Math 113 Midterm #2 solutions

1) True or false:

a) If R is an integral domain with quotient field @) then the quotient field
[z] is isomorphic to @Q|x].

b) The group Z4 X Zs is isomorphic to the group Zs X Zsg.

(a) False. Q[z] is not a field because x has no multiplicative inverse.
Degree is additive under multiplication of polynomials, so there is no way to
multiply the degree 1 polynomial x by another polynomial to get the degree
0 polynomial 1.

(b) True. Since 2 and 9 are relatively prime, Zg X Zg ~ Z;5. Since 4 and
9 are relatively prime, Z4 X Zg >~ Zs3s. Thus both groups are isomorphic to
Lo X Loy X L.

(2) Let G be a group. Consider the “diagonal”

(
(
of R
(

H={(z,x) |z € G} CGxG.

H is a subgroup of G x (G; you don’t have to prove this.

(a) Show that H is a normal subgroup of G x G if and only if G is abelian.

(b) Assuming G is abelian, show that (G x G)/H ~ G.

(a) If G is abelian, then for (z,z) € H and (g1,92) € G x G, we
have (g1, 92)(z,7)(g1,92) " = (quzg; ', gy ') = (z,7) € H, so H is nor-
mal. Conversely if H is normal, then for any z,y € G we must have
(z,e)(y,y)(z,e)~! € H, which means that zyz™ = y, so vy = yz, so G
is abelian.

(b) Define ¢ : G x G — G by ¢(z,y) = zy~'. Since G is abelian,
¢ is a homomorphism: ¢((z1,y1)(22,12)) = O(2122, Y1Y2) = T122y5 Y7~ =
Tiyy w2yy = G201, 41)(22,12). Now Ker(g) = {(z,y) | ay™" = e} =
{(z,y) | * =y} = H, and ¢ is surjective since for any = € G we have x =
¢(z,e). So by the fundamental homomorphism theorem, (G x G)/H ~ G.

(3a) Find all solutions to the equation z? — 1 =0 in Z3s.

(3b) Show that if p > 2 is prime then either 2(P~1/2 41 or 2-1/2 — 1 is
a multiple of p.

(a) We have 22 — 1 = (z 4+ 1)(z — 1). This is zero when z = 1 or z = —1,
It is also zero when x + 1 and z — 1 are two numbers whose product is a
multiple of 35, i.e. when one is a multiple of 5 and the other is a multiple of
7. Listing the multiples of 5 and 7 from 0 to 35, we see that the solutions we
get this way are © = 6 and z = —6.



(b) By Lagrange’s theorem, the order of 2 in the group Z,, must divide
the order of the group, namely p — 1, so 2*"' = 1 mod p. Thus 2(~D/2
is a solution to the equation 22 — 1 = 0 in Z,. Since Z, is a field this
equation only has the two solutions z = 1 and = —1. Instead of the last
two sentences, one can also observe that p divides the product 2P~! — 1 =
(2r=1)/2 4 1)(2P=1/2 — 1), s0 since p is prime p must divide one of the two
factors.

(4a) Find the quotient and the remainder when 23+ 8x2+7x—1 is divided
by 4z — 1 in Zq;[z].

(4b) Prove the “remainder theorem”: if F'is a field, p € F[z], and o € F,
then p(«) is the remainder when p is divided by = — «. (Here p(a) denotes
the image of p under the evaluation homomorphism i, : Fx] — F.)

(a) Doing long division of polynomials we find that ¢ = 32 + 10 and
r = 9. In doing this division, a key point is that in Z;;, division by 4 is the
same as multiplication by 3.

(b) By the division theorem we can write p = (x—a))g+r where ¢, r € F|x]
and deg(r) < deg(z—a), that is deg(r) = 0, so r is a constant polynomial and
can be regarded as an element of F'. Applying the evaluation homomorphism
ia, We have p(a) = i4(p) = ia(z — @)ia(q) + ia(r). Now in(r —a) = 0 and
io(r) = r. Putting this into the previous equation completes the proof.

(5) True or false:

(a) The quotient group (Z x Z)/{(2,4)) is isomorphic to Z.

(b) There exists a nonzero homomorphism from the group Zs; to the
group Zsag.

(a) False. This quotient group cannot be isomorphic to Z because it
contains an element of order 2, namely the coset (1,2) + ((2,4)). This coset
has order 2 because (1,2)% = (2,4) is an element of the subgroup ((2,4)).

(b) False. Let ¢ : Zs3 — Zsy be a homomorphism. The fundamental
homomorphism theorem says that Zss/ Ker(¢) ~ Im(¢). Since the left side
is the quotient of Zs3 by a subgroup, its order must divide 33. Since the
right side is a subgroup of Zs, its order must divide 20. Since the greatest
common divisor of 33 and 20 is 1, both sides must be one element groups,
which means that ¢ is the zero homomorphism.



