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Please send any questions/comments/corrections to hhao@berkeley.edu.

Note: this study guide is a very condensed version of the course material (which will
still end up being a lot). In particular, most statements won’t be proved, and I won’t spend
space on giving many numerical examples. The goal is rather to give intuition to some of
the more difficult concepts, as well as to show how all of the concepts are interconnected (as
I think the course text manages to make linear algebra seem like a much more disjointed
subject than it actually is). Therefore, most of the below material is in a different order than
presented in the text, and I also don’t guarantee that 100% of the material on the midterm
will be discussed below.

We continue where we left off from Study Guide 11.

1 Bases (abstractly)

We clean up a loose but very important end from the previous study guide. Recall that
the dimension of a vector space V is the size of a basis—all bases of V have the same
finite size, or are infinite, so this makes sense. We will always assume that vector spaces
have finite dimension (there is a theory for infinite-dimensional vector spaces, but it is more
complicated). Of course we will not assume that V is a standard Euclidean space Rn; it is
simply some abstract set of elements (vectors) with the appropriate operations. It will be
important to take this viewpoint of vectors as purely abstract points.

Recall that the intuition for dimension is the “size” of a vector space V , or in other words,
how much “information” is needed to specify a vector in a V . For example, take V = R2.
Then to specify a vector, I need to give two pieces of information: the x and y-coordinates.
This corresponds to the fact that dim(R2) = 2.

We can do the same procedure with other vector spaces. For instance, let V be the
subspace of vectors (x, y, z) ∈ R3 such that x + y + z = 0. Then after fixing a basis, for
instance {(1,−1, 0), (0, 1,−1)} of V , we see that to specify a vector in V , I need to give two
real numbers a and b, so that my choice corresponds to a(1,−1, 0) + b(0, 1,−1).

The key point to emphasize from the previous example is that when you specify a vector
in terms of “coordinates” or “coefficients of a linear combination”, you are also implicitly
choosing a basis. The slight issue with this is that there is no preferred basis for a vector
space; that is, the basis you choose could be different from the basis I choose, so that our
coordinates describing the same abstract vector end up being different. Even in Rn with
its “standard basis”, it’s important to note that this is merely a convenience: there is no
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necessary reason to use this basis instead of any other basis (in fact, as we will later see,there
are many good reasons to not use this basis). The upshot is that:

in the absence of any other context, all bases are made equal.

This means that sometimes you should choose a more convenient basis for a computation
over the “standard” basis. We will see more examples of this in the future.

Example 1.0.1. Consider the vector v = e1 + 2e2 inside R2. Of course, in the standard
coordinates, v has the coordinate representation (1, 2). That is, after choosing the standard
basis as our “coordinate frame of reference”, v is specified by the information (1, 2). But
suppose we chose a new basis {w1, w2} = {e1 + e2, e2}. Then v = w1 + w2, so with this new
basis as our “frame of reference”, v is specified by the information (1, 1). The point is that
if you choose different bases, two different sets of coordinates can define the same abstract
vector.

Example 1.0.2. Here is another example showing that there is no “preferred” choice of
basis. Consider the vector space P3 of polynomials of degree at most 3, and consider the
vector x3+3x2+3x+2. In the basis {x3, x2, x, 1} of P3, our vector has coordinates (1, 3, 3, 2).
But in the alternate basis {(x+1)3, (x+1)2, (x+1), 1}, our vector has coordinates (1, 0, 0, 1),
which is certainly “simpler”.

It is now natural to ask how to “change” coordinates from one basis from another. That
is, suppose we have two different bases {v1, . . . , vn} and {w1, . . . , wn} of a vector space
V . If a vector x ∈ V has coordinates (a1, . . . , an) in the v-basis (by which we mean x =
a1v1 + . . . + anvn), then we want a general procedure to get the coordinates of x in the w-
basis. Since we have to substitute some expressions in terms of the wi’s for each of the vj’s,
what to do is now clear: we should write each vj as a linear combination vj =

∑n
i=1 cijwi,

and then write

x =
n∑
j=1

aj

n∑
i=1

cijwi =
n∑
i=1

(
n∑
j=1

cijaj

)
wi.

In particular, if C is the matrix with entries (cij), then C(a1, . . . , an)T is the vector whose
components give the coordinates of x in the w-basis. This corresponds to the fact that
the operation of “changing coordinates” is linear (this is simultaneously tautological and
a bit confusing, since for the correct interpretation of this statement you would consider
coordinates as a map V → Rn, which is linear).

Example 1.0.3. Let’s look at a particular case of this. What if V = Rn and w1, . . . , wn
is the standard basis e1, . . . , en? Then the matrix C as above is precisely the matrix with
the vi’s as columns, so to transform a vector from v-coordinates to standard coordinates,
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we simply apply that matrix. For instance, suppose V = R2, and {v1, v2} is the basis
{(1, 2)T , (2, 1)T}. Then the vector x with coordinates (1, 1) in the v-basis is[

1 2
2 1

] [
1
1

]
=

[
3
3

]
in standard coordinates. Indeed, 1 · (1, 2)T + 1 · (2, 1)T = (3, 3)T .

WARNING: The method of the above example only works if you are transforming
coordinates from some arbitrary basis to the standard basis. In general, you need to perform
row-reduction, or someting similar, to write the vi’s in terms of the wj’s, but when the wj’s
are the standard basis, this is tautological.

Example 1.0.4. Set V = R2 as above, with {v1, v2} = {(1, 2)T , (2, 1)T} again. This time,
take {w1, w2} = {(4, 2)T , (3, 1)T}. Then v1 = (5/2)w1 − 3w2 and v2 = (1/2)w1. Therefore
the change of basis matrix from v-coordinates to w-coordinates is[

5
2

1
2

−3 0

]
.

Now suppose we know the matrix C to transform from v-coordinates to w-coordinates.
We may ask for the matrix D to transform from w-coordinates to v-coordinates. Keeping in
mind with the general principle that matrices are functions, we see that the matrix D is the
inverse of C: that is, if we apply the matrix C, then the matrix D, we have changed from
v-coordinates to w-coordinates and back, so we should end up where we started. Therefore
D must be the inverse of C! As an application, to change from standard coordinates to
v-coordinates (the opposite of Example 1.0.3), we may alternatively write the vectors of the
basis {v1, . . . , vn} as the columns of a matrix, and then take its inverse to be the desired
change-of-basis matrix.

