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1 Review of some multivariable calculus

1.1 Curves

We begin by reviewing some definitions involving curves in the plane. In-
tuitively one thinks of a curve as a “one-dimensional” set of points in the
plane. However to discuss integrals over curves, it is more convenient to
think of curves as “parametrized”, as follows.

Definition 1.1. A C1 parametrized curve in R2 is a continuously differen-
tiable map γ : [a, b]→ R2, for some a, b, such that γ′(t) 6= 0 for all t ∈ [a, b].

The image γ([a, b]) is the curve in the plane that we care about. One can
think of t as a “time” variable, and the map γ as a “schedule” which describes
how to move along the curve, describing where we should be at each time.
Here γ′(t) is the velocity vector of γ at time t. If we write γ(t) = (x(t), y(t)),
then γ′(t) = (x′(t), y′(t)). We impose the condition γ′(t) 6= 0 in order to
avoid strange parametrizations which stop for some amount of time, and to
make the following definitions cleaner.

Definition 1.2. An oriented C1 curve in R2 is an equivalence of C1 parametrized
curves in R2, under the following equivalence relation. We declare γ : [a, b]→
R2 to be equivalent to ρ : [c, d]→ R2 if there is a C1 bijection φ : [a, b]→ [c, d]
with φ′(t) > 0 for all t, such that γ = ρ ◦ φ. (Exercise: check that this is an
equivalence relation.)

When γ and ρ are equivalent as above, they traverse the same set of
points in the plane, but on different schedules. The map φ is a “reparametriza-
tion” which specifies how to convert from one schedule to the other.

The word “oriented” means that the curve has a distinguished “direction”
along which we traverse it. If we modified the above definition to only require
φ′(t) 6= 0 and not φ′(t) > 0, then the resulting equivalence classes would
describe “unoriented” curves.
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We typically denote an equivalence class by C, and we refer to an element
γ of this equivalence class as a parametrization of the curve C. Since we
assume that all curves and parametrizations are C1, we will not always
write “C1” below.

1.2 Line integrals with respect to arc length

Let C be an oriented curve in R2. We now review how to define integrals
over C.

Suppose f : U → C is a continuous function1, where U ⊂ R2 is a set
containing C (i.e. the image of any parametrization). Can we integrate f
over C? The most naive thing to try would be to choose a parametrization
γ : [a, b]→ C and define ∫

C
f =

∫ b

a
f(γ(t))dt. (1.1)

To justify this definition, we would need to show that this definition does not
depend on the choice of a parametrization. Let ρ : [c, d] → R2 be another
parametrization such that γ = ρ ◦ φ where φ : [a, b] → [c, d] is a bijection
with φ′ > 0. Let τ ∈ [c, d] denote the parameter of ρ. By the change of
variables formula for one-variable integrals, we have∫ d

c
f(ρ(τ))dτ =

∫ b

a
f(γ(t))φ′(t)dt. (1.2)

The right hand side will usually not agree with (1.1) (unless φ′(t) ≡ 1). Thus
the definition (1.1) does not work.

Summary: the factor φ′(t) in the change of variables formula (1.2) makes
the naive definition (1.1) not invariant under reparametrization.

There are various ways to fix this. One way is to define the integral with
respect to arc length ∫

C
f ds =

∫ b

a
f(γ(t))|γ′(t)|dt (1.3)

where γ is a parametrization of t. To check that this is well-defined, let ρ be
another parametrization as above. By the change of variables formula, we
have ∫ d

c
f(ρ(τ))|ρ′(τ)|dτ =

∫ b

a
f(γ(t))|ρ′(φ(t))|φ′(t)dt.

1In your multivariable calculus class you probably just integrated real-valued functions.
However it makes little difference in this discussion if we allow the functions that we are
integrating to be complex-valued.
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To check that this agrees with (1.3), we know that

γ(t) = ρ(φ(t)).

By the chain rule, it follows that

γ′(t) = ρ′(φ(t))φ′(t).

Here γ′(t) and ρ′(φ(t)) are vectors, while φ′(t) is a positive scalar. Since
multiplying a vector by a scalar multiplies its absolute value by the absolute
value of the scalar, we have

|γ′(t)| = |ρ′(φ(t))|φ′(t).

Plugging this into (1.3) gives us what we want.
Summary: the factor |γ′(t)| in (1.3) transforms under a change of vari-

ables in such a way that it cancels the error arising from the change of vari-
ables formula (1.2), so that the definition (1.3) is invariant under reparametriza-
tion.

