0. (optional, not for credit) If you want practice with proof by induction, read chapter 4 of the notes on proofs and do the exercises at the end.

1. Fraleigh, section 0, exercises 29–34.

2. In this exercise you will construct \(\mathbb{Q} \) starting from \(\mathbb{Z} \). Let \(S = \{(a, b) \mid a, b \in \mathbb{Z}, b \neq 0\} \). Define a relation \(\sim \) on \(S \) by

\[
(a, b) \sim (c, d) \iff ad = bc.
\]

(a) Show that \(\sim \) is an equivalence relation.

(b) Let \(\mathbb{Q} \) denote the set of equivalence classes. Denote the equivalence class of \((a, b) \) by \([a, b]\). (Ordinarily we denote this by \(a/b \).) Show that the following operations of “addition” and “multiplication” on \(\mathbb{Q} \) are well defined:

\[
[a, b] + [c, d] = [ad + bc, bd],
\]

\[
[a, b][c, d] = [ac, bd].
\]

3. Recall the Division Theorem: if \(a \) and \(b \) are integers with \(b > 0 \), then there are unique integers \(q, r \) such that \(a = qb + r \) and \(0 \leq r < b \).

(a) Show that \(\gcd(a, b) = \gcd(b, r) \). (This is the key step in proving that the euclidean algorithm works.)

(b) Prove that there exist integers \(x, y \) such that \(ax + by = \gcd(a, b) \).

Hint: use induction on \(\max(a, b) \) and part (a).

4. Find an integer solution \(x \), or explain why no solution exists:

(a) \(83x \equiv 4 \pmod{157} \).

(b) \(1001x \equiv 131 \pmod{611} \).

5. (a) Show that every positive integer \(n \) has a **binary expansion**, i.e. can be expressed as a sum of distinct powers of 2. For example, \(2009 = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 2^3 + 2^0 \). *Hint:* use the division theorem to write \(n = 2q + r \) with \(r \in \{0, 1\} \), and use induction.

(b) **Extra credit:** Show that the binary expansion of a given positive integer is unique.

6. How challenging did you find this assignment? How long did it take?