We will later see more reasons why this point of view is so powerful. For now, we can
introduce a notion that we’ve sometimes been implicitly using, but is important to pin down:

Definition 1.0.5. Two vector spaces V,W are isomorphic (as vector spaces) if there is a
bijective linear map T : V → W ; we call T an isomorphism (between V and W ). We then
write V ∼= W .

This just means that for linear-algebraic purposes, V and W behave the same: there is a
one-to-one and onto function between V and W , so that every v ∈ V is associated to exactly
one vector w ∈ W , such that the vector space structure is preserved. This means that doing
linear algebra in V is the same as doing linear algebra in W , up to a change of coordinates
(given by T ).

The reason we should care about this notion is:
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Theorem 1.0.6. Let V be a finite-dimensional vector space of dimension n. Then V is
isomorphic to Rn.

Therefore, once you know that Euclidean vector spaces Rn, you’ve really met all the
finite-dimensional vector spaces already!

Example 1.0.7. The complex numbers C are a 2-dimensional vector space over R (it has
basis {1, i}), so is isomorphic to R2 as vector spaces.

WARNING: Even after this theorem, it is incorrect to think that it is sufficient to
only work with the Euclidean vector spaces. For instance, even though all 2-dimensional
subspaces of R3 are isomorphic to R2, it often matters very much which specific subspace
we’re working with: the subspace V = {(x, y, 0) : x, y,∈ R} might have very different
properties (in the context of your problem) than the subspace W = {(x, 0, z) : x, z ∈ R}!
So even though V and W have the exact same properties as vector spaces (e.g. it would be
valid to say that 3 distinct vectors in V must be linearly dependent, as that is true for R2),
they are distinct objects inside a larger space and must be treated on an unequal footing
when working inside R3.

2 Rank-Nullity

As an aside from our basis discussion, we mention a very powerful theorem that should have
been included in Study Guide 1.

Consider the following situation: we have a linear transformation T between finite-
dimensional vector spaces V and W . We want to discuss possibilities for T : given some
knowledge about V and W (say, their dimensions), can we tell if T can be injective or sur-
jective? Can we say that certain vectors in V are in the kernel of T , or certain vectors in W
are in the image? If I have a vector w ∈ W in the image of T , how can I “reconstruct” what
vectors in V map to w under T? And most generally, what “information” about V does T
preserve?

Of course, it is very difficult to say anything concretely about this. For instance, there
is always the zero map 0 : V → W that sends everything in V to the zero vector in W ; this
is definitely not injective nor surjective (unless V or W are the zero vector space), and the
map “forgets” a lot above V , since T squashes all vectors in V to a single point. But let’s
consider a more illuminating example:

Example 2.0.1. Consider the map T : R2 → R2 given by (x, y) 7→ (x, 0). Geometrically,
this projects every point in the plane vertically onto the x-axis. Therefore T “remembers”
the data of the x-coordinate, but “forgets” the data of the y-coordinate, since the output
will always have y-coordinate 0. In other words, if we draw vertical lines x = c in the plane
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(draw this picture for yourself!), for each real number c, T only remembers which vertical
line an input point (x, y) is on.

From this geometric picture, we see that the dimension of Im(T ) is 1: we can think of T
as assigning the point (c, 0) to each member {x = c} of a 1-dimensional collection of vertical
lines. The kernel of T is the 1-dimensional line {x = 0}, and this corresponds to T forgetting
one dimension of information: the vertical line. We then have the equality

dim(R2) = 2 = 1 + 1 = dim(ker(T )) + dim(Im(T )),

which is to say: of the original 2 parameters needed to specify a vector in R2, T retained 1
parameter and forgot 1.

This is the intuition for the following theorem:

Theorem 2.0.2 (Rank-Nullity). Let T : V → W be a linear transformation between vector
spaces, where V is finite dimensional. Then

dim(V ) = dim(ker(T )) + dim(Im(T )).

The interpretation is the same as sketched out in the rather pedantic Example 2.0.1: if we
have a linear map T coming from a dimension dim(V ) vector space V , then T has to retain k
dimensions of information (the dimension of Im(T )) and forget l dimensions of information
(the dimension of ker(T )), and the only way this makes sense is if dim(V ) = k + l.

Remark 2.0.3. In the special case when V and W are Euclidean vector spaces, and T :
Rn → Rm is represented by a matrix transformation A (so A is m×n), then the rank-nullity
theorem can be written as

n = dim(N(A)) + dim(C(A)).

The number dim(C(A)) has a special name; it is called the rank of the matrix A. The
number dim(N(A)) is (less commonly) called the nullity, hence the name of the theorem.

From row-reduction, we can check that rank(A) = rank(AT ), even if A is not square.
This is sometimes very useful.

Here is a basic application of the theorem that you already know:

Example 2.0.4. If n < m, there is no surjective map from Rn to Rm, because n =
dim(N(A)) + dim(C(A)) means dim(C(A)) ≤ n < m, so C(A) can never be the full m-
dimensional space. For similar reasons, if n > m, there is no injective map from Rn to Rm,
because dim(C(A)) ≤ m < n, so dim(N(A)) must be strictly greater than 0, and there is a
nonzero vector in N(A).

Here are two trickier examples that display the power of this theorem:
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Example 2.0.5. We claim that there is a nonzero polynomial f(x) of degree at most 2 such

that
∫ 1

0
f(x)ex sin(x)dx = 0 and

∫ 2

1
f(x)ex sin(x)dx = 0. This looks like it has nothing to do

with linear algebra, but notice that the map

g(x) 7→
∫ b

a

g(x)ex sin(x)dx = 0

is linear in the argument g, no matter what the bounds of integration a and b are. We can
then construct the linear map

P2 → R2, g(x) 7→
(∫ 1

0

g(x)ex sin(x)dx,

∫ 2

1

g(x)ex sin(x)dx

)
.

The kernel of this map is precisely the set of polynomials that satisfy the property we want!
But because P2 has dimension 3 and R2 has dimension 2, rank-nullity (Example 2.0.4) shows
that the kernel must be of dimension at least 1; i.e. it must contain some vector other than
the zero vector. This is the polynomial f that we want.

Notice that we never actually wrote down what f is, and it is also impossible (or extremely
difficult) to solve this problem using calculus techniques alone.

Example 2.0.6. Let’s consider the vector space Rm×n of m × n matrices under the usual
operations of matrix addition and scalar multiplication, and v ∈ Rn be a fixed nonzero
vector. Let

W = {M ∈ Rm×n : Mv = 0}
be the subspace of matrices that send v to 0. This is a subspace, and our goal is to compute
dim(W ).