In fact, integration with respect to arc length is also well-defined for
unoriented curves, although we will not need this.

There is another, equivalent way to define
∫
C f ds which is more evidently

invariant under reparametrization. Namely, let N be a large positive integer
and choose times

a = t0 < t1 < · · · < tN = b.

Let ∆t = max(ti − ti−1). Define∫
C
f ds = lim

N→∞,∆t→0

N∑
i=1

f(t∗i )|γ(ti)− γ(ti−1)| (1.4)

where t∗i ∈ [ti−1, ti]. Intuitively, this means that we approximate the curve by
N line segments, and sum up the lengths of the line segments times sample
values of f . One can show, similarly to the definition of the Riemann integral,
that the above limit is well-defined and agrees with (1.3).

We define the length of C to be
∫
C 1 ds. The above paragraph should

make this seem reasonable.

1.3 Integration of 1-forms over oriented curves

Let U be a subset of R2.

Definition 1.3. A 1-form on U is an expression P dx + Qdy where P,Q :
U → C are functions. We will always assume that P and Q are at least
continuous.
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If C is an oriented curve in U , we define the integral of a 1-form over C
by ∫

C
(P dx+Qdy) =

∫ b

a
(P (γ(t))x′(t) +Q(γ(t))y′(t))dt (1.5)

where γ : [a, b] → R2 is a parametrization of C, and we write γ(t) =
(x(t), y(t)).

Let us check that this does not depend on the choice of parametrization.
We will show that

∫
C P dx does not depend on the choice of parametrization;

the proof for
∫
C Qdy is similar. Let ρ : [c, d]→ R2 be another parametriza-

tion as before. Using slightly informal notation, we need to check that∫ b

a
P (γ(t))

dx

dt
dt =

∫ d

c
P (ρ(τ))

dx

dτ
dτ.

By the change of variables formula, we have∫ d

c
P (ρ(τ))

dx

dτ
dτ =

∫ b

a
P (γ(t))

dx

dτ

dτ

dt
dt.

By the chain rule,
dx

dτ

dτ

dt
=
dx

dt
.

Putting this into the above equation gives what we want.
For example,

∫
C 1 dx = x(b)− x(a) and

∫
C 1 dy = y(b)− y(a).

Once again, the factors of x′(t) and y′(t) in (1.5) ensure invariance under
reparametrization. Note that it is crucial here that C is an oriented curve.
If we allowed the reparametrization φ to have φ′ < 0, then in the change
of variables formula, the limits of integration would get switched. Thus,
switching the orientation of a curve will multiply the integral of a 1-form by
−1.

There is also an alternate definition along the lines of (1.4), namely∫
C
P dx = lim

N→∞,∆t→0

N∑
i=1

P (t∗i )(x(ti)− x(ti−1)),

∫
C
Qdy = lim

N→∞,∆t→0

N∑
i=1

Q(t∗i )(y(ti)− y(ti−1)).

That is, to integrate P dx, we approximate C by N intervals, and sum up
the x displacement of each interval times a sample value of P .
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1.4 0-forms

Let U be a subset of R2.

Definition 1.4. A 0-form on U is a function f : U → C. If f is continuously
differentiable, we define a 1-form df on U by

df =
∂f

∂x
dx+

∂f

∂y
dy.

Let C be an oriented curve in U from A to B. That is, if γ : [a, b]→ R2

is a parametrization of C, then γ(a) = A and γ(b) = B.

Theorem 1.5. (“fundamental theorem of line integrals”) If C is an oriented
curve in U from A to B, and if f : U → C is continuously differentiable,
then ∫

C
df = f(B)− f(A).

Proof. Let γ : [a, b]→ R2 be a parametrization of C. Write γ(t) = (x(t), y(t)).
By the chain rule,

d

dt
f(γ(t)) =

∂f

∂x
x′(t) +

∂f

∂y
y′(t).

Integrating the above equation from t = a to t = b and using the fundamental
theorem of calculus, we obtain

f(B)− f(A) =
∫ b

a

(
∂f

∂x
x′(t) +

∂f

∂y
y′(t)

)
dt.

The right hand side of this equation is, by definition, equal to
∫
C df .

1.5 2-forms and Green’s theorem

Let U be a subset of R2.

Definition 1.6. A 2-form on U is an expression f dxdy where f : U → C.
We will always assume that f is at least continuous.

