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INTEGRATION OF SINGULAR BRAID INVARIANTS

AND GRAPH COHOMOLOGY

MICHAEL HUTCHINGS

Abstract. We prove necessary and sufficient conditions for an arbitrary in-
variant of braids with m double points to be the “mth derivative” of a braid
invariant. We show that the “primary obstruction to integration” is the only
obstruction. This gives a slight generalization of the existence theorem for
Vassiliev invariants of braids. We give a direct proof by induction on m which
works for invariants with values in any abelian group.

We find that to prove our theorem, we must show that every relation among
four-term relations satisfies a certain geometric condition. To find the relations
among relations we show that H1 of a variant of Kontsevich’s graph complex
vanishes. We discuss related open questions for invariants of links and other
things.

1. Introduction

1.1. The mystery. From a certain point of view, it is quite surprising that the
Vassiliev link invariants exist, because the “primary obstruction” to constructing
them is the only obstruction, for no clear topological reason.

The idea of Vassiliev invariants is to define a “differentiation” map from link
invariants to invariants of “singular links”, start with invariants of singular links,
and “integrate them” to construct link invariants. A singular link is an immersion∐
n S

1 → S3 with m double points (at which the two tangent vectors are not
parallel) and no other singularities. Let Lm denote the free Z-module generated by
isotopy classes of singular links with m double points. Let G be an abelian group,
and let v : L0 → G be a G-valued link invariant. The derivative of v,

δv : L1 → G,

is defined by

δv
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.(1)

Convention 1.1. In any such equation, all links are equal outside of the region
drawn. The arrows indicate the orientations of the link components. (This equation
makes sense in any oriented 3-manifold; we never use link projections.)
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More generally we say that an invariant of links with m double points, v : Lm →
G, is differentiable if
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(DIFF*)

If v is differentiable, we define δv : Lm+1 → G by applying (1) to one of the m+ 1
double points. By (DIFF*) this does not depend on the double point we choose.
Also notice that δv is differentiable.

When is an invariant v : Lm → G of singular links expressible as δm of a link
invariant? By the above remarks, v must be differentiable. There are two other
necessary conditions. The first is the (topological) four-term relation:
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)
= 0.(T4T*)

Convention 1.2. A bold dot in a picture indicates a strand which is orthogonal to
the paper and points towards the reader.

The second condition is framing independence:

v
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)

= 0.(FI*)

Theorem 1.3 (Stanford [19]). An invariant v : Lm → Q is δ of a differentiable
invariant v′ : Lm−1 → Q if and only if v satisfies (DIFF*), (T4T*), and (FI*).

We prove an analogous statement for braids in §2.2.3, which should give the idea
of the proof. Mysteriously, these “primary obstructions” to integration may be the
only obstructions. Namely:

Theorem 1.4 ([15, 6], etc.). Suppose v : Lm → Q satisfies (DIFF*), (T4T*), and
(FI*). Suppose further that δkv = 0 for some k. Then v is δm of a link invariant.

The case k = 1 is the fundamental existence theorem for Vassiliev invariants, and
the general case follows easily by induction on k. Three proofs of the fundamental
theorem of Vassiliev invariants, due to Bar-Natan, Kontsevich, and several other
authors, are surveyed in [6]. We would like to know if this result can be explained
directly in terms of the topology of the stratification of Maps(

∐
n S

1,R3). (Here we
have been inspired by [2, 7, 22].) In this case we might expect the following more
general statement to be true.

Conjecture 1.5. An invariant v : Lm → Q of singular links satisfying (DIFF*),
(T4T*), and (FI*) is δm of a link invariant.

This conjecture remains stubbornly open (although “half” of it is proved in [24]).
This does not follow from Theorem 1.3 because it is not clear whether v1 can be
chosen to again satisfy the integrability conditions.

1.2. The main result. In this paper we prove the analogue of Conjecture 1.5 for
braids.
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Theorem 1.6 (Main result, proved in §2.2.3). Let G be any abelian group. Let v
be a G-valued invariant of singular braids with m double points. Then there exists
a braid invariant w with δmw = v if and only if v satisfies (DIFF*) and (T4T*).
In this case there is an explicit procedure for finding all such w (§5).

Here by “braids” we mean pure braids with n strands for some fixed positive
integer n. See §2.2 for precise definitions. (An analogue of Theorem 1.6 for non-pure
braids follows trivially.)

An analogue of the fundamental theorem of Vassiliev invariants is known for
braids, and this implies Theorem 1.6 when δkv = 0 for some k. This is a large
fraction of the cases, because Vassiliev invariants separate braids [4]. (In fact an
analytic construction of the Vassiliev invariants of braids, and a proof that they
separate braids, were known before Vassiliev invariants were invented, under a
different name [13].)

We prove Theorem 1.6 by a direct construction, using induction on m. Although
the theorem is only a slight generalization of what was already known, we feel that
the proof clarifies the difficulties in this naive approach to integrating invariants.
One might try to carry out this procedure in contexts outside of knot theory (cf.
§§2.1, 3.1.3). In §§2.3.1, 2.3.2 we find that the key to proving Theorem 1.6 or
Conjecture 1.5 this way is to show that every relation among four-term relations
satisfies a certain geometric condition.

Some basic relations among four-term relations are described in §2.4; these have
a natural interpretation in terms of the stratification of the space of immersions (see
§3.2). To find the remaining relations among four-term relations, we are reduced to
a difficult problem in the combinatorics of “chord diagrams”. As Bar-Natan points
out, the task can be interpreted as computing H1 of an analogue of Kontsevich’s
graph complex. We can solve this problem for braids because there is a “sorting”
process which gives us control over the combinatorics, explained in §4. We find
that H1 = 0; the geometric significance of this is discussed in §3.3. We do not know
how to attack the corresponding combinatorial problem for links.