Notice that the map T : Rm×n → Rn given by M 7→ Mv is linear (make sure you
understand what this means! The matrix is now the argument to the map, not the vector!),
with nullspace precisely W . Since v is nonzero, the image of T is all of Rn (convince
yourself why!). Therefore the image of T has dimension n, and dim(Rm×n) is visibly mn
(a basis is given by matrices that have a 1 in some position and zeros elsewhere), so that
dim(W ) = mn− n = m(n− 1) by rank-nullity.

3 Eigen-stuff

Given a random n × n matrix, it is usually very difficult to give a (simple) geometric de-
scription of what it does. On the other hand, giving a geometric description of a diagonal
matrix is very easy: we simply scale each of the axes by the corresponding element on the
diagonal. Likewise, the image of any standard basis vector is a multiple thereof. The goal of
all of the “eigen-stuff” is to generalize this concept. In light of scaling being the key concept,
we define:
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Definition 3.0.1. Let T : V → V be a linear map from a vector space to itself. An
eigenvector of T is any nonzero vector v ∈ V such that Tv = λv for some scalar λ. We
say that λ is an eigenvalue of T and v is a λ-eigenvector (or similar terminology). If λ is
an eigenvalue of T , the subspace of all vectors w ∈ V such that Tw = λw is called the
λ-eigenspace of T .

There are three important things to note about the definition. First, T must be a linear
transformation from a vector space to itself—in the language of matrices, this means that it
only makes sense to talk about eigenvalues when we have a square matrix. Second, to avoid
degenerate cases, we don’t allow 0 to be an eigenvector, since T0 = λ0 for all λ (and we want
each eigenvector to correspond to exactly 1 eigenvector). Third, any scalar multiple2 of an
eigenvector is again an eigenvector with the same eigenvalue. Therefore when we say that
“v is an eigenvalue of T with eigenvalue λ,” we are also implicitly saying that any nonzero
scalar multiple of v satisfies the same.

Remark 3.0.2. In fact, the correct point of view is to consider complex-linear maps of
complex vector spaces—that is, we should be doing linear algebra over the complex numbers
instead of the real numbers, allowing matrices, vectors, and scalars with complex entries.
This ensures that every linear map V → V has the “correct” number of eigenvalues in the
finite-dimensional case (which turns out to be dim(V )), which makes the theory much more
cohesive. In fact, even matrices with real entries can have complex eigenvalues, as we shall
see, so it doesn’t make sense to exclude complex numbers from our discussion, even from the
beginning.

In these notes, to avoid any confusion, I will stick to real eigenvalues and eigenvectors
besides mentioning some examples in passing. However, you should know that the entire
theory for real eigenvalues works in the same way for complex eigenvalues—I will deliberately
be vague about whether I mean real scalars or complex scalars, to emphasize this point. The
book has some strange and very ad hoc discussion on complex eigenvalues in the 2× 2 case
that is not worth repeating here. You should read Section 5.5 of the book for the exam, and
immediately forget it afterwards.

Example 3.0.3. A linear map T : V → V is invertible if and only if it doesn’t have 0 as
an eigenvalue. Indeed, we know that T being invertible is equivalent to it being injective,
and being injective is equivalent to Tv = 0 = 0v only having the zero solution v = 0. Since
the zero vector is never an eigenvector, we conclude that invertibility implies 0 is not an
eigenvalue, and vice versa.

Example 3.0.4. The only eigenvalue of the identity matrix (of any dimension) is 1.

Example 3.0.5. Let V be the vector space of smooth functions, and T the differentiation
operator T : V → V . Then every λ ∈ R is an eigenvalue of T , because the corresponding
eigenvector is eλx.

2From now on, when we say “scalar multiple,” we will usualy mean a nonzero scalar multiple.
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Example 3.0.6. A real-valued matrix need not have any eigenvalues (this is why only
allowing complex eigenvalues is very necessary). For instance, consider any rotation matrix

A =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
for an angle 0 < θ < 2π. This is invertible, so by Example 3.0.3 it cannot have 0 as an
eigenvalue. By the very definition of an eigenvector, we know that if a vector v in the plane
R2 is an eigenvector of A with nonzero eigenvalue, then Av points in the same direction as
v (thinking about the arrow depiction of a vector). But A is a rotation by a nonzero angle,
so Av cannot point in the same direction as v. The conclusion is that A has no eigenvectors
or eigenvalues !

Example 3.0.7. If A is an n×n matrix and λ is an eigenvalue of A, then λn is an eigenvalue
of An for any positive integer n (also for any negative integer n if A is invertible). More
generally, if p(x) = anx

n + . . .+ a0 is a polynomial, and we “plug in A into this polynomial”
to obtain a matrix

p(A) = anA
n + an−1A

n−1 + . . .+ a1A+ a0I,

then p(λ) is an eigenvalue of p(A).

In the best-case scenario, V has a basis of eigenvectors : we mean that there is a basis
{v1, . . . , vn} of V where each vi satisfies Tvi = λivi for some scalar λi. This means that if
we use the above eigenbasis for V , then the linear transformation T “looks diagonal.”

To be more concrete, let’s think about the case when V = Rn and T is represented by
a square matrix A. Let S be the change-of-basis matrix from {v1, . . . , vn} to the standard
basis, so the columns of S are the vi. If D is the diagonal matrix with the λi on the diagonal,
then A = SDS−1. Indeed, for each vi,

SDS−1vi = SDei = Sλiei = λi(Sei) = λivi = Avi

by the definition of S. Then SDS−1 and A agree on a basis, so they must be the same linear
map.

This relation is so important that it deserves a name:

Definition 3.0.8. Let A and B be two n × n matrices. If there is an invertible matrix S
such that A = SBS−1, then we say A and B are similar matrices.

The intuition for similar matrices is that

Similar matrices represent the same abstract linear transformation, but in
different coordinate systems.
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Note that if A and B are similar matrices, with A = SBS−1, then An and Bn are similar,
with An = SBnS−1. In fact p(A) = Sp(B)S−1 for any polynomial p(x) (see Example 3.0.7).

From the above discussion, we see that if Rn has a basis of eigenvectors of A, then A
is similar to a diagonal matrix. The converse is also true, since if A = SDS−1, then the
columns of S given a basis of Rn consisting of eigenvectors of A. In this case:

Definition 3.0.9. We say a square n × n matrix A is diagonalizable if it is similar to a
diagonal matrix. This is equivalent to Rn having a basis of eigenvectors of A.

