\} \) diverges then \(\{a_n b_n\} \) diverges.

5. If \(\sum_{n=0}^{\infty} a_n (x - 2)^n \) converges for \(x = 7 \) and \(\sum_{n=0}^{\infty} a_n (-6)^n \) diverges, then \(\sum_{n=0}^{\infty} a_n (x - 2)^n \) diverges for \(x = -6 \).
7.15 pts For each statement indicate whether it is true or false. Do not show your work.

1. \(\sum_{n=1}^{\infty} nc_n x^n \) converges absolutely inside (excluding endpoints) of the interval of convergence of the power series \(\sum_{n=1}^{\infty} c_n x^n \).

2. \(\sum_{n=1}^{\infty} c_n x^n \) has radius of convergence \(R \), then \(\sum_{n=1}^{\infty} c_n R^n \) converges conditionally.

3. \(\sum_{n=1}^{\infty} c_n x^n \) diverges for \(|x| > R \), then \(R \) is the radius of convergence of this power series.

4. \(\sum_{n=1}^{\infty} c_n x^n \) converges for \(0 < |x| < a \), then \(a < R \) where \(R \) is the radius of convergence of this power series.

5. The radius of convergence of \(\sum_{n=1}^{\infty} \frac{x^n}{n} + \sum_{n=1}^{\infty} \frac{(2x)^n}{n^{100}} \) is 1.
8.15 pts Solve the initial-value problem.

\[e^x (-2y y' + 2y') = 1, \quad y(0) = 2. \]
9.15 pts Find the general solution to the differential equation

\[\frac{dy}{dx} = x + \ln(x) + xy + \ln(x)y, \]
10.10 pts Find the general solution to the differential equation

\[y'' + y = \cos x, \quad y(0) = 0, \quad y'(0) = \frac{5}{2}. \]
11.15 pnts Match pictures to differential equations.

1. \(\frac{dy}{dx} = y^2 \)

2. \(\frac{dy}{dx} = y \)

3. \(\frac{dy}{dx} = y^{1/2} \)

4. \(\frac{dy}{dx} = y^{-2} \)

5. \(\frac{dy}{dx} = y^{-1} \)
12. 20 pts Find the power series solution to the differential equation:

\[y'' - xy' - y = 0, \quad y(0) = 1, \quad y'(0) = 0. \]