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Abstract. The classical isoperimetric inequality states that the surface of
smallest area enclosing a given volume in R3 is a sphere. We show that the
least area surface enclosing two equal volumes is a double bubble, a surface
made of two pieces of round spheres separated by a flat disk, meeting along a
single circle at an angle of 2π/3.

1. Introduction

Double, double, toil and trouble,
Fire burn and cauldron bubble.

Macbeth Act 4, Scene 1, Line 10

The double bubble is the surface in R3 obtained by taking two pieces of round
spheres separated by a flat disk, meeting along a single circle at an angle of 2π/3. It
has long been thought that the double bubble minimizes area among all piecewise-
smooth surfaces enclosing two equal volumes.

Experimental evidence towards this conjecture can be obtained by blowing soap
bubbles and observing the resulting shapes. If one blows two soap bubbles of
equal size and pushes them together until they conglomerate to form a compound
bubble, one obtains a double bubble. Such experiments were carried out by the
Belgian physicist J. Plateau in the middle of the 19th century. Plateau established
experimentally that a soap bubble cluster is a piecewise-smooth surface having only
two types of singularities. The first type of singularity occurs when three smooth
surfaces come together along a smooth triple curve at an angle of 120o. The second
type of singularity occurs when six smooth surfaces and four triple curves converge
at a point, with all angles equal. The angles are equal to those of the cone over the
1-skeleton of a regular tetrahedron.

C.V. Boys, discussing the work of Plateau in his famous book on soap bubbles
[5] writes,

“When however the bubble is not single, say two have been blown in real contact
with one another, again the bubbles must together take such a form that the total
surface of the two spherical segments and of the part common to both, which I
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shall call the interface, is the smallest possible surface which will contain the two
volumes of air and keep them separate.”

We have obtained a proof of this conjecture for the case of two equal volumes.

Theorem 1. [9] The double bubble uniquely minimizes area among all surfaces in
R3 enclosing two equal volumes.

We remark that a planar analogue has recently been solved in [1].
Our result can also be viewed as an isoperimetric inequality.

Corollary 2. For any surface in R3 enclosing two regions, each having volume V ,
the area A satisfies

A3 ≥ 243πV 2

with equality if and only if it is isomorphic to the standard symmetric double bubble
enclosing two regions of volume V by an isometry of R3.

This result gives the first explicit example of closed minimizing surfaces in R3

which exhibits any of the singularities predicted by Plateau.

2. An outline of the proof

Existence and regularity of a minimizer were established by F. Almgren and
J. Taylor. Almgren showed in [2] that there exists an area minimizing surface
in R3 among the set of surfaces enclosing a given pair of volumes. Here surface
refers to a generalized notion used in geometric measure theory, which includes
piecewise-smooth surfaces. Almgren showed that the solution is a smooth surface
almost everywhere. Taylor obtained additional information on the nature of the
singularities [14]. She showed that a minimizer is a piecewise-smooth surface whose
singularities consist of smooth triple curves along which three smooth surfaces come
together at an angle of 120o, and isolated points where pieces of surface converge.
At these isolated points the asymptotic cone is the cone over the 1-skeleton of a
regular tetrahedron.

Our proof that the double bubble minimizes is by a direct computational attack
on the space of surfaces. The space of surfaces enclosing two equal volumes is infinite
dimensional. By a series of analytic and geometric arguments this space is reduced
first to a union of finite dimensional sets, then a compact two-dimensional set, and
ultimately the conjecture is reduced to a finite number of numeric computations.

It is a classical result that any surface minimizing area while enclosing a given
volume has constant mean curvature on each smooth piece. The second ingredient
in our proof is a general theorem about symmetry in soap bubble clusters.

Theorem 3. An area minimizing enclosure of m volumes in Rn, for m < n, is
rotationally symmetric about an (m− 1)-dimensional plane.

The ideas behind this theorem are due to Brian White and Frank Morgan, and
versions of it are written in [8], [11] and [10]. It implies the classical isoperimetric
theorem, and also tells us that a minimizing bubble enclosing two given regions in
R3 is a surface of revolution. Constant mean curvature surfaces of revolution in R3

were classified by Delaunay [6], and they form the pieces of our minimizing bubble.
Almgren’s theorem provides no information about the topological complexity

of the possible solutions. The existence theorem allows for the strange possibility
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that the volumes enclosed may be disconnected. Even the exterior region may
be disconnected, in which case there are “empty regions” which do not contribute
to either of the two volumes we are enclosing. The main tool in controlling the
topology is:

Theorem 4. [10] If A(V1, V2) is the minimum area for surfaces in R3 enclosing
volumes V1 and V2, then A is concave as a function of V1 and V2.

The basic ingredient in the proofs of the symmetry theorem and the concavity
theorem is the idea of “symmetrization”. Suppose we have a soap bubble cluster
and a hyperplane. This hyperplane divides the cluster into two halves. We can
replace one half with the reflection of the other half across the hyperplane. The area
(respectively volume) of the original cluster is the average of the area (respectively
volume) of the two different symmetrizations.

In the special case when the hyperplane bisects both enclosed volumes and the
cluster is area minimizing, both symmetrizations are minimizers, as otherwise one
would have too little area. It follows that the cluster is orthogonal to the hyperplane,
since otherwise the symmetrizations would have corners which could be smoothed
to decrease area. Now the Borsuk-Ulam Theorem provides hyperplanes bisecting
the volumes of a cluster, and one can find the axis of symmetry as an intersection
of such hyperplanes.