The notion of diagonalizability is subtle. For instance, there is no correlation between
invertibility and diagonalizability. As an example, the 2 × 2 identity matrix is certainly

diagonalizable—it is already diagonal. But the matrix

[
1 1
0 1

]
is invertible yet not diagonal-

izable: its only eigenvector is (1, 0)T with corresponding eigenvalue 1, so the eigenvectors do
not form a basis of R2.

On the other hand, we can say:

Proposition 3.0.10. If v1, . . . , vk are eigenvectors of T : V → V corresponding to distinct
eigenvalues λ1, . . . , λk, then the vi are linearly independent.

Corollary 3.0.11. If T : V → V has n = dim(V ) distinct eigenvalues, then T is diagonaliz-
able, because we get n linearly independent eigenvectors of T , which necessarily form a basis
in n-dimensional space.

Of course, the converse of this statement is not true. For example, the 2 × 2 identity
matrix only has 1 as an eigenvalue (clear from the definition), but is diagonalizable. To guide
your intuition, you should have examples and counterexamples in your head regarding each
of the statements about eigenvalues and diagonalizability in this section.

3.1 The Characteristic Polynomial

To actually find eigenvalues of linear transformations represented by matrices, we make the
following observation. Suppose Av = λv for some nonzero vector v. Then (A− λI)v = 0, so
that A− λI is a matrix with nonzero kernel. This implies that it has determinant 0, so that
for any eigenvalue λ, we have det(A− λI) = 0. The converse is also true, and so we define:

Definition 3.1.1. The characteristic polynomial of a matrix A is the degree-n polynomial
charA(λ) = det(A− λI).

The eigenvalues of A are therefore the roots of charA(λ). Of course, the characteristic
polynomial need not have any real roots—consider for instance a quadratic polynomial with
negative discriminant (this is again why we should be working in the complex numbers). It
can also have repeated roots. If λ1 is a root of charA of multiplicity k, then we say λ1 is an
eigenvalue of A of algebraic multiplicity k.
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Example 3.1.2. The eigenvalues of the matrix A =

[
1 2
−2 5

]
are the roots to

det(A− λI) = (1− λ)(5− λ) + 4 = λ2 − 6λ+ 9.

This has 3 as a double root, so 3 is an eigenvalue of algebraic multiplicity 2.

Example 3.1.3. The eigenvalues of the matrix A =

[
0 −1
1 0

]
are the roots to

det(A− λI) = λ2 + 1.

This has complex roots ±i, both of which appear with algebraic multiplicity 1.

Example 3.1.4. The eigenvalues of any triangular matrix A are the entries aii on the
diagonal, because det(A− λI) = (λ− a11)(λ− a22) · . . . · (λ− ann).

The following result may also be helpful in checking your eigenvalue computations:

Proposition 3.1.5. Let A be an n× n matrix. The product of all eigenvalues (including
the complex ones if they exist) is equal to det(A). The sum of all eigenvalues is equal
to
∑n

i=1 aii, the sum of the elements on the main diagonal of A (this is called the trace of A,
and is another important invariant associated to a matrix).

Also, remember that if two matrices are similar, they are related by a change of basis.
That is, they represent the same linear transformation geometrically, but in different co-
ordinate systems. Eigenvalues are also geometric concepts: they are abstractly defined as
“how much some vector scales under a linear transformation,” which is not a definition that
depends on the coordinate system we choose. Therefore it should follow that eigenvalues are
preserved under change-of-basis, and this is true:

Proposition 3.1.6. Similar matrices have the same characteristic polynomial, and hence
the same eigenvalues with the same algebraic multiplicities.

Beware that the eigenvectors change, since we have changed to a different coordinate
system.

3.2 How to Diagonalize

Let’s go back to geometry, and consider when it is possible to diagonalize an n×n matrix A.
By definition, this occurs when Rn has a basis of eigenvectors of A. Therefore if λ1, . . . , λk are
the eigenvalues of A (there need not be n distinct eigenvalues!), we need that the dimensions
of the λi-eigenspaces sum to n, so that an eigenbasis of Rn is given by putting together
the individual bases for each eigenspace (note that linear independence is guaranteed by
Proposition 3.0.10). This motivates the following definition:
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Definition 3.2.1. Let A be a matrix with eigenvalue λ. The geometric multiplicity of λ
is the dimension of the λ-eigenspace. By the very definition of eigenvalue, the geometric
multiplicity is always at least 1.

Proposition 3.2.2. If λ is an eigenvalue of A, then the geometric multiplicity of λ is at
most the algebraic multiplicity.

So suppose a matrix A has n (real) eigenvalues, counted with algebraic multiplicity. By
this, we mean that the algebraic multiplicities of the eigenvalues sum up to n. This is clearly
a necessary condition for diagonalizability, since as we saw earlier, the diagonal matrix that
A is similar to must have the eigenvalues of A, with the correct multiplicities, as its diagonal
entries. Now, we know from Proposition 3.2.2 that for each eigenvalue λ, the size of the
basis for the λ-eigenspace is at most the algebraic multiplicity of λ. But for diagonalizability
to occur, the sum of the sizes of each of those individual bases must equal n, the same as
the sum of all the algebraic multiplicites. The only way for this to occur is if the geometric
multiplicities are the same as the algebraic multiplicities:

Diagonalizability means geometric multiplicity equals algebraic multiplicity for
every eigenvalue, and the sum of the multiplicities is n.

Example 3.2.3. Suppose we have a 4× 4 matrix A with 3 distinct eigenvalues 1, 2, 3 (not
counting with algebraic multiplicity). Then if d1, d2, d3 are the geometric multiplicities of the
1, 2, and 3-eigenspaces respectively, we have the inequalities d1, d2, d3 ≥ 1 and d1+d2+d3 ≤ 4.

Suppose further that we know that d1 = 2. Then we must have d2 = d3 = 1, so that
d1 +d2 +d3 = 4 and A is diagonalizable. We can also deduce that the algebraic multipliticies
of 1, 2, 3 must be 2, 1, 1 respectively.

Finally, let’s go through a full example of diagonalizing a 3× 3 matrix.

Example 3.2.4. Let’s try to diagonalize A =

 0 −4 −6
−1 0 −3
1 2 5

. The characteristic polyno-

mial is

det(A− λI) = det

−λ −4 −6
−1 −λ −3
1 2 5− λ

 = λ2(5− λ) + 12 + 12− 6λ− 6λ− 4(5− λ)

= −λ3 + 5λ2 − 8λ+ 4.