If U is compact, then the double integral
∫∫

U f dxdy is defined as in the
definition of the Riemann integral. We will not review this here; we just
recall that if U is a rectangle [a, b]× [c, d], then∫∫

U
f dxdy =

∫ b

a

(∫ d

c
f(x, y)dy

)
dx =

∫ d

c

(∫ b

a
f(x, y)dx

)
dy.
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Definition 1.7. If α = P dx + Qdy is a continuously differentiable 1-form
on U , define a 2-form dα on U by

dα =
(
∂Q

∂x
− ∂P

∂y

)
dxdy.

The significance of the above definition is as follows. Let U be a compact
domain in R2 with piecewise C1 boundary. Here “piecewise smooth” means
that the boundary of U is the union of the images of finitely many C1 curves,
intersecting only at the endpoints. There is then a preferred way to orient
the boundary curves. Without giving a rigorous definition here, let us just
informally say that each boundary curve is oriented so that U is “on the
left” as one traverses the boundary curve.

Green’s theorem asserts that in the above situation, if α is a continuously
differentiable 1-form on U , then∫

∂U
α =

∫∫
U
dα.

Here
∫
∂U denotes the sum of the line integrals over all of the boundary curves

with their preferred orientations. More explicitly, writing α = P dx+Qdy,
we have ∫

∂U
(P dx+Qdy) =

∫∫
U

(Qx − Py)dxdy.

Let us recall the proof in the special case when U is a rectangle [a, b] ×
[c, d]. It is enough to separately consider the cases α = P dx and α = Qdy.
We will just check the first case, leaving the second case as an exercise. We
can divide the boundary of U into four curves C1, . . . , C4, where C1 is the
bottom edge (oriented to the right), C2 is the right edge (oriented upward),
C3 is the top edge (oriented to the left), and C4 is the left edge (oriented
downward). We have ∫

C2

P dx =
∫

C4

P dx = 0

because the curves C2 and C4 do not move in the x direction, so the x′(t)
factor in (1.5) vanishes. We also have∫

C1

P dx =
∫ b

a
P (x, c)dx,∫

C3

P dx = −
∫ b

a
P (x, d)dx

where the second equation has a minus sign because of the orientation.
Adding up the above gives∫

∂U
P dx =

∫ b

a
(P (x, c)− P (x, d)) dx.
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By the fundamental theorem of calculus, for a fixed x ∈ [a, b] we have

P (x, d)− P (x, c) =
∫ d

c

∂P

∂y
(x, y)dy.

Plugging this into the previous equation, we obtain∫
∂U
P dx = −

∫ b

a

(∫ d

c
Py(x, y)dy

)
dx

= −
∫∫

U
Py dxdy

which is what we wanted.

1.6 The mean value property of harmonic functions

[this is an important fact which we will need, and a nice application of
Green’s theorem...]

1.7 Closed and exact 1-forms

To review, we have a d operator from (continuously differentiable) 0-forms
to 1-forms defined by

df = fxdx+ fydy,

and we also have a d operator from (continuously differentiable) 1-forms to
2-forms defined by

d(Pdx+Qdy) = (Qx − Py)dxdy.

If f is continuously twice differentiable, then

d(df) = d(fxdx+ fydy) = (fyx − fxy)dxdy = 0

by Clairaut’s theorem.
A (continuously differentiable) 1-form α is called closed if dα = 0, and

exact if α = df for some f . Since d(df) = 0, it follows that every exact form
is closed.

Conversely, is every closed 1-form exact? The answer depends on the
domain on which the 1-form is defined. To start, we have

Theorem 1.8. Let α be a closed 1-form on R2. Then α is exact. That is,
there exists f : R2 → C such that df = α. Moreover, f is unique up to
addition of a constant.
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Proof. Uniqueness: Write α = Pdx + Qdy. Suppose that df = α. Write
c = f(0, 0). Applying the “fundamental theorem of line integrals” to a
horizontal curve from (0, 0) to (x, 0) shows that

f(x, 0) = c+
∫ x

0
P (t, 0)dt.

Then applying the “fundamental theorem of line integrals” to a vertical curve
from (x, 0) to (x, y) shows that

f(x, y) = c+
∫ x

0
P (t, 0)dt+

∫ y

0
Q(x, t)dt. (1.6)

Thus f is uniquely determined by P and Q and the additive constant c.
Existence: Let c be an arbitrary constant and define f by (1.6). We will

show that df = α, that is, fx = P and fy = Q.
If we differentiate (1.6) with respect to y, then only the last term depends

on y, and its derivative is Q(x, y) by the fundamental theorem of calculus.
To differentate the right hand side of (1.6) with respect to x, we differ-

entiate the second term using the fundamental theorem of calculus as above,
and the third term by differentiating under the integral sign, to obtain

fx(x, y) = P (x, 0) +
∫ y

0
Qx(x, t)dt.

We now use the assumption that α is exact to write Qx = Py. Thus

fx(x, y) = P (x, 0) +
∫ y

0
Py(x, t)dt.

By the fundamental theorem of calculus,∫ y

0
Py(x, t)dt = P (x, y)− P (x, 0).

Combining the above two equations gives fx(x, y) = P (x, y) as desired2.