One more remark on the proof of Theorem 1.6: the construction works for invari-
ants with values in an arbitrary abelian groupG because the module of “weights” for
braids is free. This is a known result which we end up re-proving (Theorem 2.10(4)).
I think it is unknown whether the module of weights for links is free.

More related open questions and consequences of our results are discussed in §3.

Acknowledgments. Endless thanks to D. Bar-Natan for his encouragement, gen-
erosity, helpful discussions and suggestions. Thanks to S. Garoufalidis, D. Thurston,
and L. Wolfgang for additional helpful conversations. Thanks to the Knotentheorie
conference at Oberwolfach for inviting me to present this paper in September 1995.
After proving Theorem 1.6, I came across an earlier preprint by X-S. Lin [17] giving
a partial proof, and I apologize for any overlap.

2. Integration theory

We want to analyze the obstructions to integrating a singular braid invariant to
a braid invariant. In §§2.1, 2.3.1 we forget the geometry of braids and discuss the
general (rather trivial) algebra underlying the integration process. This will clarify
what we need to do to prove Theorem 1.6. The remaining subsections specialize to
the case of braids.
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2.1. General notation.

Definition 2.1. An integration theory is a sequence

· · · ∂→ Om ∂→ Om−1
∂→ · · · ∂→ O1

∂→ O0

of abelian groups. (We do not assume ∂2 = 0.) Typically,

• O0 is the free Z-module on a set of objects which we would like to study.
• Om is the free Z-module generated by “m-singular” objects (sometimes mod-

ulo some relations, or with some extra structure).
• ∂ of an m-singular object x is a difference between, or other combination of,

some (m− 1)-singular objects “near” x.

A more complicated algebraic structure might be interesting, for example for
links with singularities other than double points, but this simple definition will
suffice for this paper.

Fix an abelian group G, and let O∗
m := Hom(Om, G). This is the module of

invariants of m-singular objects. Let δ := ∂t : O∗
m → O∗

m+1; this map is “differen-
tiation” of invariants. We want to understand how to invert this process. For this
purpose, some basic modules to understand are:

Definition 2.2. If (O∗, ∂) is an integration theory, define:

1. COm := Om/∂Om+1. This is the module of “integration constants”. Let
π : Om → COm be the projection.

2. POm := Ker(∂|Om): the “primary integrability conditions” that an element
of O∗

m must annihilate in order to “integrate one step” to (i.e. be δ of) an
element of O∗

m−1.

3. SOm := Ker(∂2|Om)/POm: the secondary obstructions to integration,
modulo the primary ones.

4. WOm := COm/π(POm): the module of weights.
5. FOm := Ker(δm+1|O∗

0): the finite type invariants of order ≤ m.

Exercise 2.3 (to get used to the notation). There is a well-defined injection

δm : FOm/FOm−1 → (WOm)∗,

which is an isomorphism (at least over Q) if SOm/∂kOm+k = 0 for all m, k.

The concern of this paper is determining when SOm vanishes completely.

2.2. Integration theory for braids.

2.2.1. Setup. We define an integration theory for braids as follows. Fix a positive
integer n and fix n distinct points b1, . . . , bn ∈ R2.

Definition 2.4. A (pure) singular braid with m double points (and n strands)
consists of n smooth maps fi : [0, 1] → R2 such that

• fi(0) = fi(1) = bi.
• The graphs of the fi’s in [0, 1]× R2 are disjoint, except for m double points.
• At each double point, the two tangent vectors are distinct.

We draw a singular braid as the union of the graphs of the fi’s in R2 × [0, 1].
Later we sometimes use the term “singular braids” to refer to braids with more
complicated singularities than double points, but Definition 2.4 is the default.
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Definition 2.5. Let Bm be the free Z-module generated by isotopy classes of sin-
gular braids with m double points, modulo the differentiability relation
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This relation has four terms, each with two neighborhoods shown, and the two
neighborhoods do not have to be at the same “height”. The arrows indicate the
orientations on the strands of the braid coming from the orientation on [0, 1].

Definition 2.6. Define ∂ : Bm → Bm−1 by

∂

(
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@
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��
.

This means that to evaluate ∂ of a singular braid, we choose one of the m double
points and subtract the two different ways of resolving it. The result does not
depend on the choice of double point because we modded out by (DIFF).

2.2.2. Diagrams and relations. Having defined the integration theory (B∗, ∂), we
will now describe the modules C,P, S,W of Definition 2.2 in this case. To state the
result (Theorem 2.10), we need to introduce a certain algebra of diagrams.

Definition 2.7. Let D∗,∗ be the bigraded algebra over Z generated by elements tij
(1 ≤ i 6= j ≤ n) of bidegree (0, 1) and rkij (i, j, k ∈ {1, . . . , n} distinct) of bidegree
(1, 2) with the relations

tij = tji,

[tij , tkl] = 0 (i, j, k, l distinct),

rkij = rkji

[tij , r
q
kl] = 0 (i, j, k, l, q distinct).

A monomial in the tij ’s is called a chord diagram. A chord diagram ti1j1 · · · timjm
is sorted if iα < jα and j1 ≤ j2 ≤ · · · ≤ jm. (The rkij ’s will be needed in §2.3.2.)

Definition 2.8. Define π′ : Bm → D0,m as follows. Let x be a singular braid with
m double points, described by maps fi : [0, 1] → R2. Suppose that at “heights”
y1 < · · · < ym, we have fiα(yα) = fjα(yα) with iα 6= jα. (In general we perturb x
to make the yα’s distinct.) Then

π′(x) := ti1j1 · · · timjm .
Pictorially,

π′ :
�
���

@
@@I

i j

7−→ tij ,

where stacking of double points from bottom to top corresponds to multiplication
of tij ’s from left to right.