It is easy to see that 1 is a root of this polynomial, and then

−λ3 + 5λ2 − 8λ+ 4 = −(λ− 1)(λ2 − 4λ+ 4) = −(λ− 1)(λ− 2)2.
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Therefore A has eigenvalues 1 (algebraic multiplicity 1) and 2 (algebraic multiplicity 2).
To see whether A is diagonalizable or not, we need to see whether the geometric multi-

plicty of 2 is 1 or 2, since we know that 1 has geometric multiplicity 1. The 2-eigenspace is
equivalently the nullspace of A− 2I, which is

A− 2I =

−2 −4 −6
−1 −2 −3
1 2 3

 .
All the columns are a scalar multiple of the first, so A−2I has rank 1, and thus its nullspace
has dimension 3 − 1 = 2 by rank-nullity. Therefore the geometric multiplicity of 2 is 2,
verifying that A is diagonalizable.

To actually complete the diagonalization of A, we need to find bases of the 1 and 2-
eigenspaces. Via row reduction or some other method, we see that the nullspace for A− 2I
has basis {(1, 1,−1)T , (2,−1, 0)T}. Next, we have

A− I =

−1 −4 −6
−1 −1 −3
1 2 4

 ,
which we know has 1-dimensional nullspace. It is then not too hard to see that the 1-
eigenspace has basis {(2, 1,−1)T}, so that an eigenbasis for R3 is given by

{(2, 1,−1)T , (1, 1,−1)T , (2,−1, 0)T}.

Therefore

A =

 2 1 2
1 1 −1
−1 −1 0

1 0 0
0 2 0
0 0 2

 2 1 2
1 1 −1
−1 −1 0

−1 .
4 Inner Products

A vector space is a rather “bare” structure. That is, using only the abstract vector space
operations given to us (addition and scaling of vectors), we have no way of measuring ge-
ometric notions like length, area, angle, etc. To fix this, we need to define an additional
operation, called an inner product.

Definition 4.0.1. Let V be a vector space, not necessarily finite-dimensional. An inner
product on V is a function 〈·, ·〉 : V ×V → R (taking in two vectors) satisfying the following:

1. Symmetry: 〈v, w〉 = 〈w, v〉 for all vectors v and w.
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2. Bilinearity: 〈v+v′, w〉 = 〈v, w〉+ 〈v′, w〉 and 〈cv, w〉 = c〈v, w〉 for a scalar c. That is, if
we hold one of the arguments fixed, the inner product is linear in the other argument
(linearity in the second argument follows from symmetry).

3. Positive-definiteness: 〈v, v〉 ≥ 0 for all vectors v, and equality 〈v, v〉 = 0 occurs if and
only if v = 0.

If V has an inner product, we call V an inner product space.

Here are some examples:

Example 4.0.2. If V = Rn, the usual dot product v ·w =
∑n

i=1 viwi is an inner product on
Rn

Example 4.0.3. Suppose V = Pn, the space of polynomials of degree at most n. Let
a1, . . . , an+1 be n+ 1 distinct real numbers. Then

〈p, q〉 =
n+1∑
i=1

p(ai)q(ai)

is an inner-product on Pn. Positive-definitness is the hardest condition to check (it usually
is), and here it follows because if a degree-n polynomial has at least n+1 roots, then it must
be the 0 polynomial.

Example 4.0.4. Suppose V = C[0, 1], the space of continuous functions on the unit interval.
We define an inner product on V to be

〈f, g〉 =

∫ 1

0

fg.

You should convince yourself why this is an inner product. Inner products similar to this
one are the basis for the theory of Fourier series, to be discussed at the end of the course.

Note that a vector space can be equipped with many inner products. For instance, if
〈·, ·〉 is an inner product on a vector space V , then any scaling 〈·, ·〉′ = c〈·, ·〉 is another inner
product on V . Again, you should have examples of many different types of inner products
on different types of vector spaces, not just the standard dot product on Rn.

As promised, the inner product allows us to define lengths and (certain) angles.

Definition 4.0.5. The norm, or length, of a vector v in an inner product space is

‖v‖ = 〈v, v〉1/2.

A vector of norm 1 is called a unit vector, or normalized. If v is any nonzero vector, then
the unit vector 1

‖v‖v is the normalization of v. The distance between two vectors v and w is

‖v − w‖ = ‖w − v‖.
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For example, in Rn with the standard dot product, ‖v‖ =
∑n

i=1 v
2
i , and so vectors of

norm 1 satisfy
∑n

i=1 v
2
i = 1.

The norm of a vector satisfies the usual properties we want “length” to have, even in
more abstract situations. For example, we know that for any scalar c, ‖cv‖ = |c| ‖v‖, and
we also have the

Proposition 4.0.6 (Triangle inequality). For all vectors v and w in an inner product space,
we have

‖v + w‖ ≤ ‖v‖+ ‖w‖ .

This follows from the Cauchy-Schwarz inequality:

Proposition 4.0.7 (Cauchy-Schwarz). For all vectors v and w in an inner product space,
we have

|〈v, w〉| ≤ ‖v‖ ‖w‖ .

Moreover, equality holds if and only if one of v, w is a scalar multiple of the other.

Example 4.0.8. As a sample application of Cauchy-Schwarz, we will show that for positive
real numbers x1, . . . , xn, the inequality

(x1 + . . .+ xn)(1/x1 + . . .+ 1/xn) ≥ n2

always holds. This doesn’t look like it has anything to do with linear algebra, but consider
the vectors (

√
x1, . . . ,

√
xn) and (1/

√
x1, . . . , 1/

√
xn) in Rn. Then applying Cauchy-Schwarz

to these two vectors gives the desired inequality.

We now turn to angles.

Definition 4.0.9. A set of vectors {v1, . . . , vk} is orthogonal if for all i 6= j, 〈vi, vj〉 = 0. We
say that the set {v1, . . . , vk} is an orthogonal set. If the vi are also all unit vectors, we say
that the set is orthonormal.