The above argument also works when the domain is a rectangle or a
disk, and also for some other domains. In general, if the domain is simply
connected , which roughly speaking means that it “has no holes”, then every

2Another way to show that fx = P is to use Green’s theorem (and the assumption that
α is exact) to rewrite

f(x, y) = c+

Z y

0

Q(0, t)dt+

Z x

0

P (t, y)dt

and then argue similarly to the proof that fy = Q.
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closed 1-form is exact. However, for non-simply connected domains, closed
1-forms need not be exact.

An important example (for reasons to be discussed later) is the 1-form

α =
x dy − y dx
x2 + y2

,

defined on the domain R2 \ {(0, 0)}. Here the removed origin counts as a
“hole”, so this domain is not simply connected. A short calculation shows
that dα = 0 (do it). However α is not exact. To see why, let C denote
the unit circle, oriented counterclockwise. Then another short calculation
shows that

∫
C α = 2π (do this one too). Since C is a closed curve (i.e.

any parametrization will start and end at the same point on the curve),
the “fundamental theorem of line integrals” implies that the integral of any
exact 1-form on C is zero. Hence α is not exact.

2 Integration of holomorphic functions

2.1 Complex notation

We now identify R2 with C in the usual way. The identity map z 7→ z is a
perfectly good 0-form on C, and so we can take d of it to obtain a 1-form
dz. Since z = x+ iy, it follows that

dz = dx+ idy.

Likewise, z = x− iy is a 0-form on C, and d of it is

dz = dx− idy.

If f is a continuously differentiable (in the real sense) complex-valued
function on a domain U in C, define

∂f

∂z
=

1
2

(
∂f

∂x
− i∂f

∂y

)
,

∂f

∂z
=

1
2

(
∂f

∂x
+ i

∂f

∂y

)
.

Observe that f is holomorphic if and only if ∂f/∂z = 0 (this is just a rewrite
of the Cauchy-Riemann equations). In this case, the complex derivative of
f is given by f ′(z) = ∂f/∂z.

There is a nice formula for the d operator on 0-forms in terms of the
strange-looking operators ∂/∂z and ∂/∂z (which is the reason they are de-
fined the way they are). Namely, if f is a continuously differentiable (not
necessarily holomorphic) function, then

df =
∂f

∂z
dz +

∂f

∂z
dz. (2.1)
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(Do the calculation.)
As a corollary, we have:

Proposition 2.1. Let C be an oriented curve in C from A to B, and let f
be a holomorphic function on a domain containing C. Then∫

C
f ′(z)dz = f(B)− f(A).

Proof. Since f is holomorphic, ∂f/∂z = 0. Then the formula (2.1) implies
that df = f ′(z)dz. Now apply the “fundamental theorem of line integrals”.

2.2 Cauchy’s theorem and Cauchy’s integral formula

Let U ⊂ C be a compact domain with piecewise smooth boundary, as in the
statement of Green’s theorem. Let ∂U be the union of the boundary curves
of U , with their preferred orientations.

Theorem 2.2. (Cauchy’s theorem) If f : U → C is continuously differen-
tiable (in the real sense) and holomorphic, then∫

∂U
f dz = 0.

Proof. By Green’s theorem, it is enough to show that d(fdz) = 0. We
compute

d(fdz) = d(fdx+ ifdy) = (ifx − fy)dxdy.

By the Cauchy-Riemann equations, fy = ifx, so the right hand side of the
above equation vanishes.

We remark that more generally, by a bit of linear algebra, any 1-form α
can be uniquely written as α = fdz + gdz. A short calculation then shows
that

d(fdz + gdz) = 2i
(
∂f

∂z
− ∂g

∂z

)
dxdy.

We also remark that by a more clever argument, in Cauchy’s theorem
one can drop the assumption that the derivatives of f are continuous. This
fact is known as Goursat’s theorem.

2.3 Cauchy’s integral formula

[This is all that I am writing for now...]
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