Definition 2.9. A topological four-term relation is an element of Bm of the
form
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@@I s .(T4T)

(Cf. Convention 1.2; R2 × [0, 1] is rotated a bit here.)
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2.2.3. The main structure theorem.

Theorem 2.10. 1. There is an isomorphism ı : CBm → D0,m with ı ◦ π = π′.
(Henceforth we identify CBm with D0,m and π with π′.)

2. PBm is the span of the (T4T) relations.
3. (proved in §2.4) SBm = 0.
4. WBm is the free abelian group generated by sorted chord diagrams.

Remark 2.11. Part (1) is well known and asserts that a basis for the integration con-
stants for braids is given by chord diagrams. (2) is the braid analogue of Stanford’s
Theorem 1.3 and asserts that the primary obstructions to integrating a singular
braid invariant are the (DIFF) and (T4T) relations. (3) is the hard part of this pa-
per and asserts that the primary obstruction to integration is the only obstruction.
(4) is nontrivial but known (see e.g. [9]), and a new proof will fall out in §4.2.

Proof of Theorem 1.6. By Definition 2.5 and Theorem 2.10(2), the hypothesis in
Theorem 1.6 implies that v is well defined on Bm and annihilates PBm. By Theo-
rem 2.10(3), ∂ : Bm/PBm → Bm−1/PBm−1 is well defined. The sequence

0 −→ Bm
PBm

∂−→ Bm−1

PBm−1

π−→WBm−1 −→ 0

is exact. By the freeness assertion in Theorem 2.10(4), the dual sequence is also
exact. Hence v = δv′, where v′ : Bm−1 → G annihilates PBm−1. We are done by
induction on m.

Proof of Theorem 2.10(1). It suffices to show:

1. π′ is well defined modulo (DIFF).
2. π′ ◦ ∂ = 0.
3. If x and y are singular braids with π′(x) = π′(y), then x−y is ∂ of something.

Parts (1) and (2) are easy. To prove (3), note that if π′(x) = π′(y), then there is a
path γ, in the space of singular braids, from x to y (since R2 is simply connected).
If γ is generic then γ(t) has only m double points, except for finitely many times
ti at which γ(ti) has m+ 1 double points. Let

Φ(γ) :=
∑
i

±γ(ti),

where the sign is + if γ crosses from
�
���

@

@I
to

@
@@I

�

��
and − otherwise. Then

x− y = ∂Φ(γ).

Proof of Theorem 2.10(2) (sketch). To see that a (T4T) relation is in PBm, i.e.
that ∂ annihilates it, in each of the four terms apply Definition 2.6 to the double
point involving the strand orthogonal to the paper. Everything cancels.

Conversely, PBm is spanned by elements of the form Φ(γ) where γ is a loop. We
need to show that Φ(γ) is a sum of (T4T) relations. Since R2 is contractible, we can
homotope γ to a constant loop. If we choose this homotopy generically, then only
the following “codimension m+ 2 events” can happen for an isolated intermediate
path γ in our homotopy:

1. At some time t, γ(t) has m+ 2 double points.
2. At some time t, γ(t) has m− 1 double points and one triple point.
3. At some time, γ arrives at a singular braid with m+1 double points but then

“bounces back” instead of “passing through”.
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4. At some time t, one of the double points in the singular braid γ(t) has both
tangent vectors parallel.

In our homotopy of paths, an event of type (1) causes Φ(γ) to change by a (DIFF)
relation. An event of type (2) causes Φ(γ) to change by a (T4T) relation. An event
of type (3) does not change Φ(γ). An event of type (4) occurs when the “rotation”
of a double point during the path γ (which is an element of π1(S

1)) changes by ±1
as we homotope γ. This causes Φ(γ) to change by a difference of two terms which,
after a little twisting, are seen to be equal. At the end of the homotopy, Φ(γ) = 0,
so at the beginning of the homotopy, Φ(γ) is a sum of (T4T) relations.

2.3. The secondary obstruction to integration.

2.3.1. Generalities. Return to a general integration theory (O∗, ∂). When is the
secondary obstruction SOm = 0? One can see by plugging through the definitions
that

SOm+1 = 0 ⇔ Ker(π|POm) = 0.

We need to understand the primary obstructions POm. Often there will be a
natural set of generators for POm, although we might not know the relations. So
if GOm is the free abelian group on these generators, we have a surjection

GOm ψ→ POm → 0.

The above observation now gives:

Lemma 2.12. SOm+1 = 0 ⇔ Ker(πψ) = Ker(ψ) in GOm.

The Point 2.13. When integrating one step, to choose the integration constants
(in (COm)∗) so that the primary integrability conditions are again satisfied, we
have to solve a system of inhomogeneous linear equations (parametrized by GOm).
This can be solved (at least over a field) iff whenever a linear combination of the
l.h.s.’s vanishes (i.e. whenever we have an element of Ker(πψ)), the corresponding
combination of r.h.s.’s also vanishes (i.e. is in Ker(ψ)).

2.3.2. The case of braids. With the preceding as a guide, we want to prove Theo-
rem 2.10(3), asserting that the secondary obstruction SBm vanishes. In the case of
braids, our generators for PBm are (T4T) relations.

Definition 2.14. Let GBm be the free abelian group generated by singular braids
such that:

• There are m− 2 double points and one triple point.
• At each double point, the two tangent vectors are distinct.
• At the triple point, the three tangent vectors are linearly independent in

R2 × [0, 1].
• At the triple point, one of the three strands is distinguished.

Define ψ : GBm → PBm by

ψ

(
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���

@
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s −

�
���

@
@@I s −

�
���

@
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where the strand orthogonal to the paper is distinguished.

By Lemma 2.12, to prove Theorem 2.10(3), we need to prove Ker(πψ) = Ker(ψ).
This condition, in words, says:
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Every relation among four-term relations at the level of chord diagrams
also holds at the level of geometry (modulo (DIFF)).