In Rn with the dot product, the notion of “orthogonal” corresponds to the intuitive
geometric notion of perpendicularity. Then from our intuition with Euclidean space, we
expect that orthogonal vectors are linearly independent—they should “point in different
directions.” This is true:

Proposition 4.0.10. An orthogonal set of vectors {v1, . . . , vk} in an inner product space V
is linearly independent. In particular, if an orthogonal/orthonormal set of vectors spans V ,
then we call it an orthogonal/orthonormal basis.
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Example 4.0.11. In Rn, the set of standard basis vectors is an orthonormal basis. Another
orthogonal basis of R2 is given by {(1, 1), (−1, 1)}. This is not orthonormal, but we can
normalize the vectors to produce an orthonormal basis {(

√
2/2,
√

2/2), (−
√

2/2,
√

2/2)}.
In Rn with the dot product, we can also define the angle between two vectors more

generally. The acute angle θ between vectors v, w is given by

cos(θ) =
v · w
‖v‖ ‖w‖

.

This is often very useful to know.

Example 4.0.12. Consider the vector space P3 equipped with the inner product 〈p, q〉 =∫ 1

−1 pq. The first four Legendre polynomials,

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1), P3(x) =

1

2
(5x3 − 3x)

form an orthonormal basis for P3.

We can also generalize the concept of orthogonality to subspaces.

Definition 4.0.13. Let V be a finite-dimensional inner product space. If W and W ′ are
subspaces of V , we say that W is orthogonal to W ′ if for all w ∈ W,w′ ∈ W ′, we have
〈w,w′〉 = 0 (that is, every vector in W is orthogonal to every vector in W ′). Similarly, for a
vector v ∈ V , we say v is orthogonal to W if 〈w, v〉 = 0 for all w ∈ W .

We write W⊥ for the subspace {v ∈ V : 〈w, v〉 = 0} consisting of all vectors in V
orthogonal to W .

You should convince yourself that if W and W ′ are orthogonal subspaces, then W ∩W ′ =
{0}, since the only vector orthogonal to itself is the 0 vector (this is a common trick to
show that a vector is 0, and is worth remembering, along with the trick that
the only vector with norm 0 is 0). You should also convince yourself that (W⊥)⊥ = W
(WARNING: This is not true in infinite-dimensional inner product spaces!), and that
dim(W ) + dim(W ′) = dim(V ).

Example 4.0.14. In R3, the subspaces {(x, y, 0) : x, y ∈ R} and {(0, 0, z) : z ∈ R},
representing the xy-plane and the z-axis respectively, are orthogonal complements; they
only intersect at (0, 0, 0) and their dimensions add to 3. This is the intuition you should
keep in mind when thinking about orthogonal subspaces.

Example 4.0.15. If A is a matrix, then N(A) = (Row(A))⊥ and C(A) = N(AT ). This is
easy to see from the definitions.

The following theorems generalize what you know from Euclidean space, and are worth
remembering.
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Theorem 4.0.16 (Pythagorean theorem). If v and w are orthogonal vectors in an inner
product space, then ‖v + w‖2 = ‖v‖2 + ‖w‖2.

Theorem 4.0.17 (Parseval’s identity). If {v1, . . . , vn} is an orthonormal basis of an inner
product space V , then for any v ∈ V , we have

v =
n∑
i=1

〈v, vi〉vi,

and thus

‖v‖2 =
n∑
i=1

〈v, vi〉2.

Parseval’s identity follows from the Pythagorean theorem. It’s good to keep in mind the
special case of Parseval’s identity when V = Rn and the orthonormal basis is the standard
basis.

4.1 Orthogonal Projections and Gram-Schmidt

Now that inner products supply us with a notion of distance, we may proceed to ask some
natural questions. For instance, suppose we have an inner product space V , a vector v ∈ V ,
and a subspace W of V . We can ask for the “closest vector in W to v”: the vector w0 ∈ W
that minimizes ‖w − v‖ as w ranges over all vectors w ∈ W , if it exists. When V is finite-
dimensional, such a vector exists and is unique:

Proposition 4.1.1. Let V be a finite dimensional inner product space, let W be a subspace,
and let v ∈ V be a vector. Then v can be written uniquely in the form w0+z, where w0 ∈ W
and z ∈ W⊥. The vector w0, denoted projWv, is the projection of v onto W , and it minimizes
the distance ‖w − v‖ as w ranges over all vectors w ∈ W (in particular, if w′ ∈ W is not
projWv, we have a strict inequality ‖w′ − v‖ > ‖projWv − v‖. This minimized distance
‖projWv − v‖ is defined to be the distance of v to W .

If {w1, . . . , wk} is an orthogonal basis of W , then

projWv =
k∑
i=1

〈wi, v〉
〈wi, wi〉

wi.

WARNING: The above formula does not work if the wi are not orthogonal!

Example 4.1.2. Let’s do a numerical example in the simplest case when V = R2 and W
is just a line; i.e. it is spanned by a single vector w. In this case we also write projwv for
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projWv, and call it the projection of v onto w. Let v = (2, 0) and w = (−1,−1), so W is the
line y = x. Then

projwv =
v · w
w · w

w =
−2

2
w = (1, 1).

You should draw the picture and convince yourself that the line segment from v to projwv is
perpendicular to the line W , so that it represents the shortest distance (which is ‖(1,−1)‖ =√

2) from v to W .

Of course, in order to apply Proposition 4.1.1, we need to actually begin with an orthog-
onal basis of W . We know that we can find some basis of W , but there is no guarantee that
it be orthogonal. Luckily, there is a procedure to produce an orthogonal (even orthonormal)
basis from any basis, called the Gram-Schmidt procedure. Let’s describe it:

1. Let V be an inner product space with basis {v1, . . . , vn} (this doesn’t need to be a
basis, only a linearly independent set, in which case it is a basis for its span). We want
to produce an orthogonal basis from this basis.

2. Set w1 = v1.

3. Set w2 = v2 − projw1
v2. By Proposition 4.1.1, w2 is orthogonal to w1.

4. Set w3 = v3 − projspan(w1,w2) = v3 − projw1
v3 − projw2

v3. By Proposition 4.1.1, w3 is
orthogonal to w1 and w2.

5. In general, for k ≥ 2, if we have produced w1, . . . , wk−1, then we set

wk = vk − projspan(w1,...,wk−1)
= vk − projw1

vk − . . .− projwk−1
vk.

Basically, to get wk, we keep subtracting off the projections of vk onto w1, . . . , wk−1.
This ensures that wk is orthogonal to w1, . . . , wk−1.

6. Once we’re done, we have an orthogonal basis {w1, . . . , wn} of V . We can normalize
each vector (divide out by the norm) and produce an orthonormal basis.

Remark 4.1.3. It is advised to do all the normalization at the very end, in order to avoid
working with many square roots and fractions in the intermediate steps.