If we could find hyperplanes dividing the volumes of a minimal cluster into
other proportions, this would immediately imply concavity, since the areas of the
symmetrizations must be greater than or equal to the areas of the minimizers for
those volumes. The Borsuk-Ulam Theorem only allows us to bisect the volumes.
However, another topological argument shows that if concavity fails, then there
are extra hyperplanes of symmetry. In particular we find that a minimal bubble
enclosing two volumes would have to be a union of concentric spheres, which is
clearly not area minimizing.

To illustrate how concavity applies to connectedness, we can quickly deduce that
there are no empty chambers. Concavity, together with the fact thatA(V1, V2)→∞
as V1 → ∞ (by the isoperimetric theorem, since an enclosure of volumes V1 and
V2 is also an enclosure of volume V1), implies that A(V1, V2) is a strictly increasing
function of V1 for V2 fixed. Now, if an area-minimizing enclosure of volumes V1 and
V2 has an empty chamber of volume E, then this is also an enclosure of volumes
V1 +E and V2. Then A(V1 +E, V2) ≤ A(V1, V2), a contradiction.

From Theorem 4 we deduce that the volumes are connected, and hence the
minimizer has either the topology of the double bubble or of one other possible
configuration. A torus bubble is a surface of revolution constructed by taking two
circular arcs of the same radius, facing each other, each with one endpoint and
center on the x-axis, and connecting the other endpoints with Delaunay curves
meeting at 120 degrees. We then get a bubble surrounding two components, one
homeomorphic to a torus and one homeomorphic to a ball. It is possible, though
not immediately clear, to make such a construction so that the curves meet at 120o

angles, so that torus bubbles do indeed exist.
The possible torus bubbles may be parameterized as follows: choose a radius

r > 0 for the arcs, angles θ1 and θ2 subtending the arcs, and mean curvature Hi

for the inner Delaunay surface. Then the spherical pieces have mean curvature 2/r
and the outer Delaunay surface must have mean curvature Ho = 2/r − Hi ≥ 0.
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The Delaunay curves are then determined by an ordinary differential equation and
the initial conditions at either endpoint.

Geometric arguments show that given r, θ1, and Hi, there are at most two values
of θ2 for which the curves can meet at the required 120o angles, and these can be
obtained algebraically by solving a quadratic equation. Perturbation arguments
restrict the values for θ2 that can occur in a minimizing bubble. One of these
values is equal to θ1 which gives rise to a symmetric torus bubble. We show that
such symmetric bubbles are always unstable. Thus, the torus bubble is determined
by r, θ1, and Hi, and we can assume by scaling and reflection that r = 1 and
θ1 < θ2.

We next do a computation to show that torus bubbles cannot be minimizers.
The idea is to make an exhaustive search of all possible θ1, Hi, where 0 ≤ θ1 ≤ π
and Hi ≤ 2. In each case, we show that either θ2 does not exist in the appropriate
range, or that the two Delaunay surfaces forming the boundary of the torus region
do not match up when integrated, or that the two regions in the torus bubble
have unequal volumes. It turns out that there are one-parameter families of torus
bubbles which are critical points of the area function, but that if they enclose equal
volumes then there is always a perturbation that will decrease their area while
preserving both volumes.

The computation involves thousands of numerical integrations to get precise
information about Delaunay surfaces. We use IEEE double precision arithmetic
and interval arithmetic to derive strict bounds for all the estimates and calculations
[4],[12]. A detailed proof appears in [9].

We are indebted to Frank Morgan for introducing us to this problem and to
Morgan and W. Kahan for helpful discussions.

References

[1] M. Alfaro, J. Brock, J. Foisy, N. Hodges and J. Zimba The standard double soap bubble
in R2 uniquely minimizes perimeter, Pac. J. Math. 159, 47-59 (1993). MR 94b:53019

[2] F.J. Almgren, Existence and regularity almost everywhere of solutions to elliptic vari-
ational problems with constraints, Memoirs Amer. Math. Soc. 4, 165-199 (1976). MR
54:8420

[3] F.J. Almgren and J. Taylor, The geometry of soap films and soap bubbles, Sci. Amer.
235,82-93 (1976).

[4] ANSI/IEEE Standard 754-1985 for Binary Floating-Point Arithmetic, The Institute of
Electrical and Electronic Engineers, New York, 1985.

[5] C.V. Boys, Soap Bubbles, Dover Publ. Inc. NY 1959 (first edition 1911).

[6] C. Delaunay, Sur la surface de revolution dont la courbure moyenne est constante, J.
Math. Pure et App. 16, 309-321 (1841).

[7] J. Eells, The surfaces of Delaunay, Math. Intelligencer 9, 53-57 (1987). MR 88h:53011
[8] J. Foisy, Soap bubble clusters in R2 and R3, undergraduate thesis, Williams College (1991).
[9] J. Hass and R. Schlafly, Double Bubbles Minimize, (preprint).

[10] M. Hutchings, The structure of area-minimizing double bubbles, to appear in J. Geom.
Anal.

[11] F. Morgan, Clusters minimizing area plus length of singular curves, Math. Ann. 299,
697-714 (1994). MR 95g:49083

[12] R. E. Moore, Methods and Applications of Interval Analysis, SIAM, 1979. MR 81b:65040
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