There are some trivial relations among relations which we can dispense with
immediately. We can define a map π : GBm → D1,m by analogy with Definition 2.8,
with the additional stipulation that a triple intersection of strands i, j, k, with the
kth strand distinguished, is sent to rkij . (In other words, we extend π to an algebra
map from singular braids with double points and marked triple points to D∗,∗.)

Lemma 2.15. ψ descends to D1,m, i.e. we have a commutative triangle

GBm
π

��

ψ
// PBm

D1,m.

ρ

;;
v
v
v
v
v
v
v
v
v

Proof. We need to check that if x and y are two generators of GBm and π(x) = π(y),
then ψ(x) = ψ(y). If π(x) = π(y), there is a homotopy from x to y passing through
braids with one extra double point. When we pass through such a braid the value
of ψ is unchanged, because

ψ

(
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= 0.

When the three strands at the triple points in x and y are oriented differently,
our homotopy must also pass through a singular braid with m − 2 double points
and one triple point in which the tangent vectors to the three strands lie in a single
plane. So we need to check that

ψ


�
�
��>

Z
Z

ZZ} 6
f

b

 = ψ


�
�
��>

Z
Z

ZZ} 6
b

f


in Bm0 . (Here the distinguished strand of the triple point has points on it labeled
‘f’ and ‘b’ for ‘front’ and ‘back’ of the page, and the other two strands are in the
plane of the page.) This is an exercise using (DIFF).

Conclusion. To prove Theorem 2.10(3), we must show that Ker(πρ) = Ker(ρ). (For
a repackaging via the snake lemma of the algebra which led us here, see [6].)

2.4. Relations among four-term relations are geometric. We will now com-
plete the proof of Theorem 2.10(3), modulo a combinatorial lemma whose proof is
deferred to §4.2.

First observe that πρ : D1,∗ → D0,∗ is the map obtained by sending

tij 7−→ tij ,

rkij 7−→ [tij , tik + tjk],

and extending multiplicatively. Here are some elements of Ker(πρ).

3T: x(rijk + rjki + rkij)y with x, y arbitrary chord diagrams.

8T: (πρx)y − x(πρy) with x, y ∈ D1,∗ arbitrary.
14T: x([tik + tjk + tkl, r

l
ij ] + [tij, r

k
il + rkjl] + [rkij , til + tjl])y with x, y arbitrary

chord diagrams.
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Notation 2.16. Let D2,∗ ⊂ D1,∗ denote the span of the above elements (not the
(2, ∗) graded piece of the algebra D∗,∗). Let Dj := Dj,∗. Let d : D2 → D1 be the
inclusion. Let d : D1 → D0 be the map πρ. Clearly d2 = 0 : D2 → D0.

Lemma 2.17 (proved in §4.2). H1(D∗, d) = 0.

Proof of Theorem 2.10(3). By Lemmas 2.12, 2.15, and 2.17, it is enough to show
that ρ annihilates (3T), (8T), and (14T). By Lemma 2.15, for each of these rela-
tions we just have to choose a convenient lift (under π) in GBm and check that ψ
annihilates it.

(3T) Let z be a braid with a triple point lifting the first term in (3T), i.e. z ∈ GB∗
and π(z) = xrijky. We can lift the other two terms in (3T) by starting with z but
distinguishing the other two strands of the triple point. When we apply ψ to the
sum of these three lifts, we obtain a sum of twelve terms. From z one can make
six different singular braids by sliding apart two of the strands of the triple point
along the third strand. Each of these appears twice in the sum, with opposite sign.
Hence ψ of our lift of (3T) vanishes.

(8T) Let x̃, ỹ ∈ GB∗ be lifts of x, y. Then ψ(x̃)ỹ− x̃ψ(ỹ) is a lift of (dx)y−x(dy),
because πψ = dπ. But

ψ((ψx̃)ỹ − x̃(ψỹ)) = ψ(x̃)ψ(ỹ)− ψ(x̃)ψ(ỹ) = 0.

(14T) Let z be a singular braid with a quadruple point at which strands i, j, k, l
intersect. For a suitable choice of z, we can represent each of the terms in (14T) by
starting with z and sliding one strand of the quadruple point apart from two other
strands along the fourth.

Let us choose z so that {vi, vj , vl} is a positively oriented basis for R3, and
vk = vi − vj + vl. Then the quadruple point looks like

z =
�
�
���
6
-s

j
l

i

k .

Our geometric representative of (14T) is

�
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���
6
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−
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��

��6

-s −
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��

��6
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�
�
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��6
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�
�
�
��6
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s

+
�
�
�
��6 -s

+
�
�
�
��6 -s

+
�
�
�
��6 -s

+

�
�
�
��6 -s .

Strand l is distinguished in the first six terms, and strand k is distingushed in the
remaining eight.
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The reader may check that ψ of this is a sum of four (DIFF) relations, each of
which looks something like

@@

@@I

�
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��s

+
@@

@@I
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��s

−
@@

@@I

�
�
��s −

@@

@@I

�
�
��s = 0.

3. Discussion and questions

3.1. Other integration theories: a sampler.

3.1.1. Knots and links. One can set up an integration theory (L∗, ∂) for links in R3

with generic double points by analogy with Definitions 2.5, 2.6. The module PLm
was analyzed by Stanford [19] and is spanned by the T4T and FI relations. (The
homotopy argument to prove this works only over Q, or for based links.) The space
WLm has been extensively studied, see e.g. [3, 23]. As far as I know it is an open
question whether WLm is free.