Remark 4.1.4. Notice that the Gram-Schmidt process depends on the order in which
you write your basis! That is, if we performed the Gram-Schmidt process on two bases
that were the same as sets but different as ordered lists, we would end up with different
results.
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The book has many worked-out examples of this process in action, so I won’t provide
another one here. The annoying thing about Gram-Schmidt is that it is a very computa-
tionally heavy process, with many places to make a silly arithmetic mistake, so it’s good to
practice on your own when dim(V ) is small (e.g. 3) to get a feel for the process.

On the other hand, the Gram-Schmidt process is very important theoretically. For in-
stance, because of this process and the fact that every vector space has some basis, we
conclude:

Proposition 4.1.5. Every (finite-dimensional) inner product space has an orthonormal
basis.

This is convenient, since it is much easier to work with an orthonormal basis instead of
some arbitrary basis.

Moreover, if we dig into the details of the Gram-Schmidt process beginning with a basis
{v1, . . . , vn} and ending with an orthonormal basis {w1, . . . , wn}, we conclude that

span(v1, . . . , vk) = span(w1, . . . , wk)

for all 1 ≤ k ≤ n. That is, the Gram-Schmidt process preserves the span of the first k vectors
in our list, for any k. Now, let’s work in Rn with the standard dot product. Suppose A is the
n× n invertible matrix with the vi’s as columns, and Q is the n× n invertible matrix with
the wi’s as columns. Then R := Q−1A is by definition the change-of-basis matrix from the
v-coordinate system to the w-coordinate system. But because each vk is a linear combination
of w1, . . . , wk by the above equality of spans, we conclude that the kth column in R has 0
entries after the kth row, so that R must be upper triangular! We conclude:

Proposition 4.1.6 (QR Factorization). If A is an invertible matrix, we can write A as a
product QR of square matrices, where the columns of Q are orthonormal and R is upper
triangular.

Matrices that share the properties of Q are so important we give them a special name:

Definition 4.1.7. If Q is a square matrix with orthonormal columns with respect to the
standard dot product on Rn, then Q is called an orthogonal matrix (the terminology is a bit
unfortunate). Equivalently, an orthogonal matrix Q is a matrix that satisfies Q−1 = QT .

The second definition is the preferred definition since it is more compact.
Orthogonal matrices are generalizations of rotation matrices, in that they preserve lengths

and angles. By that, I mean:

Proposition 4.1.8. If Q is an orthogonal matrix, then for any vectors v, w ∈ Rn, we have
Qv ·Qw = v · w. In particular, if v = w, we deduce that ‖Qv‖ = ‖v‖ for all vectors v.
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This also implies that the real eigenvalues of an orthogonal matrix are ±1, since if v is
an eigenvector of Q with eigenvalue λ, then ‖v‖ = ‖Qv‖ = ‖λv‖ = |λ| ‖v‖.

Because of their definining property Q−1 = QT , systems involving orthogonal matrices
are very easy to solve: the system Qx = b has the solution x = Q−1b = QT b, which is
convenient because finding the transpose of a matrix is much easier than finding its inverse.
In particular, if we already knew the QR factorization of a matrix A, then solving Ax = b
is the same as solving Rx = y, where y = QT b. But Rx = y is easy to solve with back
substitution, because R is already upper triangular (in fact this is sometimes faster than
row reduction even if you don’t know the QR factorization, as evidenced by the fact that
modern computer algebra software uses a combination of row-reduction and QR-factorization
techniques, depending on the situation). As an example:

Example 4.1.9. Suppose the 3× 3 matrix A has QR factorization

A = QR =

1/3 −2/3 2/3
2/3 −1/3 −2/3
2/3 2/3 1/3

1 1 0
0 1 1
0 0 1

 .
To solve the linear system Ax = b, where b = (3, 3, 3)T , we first set y = Q−1b = QT b. Then

y =
1

3

 1 2 2
−2 −1 2
2 −2 1

3
3
3

 =

 1 2 2
−2 −1 2
2 −2 1

1
1
1

 =

 5
−1
1

 .
We then need to solve Rx = y. R is already upper-triangular, so we only need to back-
substitute to find that the unique solution for x is (7,−2, 1)T .

5 Odds and Ends

In this section, we discuss a few final items that might appear on the midterm.

5.1 Least Squares

Recall that we can solve the linear system Ax = b exactly when b is in the column space
of A. Of course, if A is not surjective, this might not occur, so we can ask for the “best
possible approximate solution” in the case b 6∈ C(A). In other words, we are asking for the
x ∈ Rn such that ‖Ax− b‖ is minimized (equivalently, such that ‖Ax− b‖2 is minimized,
hence “least squares”). By Proposition 4.1.1, we are to find the x such that Ax is projC(A)b.
Note that if A is not injective, then there will be more than one possible value of x. The
method to do this is via the normal equations:
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Proposition 5.1.1. The normal equations for the system Ax = b are given by the system

ATAx = AT b.

This system is always consistent because rank(ATA) = rank(AT ). Any solution x̂ to this
system is a least-squares solution to Ax = b.

In the case that A is injective, then ATA is invertible, and the unique least-squares
solution is given by

x̂ = (ATA)−1AT b.

Notice that if b is actually in C(A), then the least-squares solutions are just the usual
solutions to Ax = b, since any such solution has ‖Ax− b‖ = 0, which is obviously minimal.

For the exam, it’s worth just memorizing this method and doing a numerical example or
two, since there isn’t really a new concept introduced here.

5.2 Linear Models

Due to lack of time and interest, I’m not going to say anything about this section. You
should just read Section 6.6 of the book to prepare for the midterm, and then you can forget
what you’ve read. Sorry!

5.3 Symmetric Matrices and Quadratic Forms

The theory of eigenvalues/eigenvectors of a symmetric matrix is particularly interesting.
For instance, because A = AT , we can show that eigenvectors corresponding to distinct
eigenvalues of a symmetric matrix are orthogonal (much stronger than “linear independence”,
as in Proposition 3.0.10). The amazing fact is that

Theorem 5.3.1 (Spectral Theorem). Any symmetric matrix is orthogonally diagonalizable.
This means that Rn has an orthonormal basis {v1, . . . , vn} of eigenvectors of A, so A can be
written as

A = SDS−1 = SDST =
n∑
i=1

diiviv
T
i

for D diagonal and S orthogonal. Any of the three equivalent forms above for A is called a
spectral decomposition of A.

The spectral theorem is difficult to prove, so it is more important that you just know
the result. To find the spectral decomposition of a symmetric matrix, you just use the same
diagonalization algorithm that you always use.