Some new idea is needed to prove SLm = 0 (if it’s true). It seems very difficult to
prove a link analogue of Lemma 2.17 (cf. Open Question 3.6). One might attempt to
avoid this difficulty by expanding the integration theory to include links with more
complicated singularities, but I do not know how to circumvent the fundamental
problem of determining relations among relations (to solve inhomogeneous linear
equations); at best, one might replace the four-term relation on chord diagrams
with the equally insidious IHX relation on Chinese characters (defined in [3]).

Open Question 3.1. Does Theorem 1.6 extend to closed braids (braids modulo con-
jugation)? These might be intermediate in difficulty.

3.1.2. IHS’s. For other integration theories, the secondary obstructions might not
be the most interesting thing to study. For example, following Ohtsuki’s work
[18] one can set up an integration theory (I∗, ∂) for integral homology 3-spheres
(IHS’s). Im is generated by IHS’s with m-component algebraically split framed
links (ASL’s), modulo some relations, and ∂ of a generator takes the difference
between doing surgery on, or deleting, a link component. There is an interesting
theory of finite type invariants [16, 5], even though the secondary obstructions SI∗
are far from zero; WIm is isomorphic to the free Z-module generated by the set
(∧3Zm)∗ modulo signed permutations (the isomorphism sends an ASL to the set
of its Milnor triple linking numbers), while FIm/FIm+1 is zero when m is not a
multiple of 3, and a finite-dimensional vector space when 3|m [10, 11].

3.1.3. Replacing the braid group with an arbitrary group. The integration theory of
braids in this paper has a generalization in which the braid group is replaced by
an arbitrary group G. Let I ⊂ Z[G] be the augmentation ideal (the set of sums∑
g ag · g ∈ Z[G] such that

∑
g ag = 0).

Definition 3.2. For any group G, let G0 := Z[G], and

Gm := I ⊗Z[G] · · · ⊗Z[G] I︸ ︷︷ ︸
m I’s

for m > 0. Define ∂ : Gm → Gm−1 by

∂(x1 ⊗ · · · ⊗ xm) := x1x2 ⊗ x3 ⊗ · · · ⊗ xm.
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(Note that to evaluate ∂(x1⊗ · · · ⊗ xm), we can multiply any two adjacent xj ’s, by
the definition of tensor product.)

If G is the group of pure braids on n strands, then (G∗, ∂) is almost the same as
(B∗, ∂). More precisely:

Definition 3.3. A noncommutative singular braid is a singular braid in which
no two double points are at the same height (i.e. the same [0, 1] coordinate).

Let (B̃∗, ∂) be the free Z-module generated by isotopy classes of noncommutative
singular braids, modulo (DIFF), with ∂ as in Definition 2.6.

There is an isomorphism i : (B̃∗, ∂) → (G∗, ∂). If b is a singular braid with one
double point, define i(b) := ∂b ∈ I (where ∂ here is as in Definition 2.6). If b has m
double points, write b as a product (i.e. a stacking) b1 · · · bm where each bi has one
double point, and define i(b) := i(b1) ⊗ · · · ⊗ i(bm). This does not depend on the
choice of product decomposition by the definition of tensor product. The inverse
map is well defined by the differentiability relation.

What is PGm? For any G, there is an obvious submodule OGm ⊂ PGm, spanned
by expressions a ⊗ (b ⊗ c − c ⊗ b) ⊗ d such that b, c ∈ I commute and a ∈ Gj , d ∈
Gm−2−j . On the other hand, when G is the braid group, it is easy to see that (i of)
the T4T relation, and also the relation that an invariant must annihilate in order
to not change when the heights of two double points cross, are in OGm. Hence
Theorem 2.10(2),(3) has the following corollary:

Theorem 3.4. If G is the group of pure braids on n strands, then

Ker(∂m : Gm → Z[G]) = OGm.
Open Question 3.5. For what other groups is this true? What is its significance?

3.2. The role of the stratification. Suppose we have an invariant of braids with
m double points which we want to integrate. Then we have the following intuitive
picture.

(a) The integrability conditions (DIFF*) and (T4T*) come from neighborhoods,
in the closure of the space of immersions with m double points, of immersions with
a codimension m+ 1 singularity.

The differentiability relation comes from a loop around a braid with m+1 double
points. The (T4T*) relation comes from a loop around a braid with m− 2 double
points and one triple point.

(b) The relations among four-term relations, aside from the rather trivial (3T)
relation, come from neighborhoods of immersions with codimension m + 2 singu-
larities.

The (8T) relation comes from a neighborhood of a braid with m − 4 double
points and two triple points, while (14T) comes from a neighborhood of a braid
with m−3 double points and one quadruple point. (Note that a generic intersection
of multiplicity k contributes 2k− 3 to the codimension.) All other relations among
relations coming from quadruple points are generated by (14T) and (3T) relations,
by Lemma 4.5. Other codimension m + 2 singularities contribute relations among
(T4T) relations which project to zero at the level of diagrams.

The (3T), (8T), (14T) relations have analogues for links, as should be clear from
the geometric representatives we have given in §2.4.
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Open Question 3.6. Do the analogues of the (3T), (8T), and (14T) relations gen-
erate all relations among four-term relations (at the level of chord diagrams) for
links?

If so, then Theorem 1.6 holds, at least over Q. (At first glance this only implies
that an invariant v of singular links satisfying (T4T*), (DIFF*), and (FI*) can be
integrated one step to an invariant v′ satisfying (T4T*) and (DIFF*). But it is not
hard to “correct” v′, without changing its derivative, so that it satisfies (FI*) too;
the (FI*) relation is easy to arrange because it only has one term.)

Generalizing in another direction, Stoimenow [20] has raised:

Open Question 3.7. For braids or links, is there a free resolution

· · · d→ E2
d→ E1

d→ E0 = W

of the module of weights such that Ek comes from neighborhoods of codimension
m+ k strata (in which at most k + 1 double points from an object with m double
points come together)?

3.3. Connection with graph cohomology. Let (D̃∗, d̃) be the following com-

plex: D̃0, D̃1 are the link analogues of D0, D1; but D̃2, instead of being a submodule
of D̃1, contains one generator for each (3T), (8T), or (14T) relation. The differ-

ential d̃ : D̃1 → D̃1 is the link anologue of d, and d̃ : D̃2 → D̃1 sends a generator
to the corresponding (3T), (8T), or (14T) relation. If we can prove H1(D̃∗) = 0,
then Conjecture 1.5 follows. Bar-Natan has suggested that this complex should be
related to Kontsevich’s graph complex.

The relevant version of Kontsevich’s complex is the following. Call a graph
Γ, with vertices V (Γ) and edges E(Γ), admissible if: (a) Γ has one connected
component; (b) there are n disjoint labeled oriented cycles; (c) there are no multiple
edges or edges connecting a vertex with itself; (d) each vertex has degree ≥ 3; (e)
there is an orientation on the space RE(Γ)⊕H1(Γ; R). Let Ki be the free Z-module
generated by admissible graphs such that

∑
v∈V (Γ)(deg(v)−3) = i. We impose the

relation that switching the orientation on a graph is the same as multiplying it by
−1. The coboundary δK : Ki → Ki+1 sends a graph Γ to the sum over all e ∈ E(Γ)
of the graph obtained by contracting the edge e, with an induced orientation. We
throw out any inadmissible graphs that appear in this sum.

The interest of this complex is that there is a map from admissible graphs to
differential forms on the space of links,

Q : K∗ → Ω∗
(

Emb

(∐
n

S1,R3

))
(defined by integration over configuration spaces) which, modulo possible “anom-
alies”, is a chain map [14, 8]. In particular H0(K∗) = (WL)∗, and the transpose
of Q in degree zero contains the Vassiliev invariants of links [21, 1].

We have realized Bar-Natan’s suggestion to the following extent. Let Ki := Ki

and let dK : Ki → Ki−1 be the adjoint of δK , where the inner product of two
graphs is the number of isomorphisms between them. Thus dK(Γ) sums over all
ways of splitting a high degree vertex of Γ into two lower degree vertices and adding
an edge between them, e.g.

@
@

@

�
�
�

7−→ ± ��
�

HH
H

±
J
J
JJ
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Q

Q
QQ
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.
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Theorem 3.8. There is a (nontrivial) chain map D̃∗ → K∗.

Proof. (suppressing orientations) We map D̃0 → K0 in a standard fashion. The n
distinguished cycles correspond to the link components, and for each double point
we add an edge.

To show the higher degree maps, we restrict to the case n = 1 for artistic
purposes, and draw a piece of the distinguished cycle as a horizontal line. In degree
1, we send a four-term relation to an expression of the form

-

'$�� + -

'$�� .

In degree 2, we send a (3T) relation to zero. We send an (8T) relation to an
expression of the form

-

'$�� '$�� + -

'$�� '$��
+ -

'$��'$�� + -

'$��'$��.
We send a (14T) relation to an expression of the form

-

'$���� + -

'$���� + -

'$����
+ -

'$���� + -

'$����+ -

'$����.
(This is the case where strands i, j, k, l appear in order from left to right on the
horizontal line. There is not supposed to be a vertex where the two semicircles
cross in the third term.) It is straightforward but tedious to check that this is a
chain map, and to fill in the orientations.

If there is actually an isomorphism in homology, then we have:

Dichotomy 3.9. If H1 = 0, then integration works well. If H1 6= 0, then there
should be interesting invariants of 1-parameter families.

Our result that H1(D∗) = 0 for braids is perfectly consistent with this, because
there are no 1-parameter families of braids: π1 of the space of braids equals π2

of the space of distinct n-tuples of points in R2, which is easily shown to vanish.
Hatcher [12] has shown that for non-satellite knots, π1 is generated by loops of
reparametrizations. This suggests that for links, H1 is not very large.

3.4. Comparison with the Kontsevich integral. The “universal” case of The-
orem 1.6 is when G = Bm/PBm and v : Bm → G is the projection. We can use
Theorem 1.6 to integrate this to a (nonunique) braid invariantZm : B0 → Bm/PBm.
Let

Z :=
∑
m

Zm : B0 →
⊕
m

Bm/PBm,

where the bar indicates graded completion. The projection

πZ : B0 →
⊕
m

WBm

is an example of a universal Vassiliev invariant for braids, which means that
δm(πZ) equals π plus higher degree terms.
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The Kontsevich integral (for a choice b1, . . . , bn ∈ R2) is another universal Vas-
siliev invariant. It is an algebra map, but it does not have integer coefficients. Al-
though Z has integer coefficients, there does not exist any choice of Zm’s for which Z
is an algebra map. (Proof: if Z is an algebra map then Z1(xy) = Z1(x)y+ xZ1(y)
for all braids x, y. Putting x = y = 1 (the trivial braid), we get Z1(1) = 0.
Since Z1∂ is the identity on B1, Z

1 of an arbitrary braid is the signed sum of
the singular braids one crosses through in deforming it to the trivial braid. Then
Z1(xy) = Z1(x)y + Z1(y), since we can deform xy to the trivial braid by first de-
forming x and then deforming y. So xZ1(y) = Z1(y) for all braids x, y. This easily
gives a contradiction.)

4. Proof that H1 vanishes

We will now prove Lemma 2.17, giving the relations among four-term relations at
the chord diagram level. Our list of generators for relations arises as follows. First,
we show that aside from “trivial relations” and the 3-term relation, all relations
among relations are generated “in degree 3”. We can then find all degree 3 relations
by a mechanical process.

4.1. An enlarged algebra of diagrams. We begin by defining a complex T∗
which is like D∗ except that we drop the assumption that [tij , tkl] = 0 for i, j, k, l
distinct and put this commutativity relation on an equal footing with the four-term
relation. We will determine all relations among four-term relations and commuta-
tivity relations, and then mod out by commutativity to recover Lemma 2.17.