Finally, we turn to the concept of quadratic forms.
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Definition 5.3.2. A quadratic form in variables x1, . . . , xn is a polynomial in the xi where
every term has degree 2.

For example, x1x2 − x23 + 4x1x4 is a quadratic form. On the other hand, x21 + 2 and
x1x2 + x3x4 − x5 are not quadratic forms, because they contain terms of degree 0 and 1,
respectively.

Suppose we consider the xi as the components of an n-vector x. Now, if A is any
symmetric n× n matrix, then xTAx is a 1× 1 matrix, which we can consider as a number.
It is:

xTAx =
n∑

i,j=1

aijxixj.

Therefore the map (x1, . . . , xn) 7→ xTAx is by definition a quadratic form (note that this map
is definitely not linear, even though matrices and matrix products show up). Moreover, by
suitable choices of the aij, we find that every quadratic form arises in this way. For example:

Example 5.3.3. Consider the quadratic form x1x2 − x23 + 4x1x4 mentioned previously. To
write it in the form x 7→ xTAx, we should have aii be the coefficient of x2i for each i, and
aij = aji (remember A should be symmetric) be half of the coefficient of xixj for each pair
of indices i 6= j (make sure you understand why there is a difference)! Therefore with

A =


0 1

2
0 2

1
2

0 0 0
0 0 −1 0
2 0 0 0

 ,
the quadratic form xTAx is the same as x1x2 − x23 + 4x1x4.

We now explain why we insist on using symmetric matrices. First, if the matrices are
symmetric, we have a one-to-one association between quadratic forms and symmetric ma-
trices that doesn’t work if we allow more general matrices, since we have ambiguity in the
choice of aij and aji for each pair i 6= j (recall that in Example 5.3.3, aij = aji was forced to
be half of the corresponding coefficient in the quadratic form). In short,

Quadratic forms with n variables have a one-to-one correspondence to
symmetric n× n matrices.

Second, the spectral theorem allows us to make orthogonal changes of basis to write our
quadratic form in a more convenient form.

Definition 5.3.4. If f(x1, . . . , xn) is a quadratic form, then a cross-term is any term not of
the form cx2i ; that is, cross-terms are terms of the form dxixj for i 6= j.
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A quadratic form can be most easily analyzed when there are no cross terms, so that
none of the xi “interact” with each other, and the quadratic form is just a sum of scalar
multiples of squares of the xi’s. By the method shown in Example 5.3.3, this corresponds to
the matrix A being diagonal.

So suppose we start with an arbitrary quadratic form (x1, . . . , xn) 7→ xTAx. Because
A is symmetric, the spectral theorem tells us that there is an orthogonal matrix Q and a
diagonal matrix D such that A = QDQ−1, so that Q−1AQ = D. Then if we write x = Qy,
our quadratic form is

(x1, . . . , xn) 7→ xTAx = (Qy)TAQy = yTQTAQy = yTQ−1AQy = yTDy.

The point is that if we introduce new variables yi, governed by the relation x = Qy ⇔
Q−1x = y, our quadratic form has no cross-terms when expressed in terms of the variables
yi. As an example:

Example 5.3.5. Consider the quadratic form

x21 − 4x1x2 + 4x2x3 − x23.

This is represented by the symmetric matrix

A =

 1 −2 0
−2 0 2
0 2 −1

 ,
which has spectral decomposition

A = QDQ−1 =

−1/3 −2/3 2/3
−2/3 2/3 1/3
2/3 1/3 1/3

−3 0 0
0 3 0
0 0 0

−1/3 −2/3 2/3
−2/3 2/3 1/3
2/3 1/3 1/3

−1 .
Therefore if

y = Q−1x =

(
−x1 − 2x2 + 2x3

3
,
−2x1 + 2x2 + x3

3
,
2x1 + x2 + x3

3

)
,

then
x21 − 4x1x2 + 4x2x3 + x23 = −3y21 + 3y22,

where the right-hand side has no cross terms.

Notice that the coefficients of the yi’s are precisely the eigenvalues of A. It follows that
if all eigenvalues are positive (or nonnegative, nonpositive, negative), then the quadratic
form f also takes only positive (or nonnegative, nonpositive, negative) values for nonzero
arguments, regardless of the values of the xi’s. Indeed, this is clear if the inputs are in terms
of (y1, . . . , yn), but each (x1, . . . , xn) is associated to a unique (y1, . . . , yn) by Q (“change of
coordinates”). This deserves a special name:
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Definition 5.3.6. A quadratic form f(x1, . . . , xn) is

1. Positive definite if whenever the xi are not all zero, then f(x1, . . . , xn) is strictly posi-
tive.

2. Positive semidefinite if whenever the xi are not all zero, then f(x1, . . . , xn) is nonneg-
ative.

3. Negative semidefinite if whenever the xi are not all zero, then f(x1, . . . , xn) is nonpos-
itive.

4. Negative definite if whenever the xi are not all zero, then f(x1, . . . , xn) is strictly
negative.

If A is the symmetric matrix associated to the quadratic form f , then these 4 cases occur
when all the eigenvalues of A are:

1. Strictly positive.

2. Nonnegative.

3. Nonpositive.

4. Strictly negative.

Finally, if f (or A) does not fall in any of the above categories, then f can take on both pos-
itive and negative values, and A must have a mix of both positive and negative eigenvalues.
In this case, we call f and A indeterminate.

For example, the quadratic form in Example 5.3.5 is indeterminate, because A has eigen-
values 3 and −3. Indeed, f is positive if y1 = y3 = 0 and y2 = 1, while it is negative if
y2 = y3 = 0 and y1 = 1.

Remark 5.3.7. Those of you that have taken Math 53 may recall that the positive/negative
definiteness of the symmetric second-derivative Hessian matrix is used to determine the types
of extrema of a multivariate function. For example, positive-definiteness of the Hessian
indicates a local minimum, while an indeterminate Hessian indicates a saddle point.

WARNING: You cannot determine whether a quadratic form is positive/negative (semi)definite
by just looking at the signs of coefficients in the quadratic form or of the entries in the asso-
ciated symmetric matrix A. You must find the eigenvalues of A. For example, the quadratic
forms f(x1, x2) = x21 + x1x2 + x22 and g(x1, x2) = x21 + 3x1x2 + x22 look similar. But f is
positive definite because f(x1, x2) = x21/2 + 2(x1/2 + x2/2)2 + x22/2, while g is indeterminate
because g(1, 0) = 1 and g(−1, 1) = −1.
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