The algebra T∗,∗ is generated by symbols tij , r
k
ij , c

kl
ij of bidegrees (0, 1), (1, 2),

(1, 2) respectively, where i, j, k, l ∈ {1, . . . , n} are distinct. We impose the relations

tij = tji,

rkij = rkji,

cklij = cklji = −cijkl.
Let T0 := T0,∗, T1 := T1,∗, and define d : T1 → T0 by sending

tij 7−→ tij ,

rkij 7−→ [tij , tik + tjk],

cklij 7−→ [tij , tkl],

and extending multiplicatively.
Let T2 be the submodule of T1 generated by expressions xqy where x, y ∈ T0 and

q is one of the following relations among relations.

Trivial relation: (dg)g′ − gdg′ with g, g′ ∈ T1 arbitrary.

3T: rijk + rjki + rkij with i, j, k distinct.

Jacobi: [tii′ , c
kk′
jj′ ] + [tjj′ , c

ii′
kk′ ] + [tkk′ , c

jj′
ii′ ] with i, i′, j, j′, k, k′ distinct.

10T: [tij , r
q
kl]− [tlq, c

kl
ij + ckqij ]− [clqij , tkl + tkq] with i, j, k, l, q distinct.

22T: [tik + tjk + tkl, r
l
ij ] + [tij , r

k
il + rkjl − cjlik − ciljk] + [rkij + cklij , til + tjl] with

i, j, k, l distinct.

Observe that the 22-term relation is just the 14-term relation with commutativity
relations cklij thrown in as necessary to make it work in the noncommutative case. In
the same way the 10-term relation corresponds to the last relation of Definition 2.7.

Let d : T2 → T1 be the inclusion.
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Theorem 4.1. H1(T∗) = 0.

4.2. Sorting. The strategy for the proof of Theorem 4.1, motivated by Theo-
rem 2.10(4), is to sort everything in sight. To make the calculations more digestible,
one can draw pictures of chord diagrams in the following standard manner. We
draw n vertical lines corresponding to the strands. To represent the chord diagram
ti1j1 · · · timjm , we draw a horizontal line between strands i1 and j1, above that
we draw a horizontal line between strands i2 and j2, and so forth. For example,

t23t13t24 = is a typical sorted diagram, and t23t12 = is unsorted.

To prepare for sorting, we order the chord diagrams as follows. Define the
disorder of a chord diagram ti1j1 · · · timjm with iα < jα to be the number of pairs
(α, β) with α < β and jα > jβ . We define the gravity of the chord diagram to
be
∑m
α=1 jα. A diagram with disorder zero, or with the maximum gravity mn, is

clearly sorted. If x and y are two chord diagrams, we say that x is neater than y,
and y is messier than x, if either x has higher gravity than y, or x and y have the
same gravity but y has higher disorder.

We say that a relation xrijky, where x and y are chord diagrams and j < k, is a
sorting relation if:

• i < k.
• The chord diagram tijy is sorted.

We say that a relation xcijkly, where x and y are chord diagrams, i < j, and k < l,
is a sorting relation if:

• j < l.
• The chord diagram tijy is sorted.

In d of each sorting relation, there is one term which is messier than the others.

For example, dr123 relates the messy diagram t23t12 = to sorted diagrams:

dr123 = − − + .

More generally we have the following lemma, which already implies (by induction)
the easy part of Theorem 2.10(4) (that sorted diagrams span H0).

Lemma 4.2. For each unsorted chord diagram x, there is a unique sorting relation
y such that dy equals ±x plus a combination of neater chord diagrams.

Proof. Write x = ti1j1 · · · timjm with iα < jα. If x is unsorted, we can find α such
that jα > jα+1. Let α be as large as possible. To see that there exists such a
sorting relation, we check three cases:

Case 1. iα, jα, iα+1, jα+1 are distinct. Then

y = ti1j1 · · · tiα−1jα−1c
iα+1jα+1

iαjα
tiα+2jα+2 · · · timjm

is a sorting relation that relates x to a chord diagram with the same gravity and
with the disorder decreased by one.

Case 2. iα = iα+1. Then the sorting relation

y = ti1j1 · · · tiα−1jα−1r
jα+1

iαjα
tiα+2jα+2 · · · timjm

relates x to one chord diagram with the same gravity and disorder one smaller, and
two chord diagrams with higher gravity.
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Case 3. iα = jα+1. Similarly to Case 2, this time we take

y = ti1j1 · · · tiα−1jα−1r
iα+1

iαjα
tiα+2jα+2 · · · timjm .

We leave the uniqueness as an exercise.

Let S0, S1 denote the span of the sorted diagrams and sorting relations, respec-
tively. Let U0 denote the span of the unsorted diagrams.

Corollary 4.3. If we restrict d : T1 → T0 to S1 and project to U0, we get an
isomorphism S1 → U0.

Proof. An upper triangular matrix with invertible diagonal entries is invertible.

Lemma 4.4. Relations of the form xgy, where x ∈ T0, g = rijk or g = cklij and

y ∈ S0, span T1/dT2.

Proof. Let x, z ∈ T0 and let g = rijk or g = cklij ; we need to show that xgz is
equivalent modulo dT2 to relations of the desired type. By Corollary 4.3 we can
write

z = dw + y,

where w ∈ S1 and y ∈ S0. Modulo d of a “trivial relation” in T2,

xgz = xg(dw + y) ≡ x(dg)w + xgy.

The r.h.s. is a combination of relations of the required type.

The proofs of Lemmas 4.2 and 4.4 are reminiscent of arguments in [17].

Lemma 4.5. Sorting relations span T1,3/dT2,3.

Proof. This is a tedious calculation which we merely summarize here.
First, we can use the (3T) relation to express any four-term relation rijk with

i > max(j, k) in terms of four-term relations with i < max(j, k). After doing this,
there are five kinds of generators of T2,3 that are not sorting relations.

(a) Four-term relation involving four strands, e.g. r134t12. The (22T) relation,
with i = 4, j = 3, k = 2, l = 1, relates this to a combination of sorting relations.
There are three other four-term relations on four strands that are not sorting re-
lations, up to order-preserving reindexing, and appropriate (22T) relations relate
these to sorting relations in the same way.

(b) Commutativity relation involving four strands, e.g. c2314t12. The (22T) rela-
tion with i = 1, j = 4, k = 2, l = 3, plus the (22T) relation with i = 1, j = 4, k =
3, l = 2, together with two (3T) relations, relate this to sorting relations. There
is one other commutativity relation on four strands that is not a sorting relation,
namely c1324t12, and we handle this the same way with 1, 2 switched.

(c) Four-term relation involving five strands, e.g. r145t23. The (10T) relation,
with i = 2, j = 3, k = 1, l = 4, q = 5, relates this to a combination of sorting
relations. There are three other four-term relations on five strands that are not
sorting relations, up to order-preserving reindexing, which we handle similarly using
appropriate (10T) relations.

(d) Commutativity relations involving five strands, e.g. c1345t12. The (10T) rela-
tion, with i = 4, j = 5, k = 2, l = 1, q = 3, relates this to sorting relations. The
other relations of this type are handled by similar (10T) relations.

(e) Commutativity relations involving six strands, e.g. c3456t12. The “Jacobi
identity” relates a relation of this type to sorting relations.
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Lemma 4.6. The sorting relations span T1/dT2.

Proof. By Lemma 4.4 it is enough to show that if y is a sorted diagram and g = rijk
or g = cklij , then gy is equivalent modulo dT2 to a sum of sorting relations. We will
do this by induction on deg(y).

The base case y = 1 is trivial, so assume y = tijz, i < j. By Lemma 4.5

gy = gtijz ≡ wz (mod dT2),

where w ∈ T1,3 ∩ S1. There are two kinds of terms in wz. Terms of the form
ti′j′g

′z are equivalent modulo T2 to elements of S1 by the inductive hypothesis,
since deg(z) = deg(y)− 1. Terms of the form g′ti′j′z are already in S1 except when
ti′j′z is not sorted.

If ti′j′z is not sorted, and say i′ < j′, then j′ > j (since y = tijz is sorted),
so ti′j′z has higher gravity than y. By Lemma 4.2 we can write ti′j′z = dw′ + y′,
where w′ ∈ S1 and y′ is a combination of sorted diagrams with higher gravity than
y. Using the “trivial relations”, as in Lemma 4.4 we have

g′ti′j′z = g′(dw′ + y′) ≡ (dg′)w′ + g′y′ (mod dT2).

Now (dg′)w′ ∈ S1, while in g′y′ every diagram in y′ has higher gravity than y (and
the same degree). A sub-induction on gravity takes care of these terms.

Proof of Theorem 4.1. By Lemma 4.6, any homology class in H1(T∗) can be rep-
resented by an element α ∈ S1. By Corollary 4.3, the restriction of d to S1 is
injective. Therefore α = 0.

Proof of Lemma 2.17. There is a chain map f : T∗ → D∗ which sends the c’s to
zero. This map is surjective at the level of chains.

Suppose α ∈ D1 and dα = 0. Choose β ∈ T1 with f(β) = α. Since f(dβ) = 0 in
D0, we can arrange that dβ = 0 in T0 by adding some monomials containing c’s to
β. Then by Theorem 4.1, β = dγ for some γ ∈ T2, and α = df(γ).

Proof of Theorem 2.10(4). By Corollary 4.3, any element of T0 is homologous to an
element of S0, which is unique by Lemma 4.6 and Corollary 4.3. Thus H0(T∗) = S0.
By Theorem 2.10(1–2), WB = H0(D∗), which in turn equals H0(T∗).

5. Reprise: the algorithm for integration

Given v : Bm/PBm → G, where G is any abelian group, here is how to find a
(and all) w : B0 → G with δmw = v, and why it works. The procedure is implicit
in [17].

If m = 0, let w := v. Otherwise let B̃∗ be as in Definition 3.3. π lifts to a map
π̃ : B̃m → T0,m. Define v′ : B̃m−1 → G by induction on the messiness of chord
diagrams as follows.

For each sorted diagram in T0,m−1, choose an arbitrary geometric representative

(i.e. lift under π̃) in B̃m−1 and define v′ arbitrarily on this representative. (By
Theorem 2.10(4), this set of choices is isomorphic to WB∗m−1, so we will get all
possible v′.) Extend v′ to all noncommutative singular braids with sorted chord
diagrams by “integration along paths” in the space of singular braids. Since v
satisfies (DIFF*) and (T4T*), this does not depend on the choice of path; cf. the
proof of Theorem 2.10(2).
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For an unsorted diagram x, choose a geometric representative of the sorting
relation that relates x to neater diagrams. (A geometric representative of a com-
mutativity relation consists of a difference of two singular braids near one that
has two double points at the same height.) Define v′ on the associated geomet-
ric representative of x so as to satisfy the geometric relation. Extend v′ to all
noncommutative singular braids with chord diagram x by integration along paths.

The map v′ : B̃m−1 → G satisfies commutativity, so that it descends to Bm−1,
and it satisfies (T4T*). This is because any sorting relation is satisfied by the
previous paragraph and Lemma 2.15, but any other relation is a linear combination
of sorting relations (by Lemma 4.6), even at the level of geometry (by §2.4).

Now δv′ = v and, in particular, v′ is differentiable. Repeat this process with
v := v′.
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